Programmable Controller M

PROGRAMMING MANUAL

FX3s/FX3G/FX3GC/FX3U/FX3Uc Series Programmable Controllers

Programming Manual - Basic \& Applied Instruction Edition

Manual No.	JY997D16601
Revision	R
Date	$4 / 2021$

Foreword

This manual contains text, diagrams and explanations which will guide the reader through the safe and correct installation, use, and operation of the FX3S/FX3G/FX3GC/FX3U/FX3Uc Series programmable controller. It should be read and understood before attempting to install or use the unit.
Store this manual in a safe place so that you can take it out and read it whenever necessary. Always forward it to the end user.

[^0]
Outline Precautions

- This manual provides information for the use of the $F^{2} 3 \mathrm{~S} / \mathrm{FX} 3 \mathrm{G} / F X_{3 G C} / F X_{3} U / F X_{3} u_{c}$ Series Programmable Controllers. The manual has been written to be used by trained and competent personnel. The definition of such a person or persons is as follows;

1) Any engineer who is responsible for the planning, design and construction of automatic equipment using the product associated with this manual should be of a competent nature, trained and qualified to the local and national standards required to fulfill that role. These engineers should be fully aware of all aspects of safety with regards to automated equipment.
2) Any commissioning or service engineer must be of a competent nature, trained and qualified to the local and national standards required to fulfill that job. These engineers should also be trained in the use and maintenance of the completed product. This includes being completely familiar with all associated documentation for the said product. All maintenance should be carried out in accordance with established safety practices.
3) All operators of the completed equipment should be trained to use that product in a safe and coordinated manner in compliance to established safety practices. The operators should also be familiar with documentation which is connected with the actual operation of the completed equipment.
Note: The term 'completed equipment' refers to a third party constructed device which contains or uses the product associated with this manual

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult with Mitsubishi Electric.
- This product has been manufactured under strict quality control. However when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.
- When combining this product with other products, please confirm the standard and the code, or regulations with which the user should follow. Moreover, please confirm the compatibility of this product to the system, machine, and apparatus with which a user is using.
- If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is qualified and trained to the local and national standards. If in doubt about the operation or use, please consult your local Mitsubishi Electric representative.
- Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.
- This manual content, specification etc. may be changed without a notice for improvement.
- The information in this manual has been carefully checked and is believed to be accurate; however, you have noticed a doubtful point, a doubtful error, etc., please contact your local Mitsubishi Electric representative.

Registration

Microsoft, Microsoft Access, ActiveX, Excel, SQL Server, Visual Basic, Visual C++, Visual Studio, Windows, Windows NT, Windows Server, Windows Vista, and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Anywire and AnyWireASLINK are either registered trademarks or trademarks of Anywire Corporation.
The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.
In some cases, trademark symbols such as ${ }^{\text {TMM }}$ or ${ }^{\circledR 81}$ are not specified in this manual.

Table of Contents

Related manuals 14
Generic Names and Abbreviations Used in Manuals 21

1. Introduction 23
1.1 Programming Language in PLCs 23
1.1.1 Types of programming languages 23
1.1.2 Applicability of programming languages in programming software 24
1.1.3 Compatibility among programs 24
2. Overview (Sequence Program) 25
2.1 Introduction of Convenient Functions 25
2.1.1 Convenient functions for input processing 25
2.1.2 Convenient functions for output processing 26
2.1.3 Functions for supporting sequence control 26
2.2 Introduction of Applied Instructions 27
2.2.1 Major applied instructions 28
2.3 Analog/Positioning Special Control 29
2.4 Link and Communication 30
2.5 Introduction of Devices Constructing PLC 31
2.5.1 Relationship among devices 31
2.5.2 Device list 32
2.6 Program Memory and Devices 34
2.6.1 Memory structure 34
2.6.2 Memory operations and latched (battery or EEPROM backed) devices (power ON/OFF and RUN/STOP) 37
2.6.3 Types of backup methods against power failure 43
2.6.4 Change between general devices and latched (battery backed) devices 44
2.6.5 How to initialize devices (battery backed) 44
2.7 Types and Setting of Parameters 45
2.7.1 Parameter list 45
2.7.2 Parameter initial values and available tools for changing parameter values 46
2.7.3 Memory capacity setting range 49
2.7.4 Compatible optional memory model 50
2.7.5 Keyword (entry code) 51
2.7.6 Special unit initial value setting 59
2.7.7 Positioning instruction setting 59
2.7.8 Built-in CC-Link/LT Setup (dedicated to FX3UC-32MT-LT-2) 59
2.7.9 Parameter settings 59
3. Instruction List 71
3.1 Basic Instructions 71
3.2 Step Ladder Instructions 73
3.3 Applied Instructions ... in Ascending Order of FNC Number 73
4. Devices in Detail 84
4.1 Device Number List. 84
4.2 I/O Relays [X, Y] 90
4.2.1 Numbers of I/O relays 90
4.2.2 Functions and roles 91
4.2.3 Operation timing of I/O relays 92
4.3 Auxiliary Relay [M] 93
4.3.1 Numbers of auxiliary relays 93
4.3.2 Functions and operation examples 93
4.4 State Relay [S] 95
4.4.1 Numbers of state relays 95
4.4.2 Functions and operation examples 96
4.5 Timer [T] 98
4.5.1 Numbers of timers 98
4.5.2 Functions and operation examples 98
4.5.3 Set value specification method 100
4.5.4 Cautions on routines 100
4.5.5 Details on timer operation and timer accuracy 100
4.5.6 Program examples [off-delay timer and flicker timer] 101
4.5.7 Handling timers as numeric devices 102
4.6 Counter [C] 103
4.6.1 Numbers of counters 103
4.6.2 Features of counters 103
4.6.3 Related devices (to specify counting direction) [32-bit counter] 104
4.6.4 Functions and operation examples 104
4.6.5 Set value specification method 105
4.6.6 Response speed of counters 106
4.6.7 Handling counters as numeric devices 106
4.7 High-Speed Counter [C] (FX3S/FX3G/FX3GC PLCs) 108
4.7.1 Types and device numbers of high-speed counters 108
4.7.2 Input assignment for high-speed counters 110
4.7.3 Handling of high-speed counters 111
4.7.4 Current value update timing and comparison of current value 111
4.7.5 Related devices 111
4.7.6 Assignment of counter input terminal and switching of function 112
4.7.7 Response frequency of high-speed counters 113
4.7.8 Cautions on use 115
4.8 High-Speed Counter [C] (FX3U/FX3UC PLC) 117
4.8.1 Types and device numbers of high-speed counters 117
4.8.2 Input assignment for high-speed counters 119
4.8.3 Handling of high-speed counters 120
4.8.4 Current value update timing and comparison of current value 122
4.8.5 Related devices 123
4.8.6 Changing the logic of external reset input signal 124
4.8.7 Assignment of counter input terminal and switching of function 124
4.8.8 How to use 2-phase 2-count input counters C251 to C255 with 4 edge counting 125
4.8.9 Conditions for hardware counters to be handled as software counters 126
4.8.10 Response frequency of high-speed counters 127
4.8.11 Cautions on use 129
4.9 Data Register and File Register [D] 131
4.9.1 Numbers of data registers and file registers 131
4.9.2 Structures of data registers and file registers 132
4.9.3 Functions and operation examples of data registers 133
4.9.4 Functions and operation examples of file registers 135
4.9.5 Cautions on using file registers 138
4.10 Extension Register [R] and Extension File Register [ER] 139
4.10.1 Numbers of extension registers and extension file registers 139
4.10.2 Data storage destination and access method 139
4.10.3 Structures of extension registers and extension file registers 140
4.10.4 Initialization of extension registers and extension file registers 140
4.10.5 Functions and operation examples of extension registers 141
4.10.6 Functions and operation examples of extension file registers 142
4.10.7 Cautions on using extension file registers 144
4.10.8 Registration of data in extension registers and extension file registers 145
4.11 Index Register [V and Z] 149
4.11.1 Numbers of index registers 149
4.11.2 Functions and structures 149
4.11.3 Indexing of devices 149
4.12 Pointer [P and I] 150
4.12.1 Numbers of pointers 150
4.12.2 Functions and operation examples of pointers for branch 150
4.12.3 Functions and operation examples of pointers for interrupt 151
5. How to Specify Devices and Constants to Instructions 154
5.1 Numeric Values Handled in PLC (Octal, Decimal, Hexadecimal and Real Numbers) 154
5.1.1 Types of numeric values 154
5.1.2 Conversion of numeric values 155
5.1.3 Handling of numeric values in floating point operations 156
5.2 Specification of Constants K, H and E (Decimal, Hexadecimal and Real Number) 158
5.2.1 Constant K (decimal number) 158
5.2.2 Constant H (hexadecimal number) 158
5.2.3 Constant E (real number) 158
5.3 Character Strings 159
5.3.1 Character string constant ("ABC") 159
5.3.2 Character string data 159
5.4 Specification of Digits for Bit Devices (Kn[]***). 160
5.5 Bit Specification of a Word Device (D[].b) 161
5.6 Direct Specification of Buffer Memory (U[]IG[]) 161
5.7 Indexing 162
5.7.1 Indexing in basic instructions 162
5.7.2 Indexing in applied instructions 163
5.7.3 Indexing example for instruction with limited number of use 165
6. What to Understand before Programming 166
6.1 How to Read Explanation of Instructions 166
6.2 Cautions on Creation of Fundamental Programs 169
6.2.1 Programming procedure and execution order 169
6.2.2 Double output (double coil) operation and countermeasures 170
6.2.3 Circuits which cannot be programmed and countermeasures 171
6.3 I/O Processing and Response Delay 171
6.4 Mutual Relationship Among Program Flow Control Instructions 172
6.5 General Rules for Applied Instructions. 174
6.5.1 Expression and operation type of applied instructions 174
6.5.2 Handling of general flags 176
6.5.3 Handling of operation error flag. 178
6.5.4 Handling functions of extension flag 178
6.5.5 Limitation in the number of instructions and limitation in simultaneous instruction instances 179
6.6 Symbolic information storage and block password 180
6.6.1 Storage of symbolic information 180
6.6.2 Block password 180
7. Basic Instruction 181
7.1 LD, LD 183
7.2 OUT 185
7.3 AND, ANI 188
7.4 OR, ORI 191
7.5 LDP, LDF, ANDP, ANDF, ORP, ORF 194
7.6 ORB 200
7.7 ANB 201
7.8 MPS, MRD, MPP 202
7.9 MC, MCR 205
7.10 INV 208
7.11 MEP, MEF 209
7.12 PLS, PLF 211
7.13 SET, RST 214
7.14 NOP 217
7.15 END 218
7.16 Number of Instruction Steps and Specified Devices 219
8. Program Flow - FNC 00 to FNC 09 220
8.1 FNC 00 - CJ / Conditional Jump 221
8.1.1 CJ instruction and operations of contact and coil 225
8.1.2 Relationship between master control instruction and jump instruction 227
8.2 FNC 01 - CALL / Call Subroutine 228
8.2.1 Cautions on subroutines and interrupt routines 230
8.3 FNC 02 - SRET / Subroutine Return 232
8.4 FNC 03 - IRET / Interrupt Return 233
8.5 FNC 04 - EI / Enable Interrupt 235
8.6 FNC 05 - DI / Disable Interrupt 236
8.7 FNC 06 - FEND / Main Routine Program End 237
8.8 FNC 07 - WDT / Watchdog Timer Refresh 239
8.9 FNC 08 - FOR / Start a FOR/NEXT Loop 241
8.10 FNC 09 - NEXT / End a FOR/NEXT Loop. 242
9. Move and Compare - FNC 10 to FNC 19 244
9.1 FNC 10 - CMP / Compare 245
9.2 FNC 11 - ZCP / Zone Compare 247
9.3 FNC 12 - MOV / Move 249
9.4 FNC 13 - SMOV / Shift Move 252
9.5 FNC 14 - CML / Complement 254
9.6 FNC 15 - BMOV / Block Move 256
9.6.1 Function of transfer between file registers and data registers 258
9.7 FNC 16 - FMOV / Fill Move 260
9.8 FNC 17 - XCH / Exchange 262
9.9 FNC 18 - BCD / Conversion to Binary Coded Decimal 264
9.10 FNC 19 - BIN / Conversion to Binary 267
10. Arithmetic and Logical Operation (+,,$- \times, \div$) - FNC 20 to FNC 29 270
10.1 FNC 20 - ADD / Addition 271
10.2 FNC 21 - SUB / Subtraction 273
10.3 FNC 22 - MUL / Multiplication 275
10.4 FNC 23 - DIV / Division 278
10.5 FNC 24 - INC / Increment 281
10.6 FNC 25 - DEC / Decrement 283
10.7 FNC 26 - WAND / Logical Word AND 284
10.8 FNC 27 - WOR / Logical Word OR 286
10.9 FNC 28 - WXOR / Logical Exclusive OR 288
10.10 FNC 29 - NEG / Negation 290
11. Rotation and Shift Operation - FNC 30 to FNC 39 292
11.1 FNC 30 - ROR / Rotation Right 293
11.2 FNC 31 - ROL / Rotation Left 295
11.3 FNC 32 - RCR / Rotation Right with Carry 297
11.4 FNC 33 - RCL / Rotation Left with Carry 299
11.5 FNC 34 - SFTR / Bit Shift Right 301
11.6 FNC 35 - SFTL / Bit Shift Left. 303
11.6.1 Replacement of SFT instruction in F1 and F2 Series 305
11.7 FNC 36 - WSFR / Word Shift Right 306
11.8 FNC 37 - WSFL / Word Shift Left 308
11.9 FNC 38 - SFWR / Shift Write [FIFO/FILO Control] 310
11.10 FNC 39 - SFRD / Shift Read [FIFO Control] 313
12. Data Operation - FNC 40 to FNC 49 315
12.1 FNC 40 - ZRST / Zone Reset 316
12.2 FNC 41 - DECO / Decode 320
12.3 FNC 42 - ENCO / Encode 323
12.4 FNC 43 - SUM / Sum of Active Bits 325
12.5 FNC 44 - BON / Check Specified Bit Status 328
12.6 FNC 45 - MEAN / Mean 330
12.7 FNC 46 - ANS / Timed Annunciator Set 332
12.8 FNC 47 - ANR / Annunciator Reset 334
12.9 FNC 48 - SQR / Square Root 335
12.10 FNC 49 - FLT / Conversion to Floating Point 336
13. High-Speed Processing - FNC 50 to FNC 59 338
13.1 FNC 50 - REF / Refresh 339
13.1.1 What should be understood before using the REF instruction 342
13.2 FNC 51 - REFF / Refresh and Filter Adjust 343
13.2.1 What should be understood before using REFF instruction. 345
13.3 FNC 52 - MTR / Input Matrix 346
13.3.1 Operation and cautions for the MTR instruction 349
13.4 FNC 53 - HSCS / High-Speed Counter Set. 350
13.4.1 Common cautions on using instructions for high-speed counter 353
13.5 FNC 54 - HSCR / High-Speed Counter Reset 356
13.6 FNC 55 - HSZ / High-Speed Counter Zone Compare 359
13.6.1 Program in which comparison result is set to ON when power is turned ON [ZCP (FNC 11) instruction] 363
13.6.2 Table high-speed comparison mode (M8130) 365
13.6.3 Frequency control mode (HSZ and PLSY instructions) (M8132) 368
13.7 FNC 56 - SPD / Speed Detection 371
13.8 FNC 57 - PLSY / Pulse Y Output 375
13.9 FNC 58 - PWM / Pulse Width Modulation 380
13.10 FNC 59 - PLSR / Acceleration/Deceleration Setup 383
14. Handy Instruction - FNC 60 to FNC 69 388
14.1 FNC 60 - IST / Initial State 389
14.1.1 IST instruction equivalent circuit 391
14.1.2 Example of IST instruction introduction (example of workpiece transfer mechanism) 392
14.2 FNC 61 - SER / Search a Data Stack 399
14.3 FNC 62 - ABSD / Absolute Drum Sequencer 402
14.4 FNC 63 - INCD / Incremental Drum Sequencer 405
14.5 FNC 64 - TTMR / Teaching Timer 407
14.6 FNC 65 - STMR / Special Timer 409
14.7 FNC 66 - ALT / Alternate State 411
14.8 FNC 67 - RAMP / Ramp Variable Value 413
14.9 FNC 68 - ROTC / Rotary Table Control 415
14.10 FNC 69 - SORT / SORT Tabulated Data 418
15. External FX I/O Device - FNC 70 to FNC 79 421
15.1 FNC 70 - TKY / Ten Key Input 422
15.2 FNC 71 - HKY / Hexadecimal Input 425
15.3 FNC 72 - DSW / Digital Switch (Thumbwheel Input) 429
15.4 FNC 73 - SEGD / Seven Segment Decoder 432
15.5 FNC 74 - SEGL / Seven Segment With Latch 434
15.5.1 How to select a seven-segment display unit 437
15.5.2 How to select parameter " n " based on seven-segment display specifications 437
15.6 FNC 75 - ARWS / Arrow Switch 439
15.7 FNC 76 - ASC / ASCII Code Data Input 443
15.8 FNC 77 - PR / Print (ASCII Code) 445
15.9 FNC 78 - FROM / Read From A Special Function Block 448
15.9.1 Common items between FROM instruction and TO instruction (details) 451
15.10 FNC 79 - TO / Write To A Special Function Block 453
16. External FX Device - FNC 80 to FNC 89 455
16.1 FNC 80 - RS / Serial Communication 456
16.2 FNC 81 - PRUN / Parallel Run (Octal Mode) 458
16.3 FNC 82 - ASCI / Hexadecimal to ASCII Conversion 460
16.4 FNC 83 - HEX / ASCII to Hexadecimal Conversion 463
16.5 FNC 84 - CCD / Check Code 466
16.6 FNC 85 - VRRD / Volume Read 469
16.7 FNC 86 - VRSC / Volume Scale 471
16.8 FNC 87 - RS2 / Serial Communication 2 473
16.9 FNC 88 - PID / PID Control Loop 476
17. Data Transfer 2 - FNC100 to FNC109 480
17.1 FNC102 - ZPUSH/Batch Store of Index Register 481
17.2 FNC103 - ZPOP/Batch POP of Index Register 484
18. Floating Point - FNC110 to FNC139 485
18.1 FNC110 - ECMP / Floating Point Compare 487
18.2 FNC111 - EZCP / Floating Point Zone Compare 488
18.3 FNC112 - EMOV / Floating Point Move 490
18.4 FNC116 - ESTR / Floating Point to Character String Conversion 491
18.5 FNC117 - EVAL / Character String to Floating Point Conversion 497
18.6 FNC118 - EBCD / Floating Point to Scientific Notation Conversion 502
18.7 FNC119 - EBIN / Scientific Notation to Floating Point Conversion 503
18.8 FNC120 - EADD / Floating Point Addition 505
18.9 FNC121 - ESUB / Floating Point Subtraction 506
18.10 FNC122 - EMUL / Floating Point Multiplication 507
18.11 FNC123 - EDIV / Floating Point Division 508
18.12 FNC124 - EXP / Floating Point Exponent 509
18.13 FNC125 - LOGE / Floating Point Natural Logarithm 511
18.14 FNC126 - LOG10 / Floating Point Common Logarithm 513
18.15 FNC127 - ESQR / Floating Point Square Root 515
18.16 FNC128 - ENEG / Floating Point Negation 516
18.17 FNC129 - INT / Floating Point to Integer Conversion 517
18.18 FNC130 - SIN / Floating Point Sine. 519
18.19 FNC131 - COS / Floating Point Cosine 520
18.20 FNC132 - TAN / Floating Point Tangent 521
18.21 FNC133 - ASIN / Floating Point Arc Sine 522
18.22 FNC134 - ACOS / Floating Point Arc Cosine 524
18.23 FNC135 - ATAN / Floating Point Arc Tangent 526
18.24 FNC136 - RAD / Floating Point Degrees to Radians Conversion 528
18.25 FNC137 - DEG / Floating Point Radians to Degrees Conversion 530
19. Data Operation 2 - FNC140 to FNC149 531
19.1 FNC140 - WSUM / Sum of Word Data 532
19.2 FNC141 - WTOB / WORD to BYTE 534
19.3 FNC142 - BTOW / BYTE to WORD 536
19.4 FNC143 - UNI / 4-bit Linking of Word Data 538
19.5 FNC144 - DIS / 4-bit Grouping of Word Data 540
19.6 FNC147 - SWAP / Byte Swap 542
19.7 FNC149 - SORT2 / Sort Tabulated Data 2 543
20. Positioning Control - FNC150 to FNC159 547
20.1 FNC150 - DSZR / Dog Search Zero Return 548
20.2 FNC151 - DVIT / Interrupt Positioning 550
20.3 FNC152 - TBL / Batch Data Positioning Mode 552
20.4 FNC155 - ABS / Absolute Current Value Read 553
20.5 FNC156 - ZRN / Zero Return 554
20.6 FNC157 - PLSV / Variable Speed Pulse Output 556
20.7 FNC158 - DRVI / Drive to Increment 558
20.8 FNC159 - DRVA / Drive to Absolute 560
21. Real Time Clock Control - FNC160 to FNC169 562
21.1 FNC160 - TCMP / RTC Data Compare 563
21.2 FNC161 - TZCP / RTC Data Zone Compare 565
21.3 FNC162 - TADD / RTC Data Addition 567
21.4 FNC163 - TSUB / RTC Data Subtraction 569
21.5 FNC164 - HTOS / Hour to Second Conversion 571
21.6 FNC165 - STOH / Second to Hour Conversion 573
21.7 FNC166 - TRD / Read RTC data 575
21.8 FNC167 - TWR / Set RTC data 576
21.9 FNC169 - HOUR / Hour Meter 578
22. External Device - FNC170 to FNC179 580
22.1 FNC170 - GRY / Decimal to Gray Code Conversion 581
22.2 FNC171 - GBIN / Gray Code to Decimal Conversion 582
22.3 FNC176 - RD3A / Read form Dedicated Analog Block 583
22.4 FNC177 - WR3A / Write to Dedicated Analog Block. 584
23. Introduction of Alternate Instructions - FNC180 585
23.1 Instruction correspondence table 585
24. Others - FNC181 to FNC189 586
24.1 FNC182 - COMRD / Read Device Comment Data 587
24.2 FNC184 - RND / Random Number Generation 589
24.3 FNC186 - DUTY / Timing Pulse Generation 590
24.4 FNC188 - CRC / Cyclic Redundancy Check 592
24.5 FNC189 - HCMOV / High-Speed Counter Move 596
25. Block Data Operation - FNC190 to FNC199 600
25.1 FNC192 - BK+ / Block Data Addition. 601
25.2 NFC193 - BK- / Block Data Subtraction 604
25.3 FNC194~199 - BKCMP=, >, <, < >, <=, >= / Block Data Compare 607
26. Character String Control - FNC200 to FNC209 611
26.1 FNC200 - STR / BIN to Character String Conversion 612
26.2 FNC201 - VAL / Character String to BIN Conversion 617
26.3 FNC202 - \$+ / Link Character Strings 622
26.4 FNC203 - LEN / Character String Length Detection 624
26.5 FNC204 - RIGHT / Extracting Character String Data from the Right 626
26.6 FNC205 - LEFT / Extracting Character String Data from the Left 628
26.7 FNC206 - MIDR / Random Selection of Character Strings 630
26.8 FNC207 - MIDW / Random Replacement of Character Strings 633
26.9 FNC208 - INSTR / Character string search 636
26.10 FNC209 - \$MOV / Character String Transfer 638
27. Data Operation 3 - FNC210 to FNC219 640
27.1 FNC210 - FDEL / Deleting Data from Tables 641
27.2 FNC211 - FINS / Inserting Data to Tables 643
27.3 FNC212 - POP / Shift Last Data Read [FILO Control] 645
27.4 FNC213 - SFR / Bit Shift Right with Carry 648
27.5 FNC214 - SFL / Bit Shift Left with Carry. 650
28. Data Comparison - FNC220 to FNC249 652
28.1 FNC224~230 - LD =, >, <, <>, <=, >= / Data Comparison 654
28.2 FNC232~238 - AND=, >, <, < >, <=, >= / Data Comparison 656
28.3 FNC240~246 - OR=, >, <, < >, <=, >= / Data Comparison 658
29. Data Table Operation - FNC250 to FNC269 660
29.1 FNC256 - LIMIT / Limit Control 661
29.2 FNC257 - BAND / Dead Band Control 664
29.3 FNC258 - ZONE / Zone Control 667
29.4 FNC259 - SCL / Scaling (Coordinate by Point Data) 670
29.5 FNC260 - DABIN / Decimal ASCII to BIN Conversion 674
29.6 FNC261 - BINDA / BIN to Decimal ASCII Conversion 677
29.7 FNC269 - SCL2 / Scaling 2 (Coordinate by X/Y Data) 680
30. External Device Communication - FNC270 to FNC276 684
30.1 FNC270 - IVCK / Inverter Status Check. 685
30.2 FNC271 - IVDR / Inverter Drive 687
30.3 FNC272 - IVRD / Inverter Parameter Read. 689
30.4 FNC273 - IVWR / Inverter Parameter Write 691
30.5 FNC274 - IVBWR / Inverter Parameter Block Write 693
30.6 FNC275 - IVMC / Inverter Multi Command 695
30.7 FNC276 - MODBUS Read/Write Instruction 697
30.7.1 Command Code and Command Parameters. 698
31. Data Transfer 3 - FNC277 to FNC279 701
31.1 FNC278 - RBFM / Divided BFM Read 702
31.1.1 Common items between RBFM (FNC278) instruction and WBFM (FNC279) instruction 703
31.2 FNC279 - WBFM / Divided BFM Write 706
32. High-Speed Processing 2 - FNC280 to FNC289 708
32.1 FNC280 - HSCT / High-Speed Counter Compare With Data Table 709
33. Extension File Register Control - FNC290 to FNC299 714
33.1 FNC290 - LOADR / Load From ER 715
33.2 FNC291 - SAVER / Save to ER 718
33.3 FNC292 - INITR / Initialize R and ER 726
33.4 FNC293 - LOGR / Logging R and ER 729
33.5 FNC294 - RWER / Rewrite to ER 733
33.6 FNC295 - INITER / Initialize ER 739
34. FX3U-CF-ADP Applied Instructions - FNC300 to FNC305 742
34.1 FNC300 - FLCRT / File create \cdot check 743
34.1.1 Detailed explanation of setting data 744
34.2 FNC301 - FLDEL / File delete•CF card format 745
34.2.1 Detailed explanation of setting data 746
34.3 FNC302 - FLWR / Data write 747
34.3.1 Detailed explanation of setting data 749
34.4 FNC303 - FLRD / Data read 750
34.4.1 Detailed explanation of setting data 751
34.5 FNC304 - FLCMD / FX3U-CF-ADP command 752
34.5.1 Detailed explanation of setting data 753
34.6 FNC305 - FLSTRD / FX3U-CF-ADP status read 754
34.6.1 Detailed explanation of setting data 755
35. SFC Program and Step Ladder 757
35.1 SFC Program 757
35.1.1 Outline 757
35.1.2 Explanation of function and operation 757
35.1.3 SFC program creating procedure 759
35.1.4 Handling and role of initial state relay 762
35.1.5 Latched (battery backed) type state relays 762
35.1.6 Role of the RET instruction 763
35.1.7 Preliminary knowledge for creating SFC program 763
35.1.8 SFC flow formats 769
35.1.9 Program of branch/recombination state relays 772
35.1.10 Rule for creating branch circuit 773
35.1.11 Program examples 777
35.2 Step Ladder 786
35.2.1 Outline 786
35.2.2 Explanation of function and operation. 786
35.2.3 Expression of step ladder 788
35.2.4 Creation of step ladder program (SFC program \rightarrow STL program) 789
35.2.5 Preliminary knowledge for creating step ladder programs 790
35.2.6 Program with state relays in branches and recombination 793
35.2.7 Program examples 797
36. Interrupt Function and Pulse Catch Function 803
36.1 Outline 803
36.2 Common Items 804
36.2.1 How to disable interrupt function 804
36.2.2 Related items 805
36.2.3 Cautions on use (common) 805
36.3 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function] 808
36.3.1 Input interrupt (interrupt triggered by external signal) [without delay function] 808
36.3.2 Examples of practical programs (programs to measure short pulse width) 812
36.4 Input interrupt (Interrupt by External Signal) [With Delay Function] 814
36.5 Timer Interrupt (Interrupt in Constant Cycle) 814
36.5.1 Timer interrupt (interrupt in constant cycle). 814
36.5.2 Examples of practical program (timer interrupt programs using applied instruction) 816
36.6 Counter Interrupt - Interrupt Triggered by Counting Up of High-Speed Counter 819
36.7 Pulse Catch Function [M8170 to M8177] 820
36.8 Pulse width/Pulse period measurement function [M8075 to M8079, D8074 to D8097] 821
37. Operation of Special Devices (M8000 -, D8000 -) 825
37.1 Special Device List (M8000 -, D8000 -) 825
37.1.1 Special Auxiliary Relay (M8000 to M8511) 825
37.1.2 Special Data Register (D8000 to D8511) 843
37.2 Supplement of Special Devices (M8000 - and D8000 -). 865
37.2.1 RUN monitor and initial pulse [M8000 to M8003] 865
37.2.2 Watchdog timer [D8000 866
37.2.3 Battery voltage low detection [M8005 and M8006] 866
37.2.4 Power failure detection time [D8008, M8008 and M8007] 867
37.2.5 Scan time (monitor) [D8010 to D8012]. 867
37.2.6 Internal clock [M8011 to M8014] 867
37.2.7 Real time clock [M8015 to M8019 and D8013 to D8019] 868
37.2.8 How to set real time clock 869
37.2.9 Input filter adjustment [D8020] 871
37.2.10 Battery [BATT (BAT)] LED and [ALM] LED OFF command [M8030] 872
37.2.11 Built-in analog volume [D8030 and D8031] 873
37.2.12 Clear command [M8031 and M8032] 873
37.2.13 Memory hold stop [M8033] (output hold in STOP mode) 873
37.2.14 All outputs disable [M8034] 874
37.2.15 Individual operation for RUN/STOP input [M8035 to M8037] 874
37.2.16 Constant scan mode [M8039 and D8039]. 875
37.2.17 State control in program with STL instruction/SFC chart [M8040] 875
37.2.18 Analog expansion boards [M8260 to M8279 and D8260 to D8279] 876
37.2.19 Analog special adapters [M8260 to M8299 and D8260 to D8299] 878
38. Error Check Method and Error Code List 885
38.1 States and Colors of LEDs PLC Operation Status 885
38.1.1 POWER (POW) LED [lit, flickering or unlit] 886
38.1.2 RUN LED [lit or unlit] 886
38.1.3 BATT (BAT) LED [lit or unlit] [FX3U/FX3UC] 886
38.1.4 ALM LED [lit or unlit] [FX3G/FX3GC] 886
38.1.5 ERROR (ERR) LED [lit, flickering or unlit]. 887
38.1.6 L RUN LED [FX3UC-32MT-LT(-2)] 887
38.1.7 L ERR LED [FX3UC-32MT-LT(-2)] 888
38.2 Error Code Check Method and Indication 889
38.2.1 Error code check method by display module 889
38.2.2 Error code check method by GX Works2 890
38.2.3 Error indication 891
38.3 Supplementary Explanation of Devices for Error Detection 892
38.3.1 Error detection (M8060 to/D8060 to) 892
38.3.2 Operations of special devices for error detection 893
38.3.3 Error detection timing 893
38.4 Error Code List and Action 894
Appendix A: Programming Tool Applicability and Version Upgrade History 902
Appendix A-1 Programming Tool Applicability 902
Appendix A-1-1 Programming tool applicability 902
Appendix A-1-2 Cautions on writing during RUN 905
Appendix A-1-3 Precautions on Use of (Built-in USB) Programming Port 910
Appendix A-1-4 Cautions on using transparent function by way of USB in GOT1000 Series 911
Appendix A-1-5 Cautions on using transparent (2-port) function of GOT-F900 Series 912
Appendix A-2 Peripheral product applicability (except programming tools) 913
Appendix A-2-1 Peripheral product applicability 913
Appendix A-3 Version Upgrade History 915
Appendix A-3-1 Manufacturer's serial number check method 915
Appendix A-3-2 Version check 916
Appendix A-3-3 Version upgrade history [FX3S] 916
Appendix A-3-4 Version upgrade history [FX3G]. 916
Appendix A-3-5 Version upgrade history [FX3GC] 917
Appendix A-3-6 Version upgrade history [FX3U]. 917
Appendix A-3-7 Version upgrade history [FX3UC] 918
Appendix B: Instruction Execution Time 920
Appendix B-1 Basic Instruction Execution Time 920
Appendix B-2 Step Ladder Instruction Execution Time 928
Appendix B-3 Label (P/I) Execution Time 928
Appendix B-4 Applied Instruction Execution Time 929
Appendix B-5 Execution Time of Pulse Generation Instruction P in Each Applied Instruction 944
Appendix B-6 Execution Time on Combination of Applicable Devices and Indexing 947
Appendix B-6-1 Basic instruction (LD/LDI/AND/ANI/OR/ORI) execution time 947
Appendix B-6-2 Applied instruction execution time 947
Appendix C: Applied Instruction List [by Instruction Type/in Alphabetic Order] 952
Appendix C-1 Applied instructions [by instruction type] 952
Appendix C-2 Applied instructions [in alphabetical order] 956
Appendix D: Discontinued models 959
Warranty 961
Revised History 962

Related manuals

For detailed explanation of programming (basic instructions, applied instructions and step ladder instructions) in FX3S/ FX3G/FX3GC/FX3U/FX3Uc PLCs, refer to this manual
For hardware information on the PLC main unit, special extension units, etc., refer to each associated manual.
For acquiring manuals, contact the representative you have purchased the product from

\bigcirc Essential manual		O Manual required dep	ati	\triangle Manual with additional manual for detailed explanation	
		Manual name	Manual number	Contents	Model name code
Manuals for PLC main unit					
■FX3S PLC main unit					
\triangle	Supplied with product	FX3S Series Hardware Manual	JY997D48301	I/O specifications, wiring and installation of the PLC main unit FX3S extracted from the FX3S Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3s Series User's Manual - Hardware Edition.	-
\triangle	Supplied with product	FX3s-30M $\square / E \square-2 A D$ Hardware Manual	JY997D51701	I/O specifications, built-in analog specifications, wiring and installation of the PLC main unit FX3S30M $\square / E \square-2 A D$ extracted from the FX3S Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3S Series User's Manual - Hardware Edition.	-
\bigcirc	Additional Manual	FX3S Series User's Manual - Hardware Edition	JY997D48601	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3S PLC main unit.	$09 R 535$

- FXXG PLC main unit

| \triangle | Supplied
 with product | FX3G Series
 Hardware Manual | I/O specifications, wiring and installation of the PLC
 main unit FX3G extracted from the FX3G Series
 User's Manual - Hardware Edition. For detailed
 explanation, refer to the FX3G Series User's Manual
 - Hardware Edition. | JY997D46001 |
| :--- | :--- | :--- | :--- | :--- | :---: |

- FX3GC PLC main unit

\triangle	Supplied with product	FX3GC Series Hardware Manual	I/O specifications, wiring and installation of the PLC main unit FX3GC extracted from the FX3GC Series		
User's Manual - Hardware Edition. For detailed					
explanation, refer to the FX3GC Series User's					
Manual - Hardware Edition.				$\quad-$	JY997D45201
:---					

[FX3U PLC main unit

| \triangle | Supplied
 with product | FX3U Series
 Hardware Manual | I/O specifications, wiring and installation of the PLC
 main unit FX3U extracted from the FX3U Series
 User's Manual - Hardware Edition. For detailed
 explanation, refer to the FX3U Series User's Manual
 - Hardware Edition. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

■FX3UC PLC main unit
For detailed explanation, refer to the FX3UC Series User's Manual - Hardware Edition.

\triangle	Supplied with product	FX3UC (D, DS, DSS) Series Hardware Manual	JY997D50501	I/O specifications, wiring and installation of the PLC main unit FX3UC (D, DS, DSS) extracted from the FX3UC Series User's Manual - Hardware Edition.	-
\triangle	Supplied with product	FX3UC-32MT-LT-2 Hardware Manual	JY997D31601	I/O specifications, wiring and installation of the PLC main unit FX3UC-32MT-LT-2 extracted from the FX3UC Series User's Manual - Hardware Edition.	-
\odot	Additional Manual	FX3UC Series User's Manual - Hardware Edition	JY997D28701	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3UC PLC main unit.	09R519

\bigcirc Essential manual		on application \triangle Manual with additional manual for detailed explanation			
		Manual name	Manual number	Contents	Model name code
-Programming					
\bigcirc	Additional Manual	FX3S/FX3G/FX3GC/FX3U/FX3UC Series Programming Manual - Basic \& Applied Instruction Edition (this manual)	JY997D16601	Items related to programming in PLCs including explanation of basic instructions, applied instructions and various devices in FX3S/FX3G/ FX3GC/FX3U/FX3UC PLCs.	$09 R 517$
\bigcirc	Additional Manual	MELSEC-Q/L/F Structured Programming Manual (Fundamentals)	SH-080782ENG	Programming methods, specifications, functions, etc. required to create structured programs	13JW06
\bigcirc	Additional Manual	FXCPU Structured Programming Manual [Device \& Common]	JY997D26001	Devices, parameters, etc. provided in structured projects of GX Works2	$09 R 925$
\bigcirc	Additional Manual	FXCPU Structured Programming Manual [Basic \& Applied Instruction]	JY997D34701	Sequence instructions provided in structured projects of GX Works2	$09 R 926$
\bigcirc	Additional Manual	FXCPU Structured Programming Manual [Application Functions]	JY997D34801	Application functions provided in structured projects of GX Works2	$09 R 927$
-Terminal block					
\bigcirc	Supplied with product	FX INPUT AND OUTPUT TERMINAL BLOCKS	JY992D50401	Terminal block handling procedures.	-
Manuals for communication control					
■Common					
\bigcirc	Additional Manual	FX Series User's Manual - Data Communication Edition	JY997D16901	Details about N : N Network, parallel link, computer link and non-protocol communication (RS instruction and FX2N-232IF).	$09 R 715$
\bigcirc	Additional Manual	FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - MODBUS Serial Communication Edition	JY997D26201	Explains the MODBUS serial communication network in FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs.	$09 R 626$

■Communication via RS-232C/RS-422/RS-485/USB
When using each product, refer to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected and the FX Series User's Manual - Communication Control Edition.
Refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - MODBUS Serial Communication Edition for MODBUS communication

\triangle	Supplied with product	FX3U-USB-BD User's Manual	JY997D13501	Items about the system configuration of USB communication expansion board and the driver installation method.	
\triangle	Supplied with product	FX3G-232-BD Installation Manual	JY997D32001	Handling procedures of the RS-232C communication expansion board.	-
\triangle	Supplied with product	FX3U-232-BD Installation Manual	JY997D12901	Handling procedures of the RS-232C communication expansion board.	-
\triangle	Supplied with product	FX3U-232ADP-MB Installation Manual	JY997D26401	Handling procedures of the RS-232C communication special adapter.	-
\triangle	Supplied with product	FX3U-232ADP Installation Manual	JY997D13701	Handling procedures of the RS-232C communication special adapter.	-
\triangle	Supplied with product	FX2N-232IF Hardware Manual	JY992D73501	Handling procedures of the RS-232C communication special function block.	-
\triangle	Supplied with product	FX3G-422-BD Installation Manual	JY997D32101	Handling procedures of the RS-422 communication expansion board.	-
\triangle	Supplied with product	FX3U-422-BD Installation Manual	JY997D13101	Handling procedures of the RS-422 communication expansion board.	-
\triangle	Supplied with product	FX3G-485-BD Installation Manual	JY997D32201	Handling procedures of the RS-485 communication expansion board.	-
\triangle	Supplied with product	FX3G-485-BD-RJ Installation Manual	JY997D51501	Handling procedures of the RS-485 communication expansion board.	-
\triangle	Supplied with product	FX3U-485-BD Installation Manual	JY997D13001	Handling procedures of the RS-485 communication expansion board.	-
\triangle	Supplied with product	FX3U-485ADP-MB Installation Manual	JY997D26301	Handling procedures of the RS-485 communication special adapter.	-
\triangle	Supplied with product	FX3U-485ADP Installation Manual	Handling procedures of the RS-485 communication special adapter.	-	
\triangle	Supplied with product	FX-485PC-IF Hardware Manual conversion interface.	-		
	JY992D81801	-	-		

\bigcirc Essential manual		O Manual required depending on application		\triangle Manual with additional manual for detailed explanation	
		Manual name	Manual number	Contents	$\begin{array}{\|c} \hline \text { Model name } \\ \text { code } \end{array}$
■Ethernet, CC-Link, MELSEC I/O LINK, AnyWireASLINK and AS-i system When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.					
\triangle	Supplied with product	FX3U-ENET-ADP Installation Manual	JY997D47401	Describes installation specifications for the FX3U-ENET-ADP Ethernet communication special adapter extracted from the FX3U-ENET-ADP User's Manual. For details, refer to FX3U-ENET-ADP User's Manual.	-
\bigcirc	Additional Manual	$\begin{aligned} & \hline \text { FX3U-ENET-ADP } \\ & \text { User's Manual } \end{aligned}$	JY997D45801	Describes Ethernet communication special adapter details.	$09 R 725$
\triangle	Supplied with product	FX3U-16CCL-M Installation Manual	JY997D43401	Handling procedures of the CC-Link master special function block. For use, refer to the FX3U-16CCL-M User's Manual.	-
\bigcirc	Additional Manual	FX3U-16CCL-M User's Manual	JY997D43601	Details about the CC-Link master special function block.	$09 R 724$
\triangle	Supplied with product	FX2N-16CCL-M Hardware Manual	JY992D93201	Handling procedures of the CC-Link master special function block. For use, refer to the FX2N-16CCL-M User's Manual.	-
\bigcirc	Additional Manual	FX2N-16CCL-M User's Manual	JY992D93101	Details about the CC-Link master special function block.	$09 R 710$
\triangle	Supplied with product	FX3U-64CCL Installation Manual	JY997D29801	Handling procedures of the CC-Link interface special function block. For use, refer to the FX3U-64CCL User's Manual.	-
\bigcirc	Additional Manual	FX3U-64CCL User's Manual	JY997D30401	Handling procedures of the CC-Link interface special function block.	$09 R 718$
\bigcirc	$\begin{gathered} \text { Supplied } \\ \text { with product } \end{gathered}$	FX2N-32CCL User's Manual	JY992D71801	Handling procedures of the CC-Link remote device station special function block.	$09 R 711$
\bigcirc	Supplied with product	Remote I/O station, remote device station and intelligent device station for CC-Link	As for the remo device station fo	I/O station, remote device station and intelligent CC-Link, refer to each manual and the related data.	
\triangle	Supplied with product	FX2N-64CL-M User's Manual [Hardware Volume]	JY997D05401	Handling procedures of the CC-Link/LT master special function block. For use, refer to the FX2N-64CL-M User's Manual [Detailed Volume].	-
\bigcirc	Additional Manual	$\begin{aligned} & \hline \text { FX2N-64CL-M } \\ & \text { User's Manual } \\ & \text { [Detailed Volume] } \end{aligned}$	JY997D08501	Details about the CC-Link/LT master special function block.	-
\bigcirc	Supplied with product	Remote I/O station, remote device station, power supply adapter and dedicated power supply for CC-Link/LT	As for the remot adapter and ded manual and the	I/O station, remote device station, power supply cated power supply for CC-Link/LT, refer to each elated data.	
\bigcirc	$\begin{gathered} \text { Supplied } \\ \text { with product } \end{gathered}$	FX2N-16LNK-M User's Manual	JY992D73701	Handling procedure of the master special function block for the MELSEC I/O LINK	$09 R 709$
\triangle	Supplied with product	FX3U-128ASL-M Installation Manual	JY997D51901	Handling procedures of the AnyWireASLINK system master block. For use, refer to the FX3U-128ASL-M User's Manual.	-
\bigcirc	Additional Manual	FX3U-128ASL-M User's Manual	JY997D52101	Details about the AnyWireASLINK system master block.	$09 R 731$
\bigcirc	Supplied with product	FX2N-32ASI-M User's Manual	JY992D76901	Handling procedure of the master special function block for the AS-i system.	-
Manuals for analog control					
■Common					
\bigcirc	Additional Manual	FX3S/FX3G/FX3GC/FX3U/FX3UC User's Manual - Analog Control Edition	JY997D16701	Details about the analog special function block (FX3U-4AD, FX3U-4DA, FX3UC-4AD), analog special adapter (FX3U-****-ADP) and analog expansion board (FX3G-***-BD).	$09 R 619$

O Manual required depending on application				\triangle Manual with additional manual for detailed explanation	
		Manual name	Manual number	Contents	$\begin{array}{\|c} \text { Model name } \\ \text { code } \end{array}$
■Analog input, temperature input and temperature control When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.					
\triangle	Supplied with product	FX3G-2AD-BD Installation Manual	JY997D33501	Handling procedures of the 2-channel analog input expansion board. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\bigcirc	$\begin{array}{\|c\|} \hline \text { Supplied } \\ \text { with product } \end{array}$	FX2N-2AD User's Guide	JY992D74701	Handling procedures of the 2-channel analog input special function block.	-
\triangle	Supplied with product	FX3U-4AD Installation Manual	JY997D20701	Handling procedures of the 4-channel analog input special function block. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\triangle	Supplied with product	FX3U-4AD-ADP Installation Manual	JY997D13901	Handling procedures of the 4-channel analog input special adapter. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\triangle	Supplied with product	FX3UC-4AD Installation Manual	JY997D14901	Handling procedures of the 4-channel analog input special function block. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\bigcirc	Supplied with product	FX2N-4AD User's Guide	JY992D65201	Handling procedures of the 4-channel analog input special function block.	-
\bigcirc	Supplied with product	FX2NC-4AD User's Manual	JY997D07801	Handling procedures of the 4-channel analog input special function block.	-
\bigcirc	Supplied with product	FX2N-8AD User's Manual	JY992D86001	Handling procedures of the 8-channel analog input (and thermocouple input) special function block.	$09 R 608$
\triangle	Supplied with product	FX3U-4AD-PT-ADP User's Manual	JY997D14701	Handling procedures of the 4-channel Pt100 temperature sensor input special adapter. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\triangle	Supplied with product	FX3U-4AD-PTW-ADP User's Manual	JY997D29101	Handling procedures of the 4-channel Pt100 temperature sensor input special adaptor. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\bigcirc	Supplied with product	FX2N-4AD-PT User's Guide	JY992D65601	Handling procedures of the 4-channel Pt100 temperature sensor input special function block.	-
\triangle	Supplied with product	FX3U-4AD-PNK-ADP User's Manual	JY997D29201	Handling procedures of the 4-channel Pt1000/Ni1000 temperature sensor input special adaptor. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\triangle	Supplied with product	FX3U-4AD-TC-ADP User's Manual	JY997D14801	Handling procedures of the 4-channel thermocouple input special adapter. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\bigcirc	Supplied with product	FX2N-4AD-TC User's Guide	JY992D65501	Handling procedures of the 4-channel thermocouple input special function block.	-
\triangle	Supplied with product	FX3U-4LC Installation Manual	JY997D38901	Handling procedures of the 4-channel temperature control special function block. For use, refer to the FX3U-4LC User's Manual	-
\bigcirc	Additional Manual	FX3U-4LC User's Manual	JY997D39101	Detail about the 4-channel temperature control special function block.	$09 R 625$
\triangle	Supplied with product	FX2N-2LC User's Guide	JY992D85601	Handling procedures of the 2-channel temperature control special function block. For use, refer to the FX2N-2LC User's Manual.	-
\bigcirc	Additional Manual	$\begin{aligned} & \hline \text { FX2N-2LC } \\ & \text { User's Manual } \end{aligned}$	JY992D85801	Details about the 2-channel temperature control special function block.	09 R 607

\bigcirc Essential manual		O Manual required depending on application		\triangle Manual with additional manual for detailed explanation	
		Manual name	Manual number	Contents	$\begin{array}{\|c} \hline \text { Model name } \\ \text { code } \end{array}$
■Analog output When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.					
\triangle	Supplied with product	FX3G-1DA-BD Installation Manual	JY997D33601	Handling procedures of the 1-channel analog output expansion board. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\bigcirc	Supplied with product	FX2N-2DA User's Guide	JY992D74901	Handling procedures of the 2-channel analog output special function block.	-
\triangle	Supplied with product	FX3U-4DA Installation Manual	JY997D20801	Handling procedures of the 4-channel analog output special function block. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\triangle	Supplied with product	FX3U-4DA-ADP User's Manual	JY997D14001	Handling procedures of the 4-channel analog output special adapter. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-
\bigcirc	Supplied with product	FX2N-4DA User's Guide	JY992D65901	Handling procedures of the 4-channel analog output special function block.	-
\bigcirc	Supplied with product	FX2NC-4DA User's Manual	JY997D07601	Handling procedures of the 4-channel analog output special function block.	-

-Analog I/O (mixed)
When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.

Δ	Supplied with product	FX3U-3A-ADP User's Manual	JY997D35601	Handling procedures of the 2-channel analog input/ 1-channel analog output special adapter. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition.	-

When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is

\triangle	Supplied with product	FX3U-4HSX-ADP Installation Manual	JY997D16301	Handling procedure of the special high-speed input adapter.	-
\bigcirc	Supplied with product	FX3U-2HC User's Manual	JY997D36701	Handling procedure of the 2-channel high-speed counter special function block.	-
\bigcirc	$\begin{gathered} \text { Supplied } \\ \text { with product } \end{gathered}$	FX2N-1HC User's Guide	JY992D65401	Handling procedures of the 1-channel high-speed counter special function block.	-
\bigcirc	Supplied with product	FX2NC-1HC User's Manual	JY997D30701	Handling procedures of the 1-channel high-speed counter special function block.	-
Manuals for positioning control					
■Common					
\bigcirc	Additional Manual	FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Positioning Edition	JY997D16801	Details about the positioning function built in the FX3S/FX3G/FX3GC/FX3U/FX3UC Series.	$09 R 620$

\odot	Essential manual	○ Manual required depending on application			\triangle Manual with additional manual for detailed explanation
	Manual name	Manual number	Contents	Model name code	

\square Pulse output and positioning
When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.

\triangle	Supplied with product	FX3U-2HSY-ADP Installation Manual	JY997D16401	Handling procedure of the special high-speed output adapter. For use, refer to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Positioning Edition.	-
\triangle	Supplied with product	FX3U-1PG Installation Manual	JY997D47101	Handling procedures of the 1-axis pulse output block. For use, refer to the FX3U-1PG User's Manual.	-
\bigcirc	Additional Manual	FX3U-1PG User's Manual	JY997D47301	Details about the 1-axis pulse output block.	$09 R 629$
\triangle	Supplied with product	FX2N-1PG-E Installation Manual	JY997D50601	Handling procedures of the 1-axis pulse output block. For use, refer to the FX2N/FX-1PG User's Manual.	-
\bigcirc	Additional Manual	FX2N/FX-1PG User's Manual	JY992D65301	Handling procedures of the 1-axis pulse output block.	$09 R 610$
\triangle	Supplied with product	FX2N-10PG Installation Manual	JY992D91901	Handling procedures of the 1-axis pulse output block. For use, refer to the FX2N-10PG User's Manual.	-
\bigcirc	Additional Manual	FX2N-10PG User's Manual	JY992D93401	Details about the 1-axis pulse output block.	$09 R 611$
\triangle	Supplied with product	FX2N-10GM User's Guide	JY992D77701	Handling procedures of the 1-axis positioning special extension unit. For use, refer to the FX2N-10GM/FX2N-20GM Hardware/Programming Manual	-
\triangle	Supplied with product	FX2N-20GM User's Guide	JY992D77601	Handling procedures of the 2-axis positioning special extension unit. For use, refer to the FX2N-10GM/FX2N-20GM Hardware/Programming Manual	-
\bigcirc	Additional Manual	FX2N-10GM, FX2N-20GM Hardware/Programming Manual	JY992D77801	Details on the 1-axis/2-axis positioning special function unit.	$09 R 612$

Programmable cam switch
When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.

O	Supplied with product	FX2N-1RM-E-SET User's Manual	JY992D71101	Handling procedures of the programmable cam switch special extension unit.	09R614
Manuals for FX3U-20SSC-H positioning Block					
\triangle	Supplied with product	FX3U-20SSC-H Installation Manual	JY997D21101	Handling procedures of the 2-axis positioning special function block. For use, refer to the FX3U-20SSC-H User's Manual.	-
$○$	Additional Manual	FX3U-20SSC-H User's Manual	JY997D21301	Describes FX3U-20SSC-H Positioning block details.	09R622
\bigcirc	Supplied with product	FX Configurator-FP Operation Manual	JY997D21801	Describes operation details of FX Configurator-FP Configuration Software.	09R916

Manuals for FX3U-CF-ADP CF card special adapter

| \triangle | Supplied
 with product | FX3U-CF-ADP
 Installation Manual | JY997D35201 | Describes installation specifications for the
 FX3U-CF-ADP CF card special adapter extracted
 from the FX3U-CF-ADP User's Manual.
 For details, refer to FX3U-CF-ADP User's Manual. | - |
| :---: | :---: | :--- | :--- | :--- | :---: | :---: |
| O | Additional
 Manual | FX3U-CF-ADP
 User's Manual | JY997D35401 | Describes details of the FX3U-CF-ADP CF card
 special adapter. | 09R720 |
| Manuals for FX-30P | JY997D34201 | Describes FX-30P specification extracted from the
 FX-30P Operation manual.
 For details, refer to FX-30P Operation manual. | | | |
| \triangle | Supplied
 with product | FX-30P
 Installation Manual | JY997D34401 | Describes Handy Programming Panel FX-30P
 details. | 09R924 |

๑ Essential manual		O Manual required depen	on application	\triangle Manual with additional manual for detailed explanation	
		Manual name	Manual number	Contents	Model name code
Other manuals					
When using each product, refer also to the User's Manual - Hardware Edition of the PLC main unit to which each product is connected.					
■Connector conversion					
\triangle	Supplied with product	FX3S-CNV-ADP Installation Manual	JY997D48801	Handling procedures of the conversion adapter for special adapter connection.	-
\triangle	Supplied with product	FX3G-CNV-ADP Installation Manual	JY997D32301	Handling procedures of the conversion adapter for special adapter connection.	-
\triangle	Supplied with product	FX3U-CNV-BD Installation Manual	JY997D13601	Handling procedures of the connector conversion expansion board for special adapter connection.	-
EInput extension					
\triangle	Supplied with product	$\begin{aligned} & \text { FX3G-4EX-BD } \\ & \text { User's Manual } \end{aligned}$	JY997D51301	Handling procedures of the 4 points input expansion board.	-
-Output extension					
\triangle	Supplied with product	$\begin{aligned} & \text { FX3G-2EYT-BD } \\ & \text { User's Manual } \end{aligned}$	JY997D51401	Handling procedures of the 2 points transistor output expansion board.	-
■Analog volume When using each product, refer also to the FX3S/FX3G/FX3GC/FX3U/FX3UC Series Programming Manual - Basic and Applied Instruction Edition.					
\triangle	Supplied with product	FX3G-8AV-BD Installation Manual	JY997D33701	Handling procedures of the 8-channel analog volume expansion board.	-
\triangle	Supplied with product	FX3U-8AV-BD User's Manual	JY997D40901	Handling procedures of the 8-channel analog volume expansion board.	-
-Battery (maintenance option)					
\triangle	Supplied with product	FX3U-32BL Battery	JY997D14101	Battery life and handling procedures.	-
-Display module					
\triangle	Supplied with product	FX3G-5DM Installation Manual	JY997D33801	Procedures for mounting and handling the display module.	-
\triangle	Supplied with product	FX3U-7DM User's Manual	JY997D17101	Procedures for mounting and handling the display module.	-
DDisplay module holder					
\triangle	Supplied with product	$\begin{aligned} & \text { FX3U-7DM-HLD } \\ & \text { User's Manual } \end{aligned}$	JY997D15401	Procedures for mounting and handling the display module holder.	-
-Memory cassette					
\triangle	Supplied with product	Memory cassette FX3G-EEPROM-32L Installation Manual	JY997D32401	Specifications and operating procedures of the memory cassette.	-
\triangle	Supplied with product	FX3U-FLROM-16/64/64L/1M Hardware Manual	JY997D12801	Specifications and operating procedures of the memory cassette.	-
■Extension power supply unit					
\triangle	Supplied with product	FX3U-1PSU-5V Installation Manual	JY997D22501	Specifications and operating procedures of the extension power supply unit.	-
\triangle	Supplied with product	FX3UC-1PS-5V Installation Manual	JY997D12201	Specifications and operating procedures of the FX3UC-1PS-5V.	-

Generic Names and Abbreviations Used in Manuals

Abbreviation/generic name	Name
Programmable controllers	
FX3S Series	Generic name of FX3S Series PLCs
FX3S PLC or main unit	Generic name of FX3S Series PLC main units
FX3G Series	Generic name of FX3G Series PLCs
FX3G PLC or main unit	Generic name of FX3G Series PLC main units
FX3GC Series	Generic name of FX3GC Series PLCs
FX3GC PLC or main unit	Generic name of FX3GC Series PLC main units
FX3U Series	Generic name of FX3U Series PLCs
FX3U PLC or main unit	Generic name of FX3U Series PLC main units
FX3UC Series	Generic name of FX3UC Series PLCs
FX3UC PLC or main unit	Generic name of FX3UC Series PLC main units
FX2N Series	Generic name of FX2N Series PLCs
FX2NC Series	Generic name of FX2NC Series PLCs
FX1S Series	Generic name of FX1s Series PLCs
FX1N Series	Generic name of FX1N Series PLCs
FX1NC Series	Generic name of FX1NC Series PLCs
Expansion boards	
Expansion board	Generic name of expansion boards (The models shown below): FX3G-4EX-BD, FX3G-2EYT-BD, FX3G-232-BD, FX3G-422-BD, FX3G-485-BD, FX3G-485-BD-RJ, FX3G-2AD-BD, FX3G-1DA-BD, FX3G-8AV-BD, FX3U-232-BD, FX3U-422-BD, FX3U-485-BD, FX3U-USB-BD, FX3U-8AV-BD and FX3U-CNV-BD
Special adapters	
Special adapter	Generic name of special high-speed I/O adapters, special communication adapters, CF card special analog adapters, and special analog adapters Connectable equipment may vary depending on the main unit. For connectable equipment, refer to the User's Manual - Hardware Edition of the main unit.
Special high-speed I/O adapter	Generic name of special high-speed I/O adapters (The models shown below): FX3U-2HSY-ADP and FX3U-4HSX-ADP
Special communication adapter	Generic name of special communication adapters (The models shown below): FX3U-232ADP(-MB), FX3U-485ADP(-MB) and FX3U-ENET-ADP
CF card special adapter	Generic name of CF card special adapters:
CF-ADP	FX3U-CF-ADP
Special analog adapter	Generic name of special analog adapters (The models shown below): FX3U-4AD-ADP, FX3U-4DA-ADP, FX3U-3A-ADP, FX3U-4AD-PT-ADP, FX3U-4AD-PTW-ADP, FX3U-4AD-PNK-ADP and FX3U-4AD-TC-ADP
Connector conversion adapter	Generic name of special adapter connection conversion adapter (The models shown below): FX3s-CNV-ADP and FX3G-CNV-ADP
Extension equipment	
Extension equipment	Generic name of I/O extension equipment and special extension equipment Connectable equipment may vary depending on the main unit. For connectable equipment, refer to the User's Manual - Hardware Edition of the main unit.
I/O extension equipment	Generic name of FX2N Series I/O extension units, FX2N Series I/O extension blocks, FX2N Series I/O extension blocks, and FXON Series I/O extension blocks Connectable equipment may vary depending on the main unit. For connectable equipment, refer to the User's Manual - Hardware Edition of the main unit.
Special function unit/block or special extension equipment	Generic name of special extension units and special function blocks Connectable equipment may vary depending on the main unit. For connectable equipment, refer to the User's Manual - Hardware Edition of the main unit.
Special extension unit	Generic name of special extension units
Special function block	Generic name of special function blocks
Open field networks CC-Link and CC-Link/LT	
CC-Link equipment	Generic name of CC-Link master station and CC-Link remote stations
CC-Link master (station)	Generic name of CC-Link master station (having following model name): FX3U-16CCL-M, FX2N-16CCL-M
CC-Link remote station	Generic name of remote I/O stations and remote device stations
CC-Link intelligent device station	Generic name of CC-Link interface block (having following model name): FX3U-64CCL

Abbreviation/generic name	Name
CC-Link/LT equipment	Generic name of CC-Link/LT master station, CC-Link/LT remote I/O stations, CC-Link/LT remote device stations, power supply adapters, and dedicated power supplies
CC-Link/LT master	Generic name of built-in type CC-Link/LT master and (additional) CC-Link/LT master
Built-in type CC-Link/LT master	Generic name of built-in type CC-Link/LT master built in FX3UC-32MT-LT(-2)
(Additional) CC-Link/LT master	Generic name of CC-Link/LT master station (having following model name): FX2N-64CL-M
Power supply adapter	Generic name of units connected to supply the power to the CC-Link/LT system
Dedicated power supply	Generic name of power supplies connected to supply the power to the CC-Link/LT system
MELSEC I/O LINK	
MELSEC I/O LINK master	Generic name of MELSEC I/O LINK master station (having following model name): FX2N-16LNK-M
AnyWireASLINK	
AnyWireASLINK master	Generic name of AnyWireASLINK master block (having following model name): FX3U-128ASL-M
AS-i system	
AS-i master	Generic name of AS-i system master station (having following model name): FX2N-32ASI-M
Ethernet	
Ethernet adapter	Generic name of Ethernet communication special adapter (having following model name): FX3U-ENET-ADP
Options	
Extension power supply unit	FX3UC-1PS-5V (for FX3GC, FX3UC series), FX3U-1PSU-5V (for FX3G, FX3U series)
Memory cassette	FX3G-EEPROM-32L, FX3U-FLROM-16, FX3U-FLROM-64, FX3U-FLROM-64L, and FX3U-FLROM-1M
Battery	FX3U-32BL
Peripheral equipment	
Peripheral equipment	Generic name of programming software, handy programming panels, and display units
Programming tools	
Programming tool	Generic name of programming software and handy programming panels
Programming software	Generic name of programming software
GX Works2	Abbreviation of programming software packages SW \square DNC-GXW2-J and SW \square DNC-GXW2-E
GX Developer	Abbreviation of programming software packages SW■D5C-GPPW-J and SW■D5C-GPPW-E
FX-PCS/WIN(-E)	Abbreviation of programming software packages FX-PCS/WIN and FX-PCS/WIN-E
Handy programming panel (HPP)	Generic name of programming panels FX-30P, FX-20P(-E) and FX-10P(-E)
RS-232C/RS-422 converter	FX-232AW, FX-232AWC, and FX-232AWC-H
RS-232C/RS-485 converter	FX-485PC-IF-SET and FX-485PC-IF
USB/RS-422 converter	FX-USB-AW
Display units	
GOT1000 Series	Generic name of GT16, GT15, GT14, GT11 and GT10
GOT-900 Series	Generic name of GOT-A900 and GOT-F900 Series
GOT-A900 Series	Generic name of GOT-A900 Series
GOT-F900 Series	Generic name of GOT-F900 Series
ET-940 Series	Generic name of ET-940 Series
Manuals	
FX3S Hardware Edition	FX3S Series User's Manual - Hardware Edition
FX3G Hardware Edition	FX3G Series User's Manual - Hardware Edition
FX3GC Hardware Edition	FX3GC Series User's Manual - Hardware Edition
FX3U Hardware Edition	FX3U Series User's Manual - Hardware Edition
FX3UC Hardware Edition	FX3UC Series User's Manual - Hardware Edition
Programming Manual	FX3S/FX3G/FX3GC/FX3U/FX3UC Series Programming Manual - Basic \& Applied Instruction Edition
Data Communication Edition	FX Series User's Manual - Data Communication Edition
MODBUS Communication Edition	FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - MODBUS Serial Communication Edition
Analog Control Edition	FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Analog Control Edition
Positioning Control Edition	FX3S/FX3G/FX3GC/FX3U/FX3UC Series User's Manual - Positioning Edition
ENET-ADP Manual	FX3U-ENET-ADP User's Manual
CF-ADP Manual	FX3U-CF-ADP User's Manual
FX-30P Manual	FX-30P Operation Manual

1. Introduction

This chapter explains basic items related to programming in $F X_{3 S}, F X_{3 G}, F X_{3 G C}, F X_{3}$ and $F X_{3} U C$ programmable controllers (PLCs).

1.1 Programming Language in PLCs

This section explains the features of programming in FX3S, FX3G, FX3Gc, FX3U and FX3UC PLCs.

1.1.1 Types of programming languages

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs support the following six types of programming languages:

1. List programming
1) Features In this method, sequence instructions are input in the form of instruction words such as "LD", "AND" and "OUT". This input method is the basis of sequence programs.
2) Example of list display

Step	Instruction	Device number
0000	LD	X000
0001	OR	Y005
0002	ANI	X002
0003	OUT	Y005

2. Circuit programming
1) Features In a circuit program, a sequence circuit is drawn on the graphic screen by sequence formats and device numbers. Because a sequence circuit is expressed with contact symbols and coil symbols, the contents of a program can be understood easily. In the circuit display status, the PLC operations can be monitored.
2) Example of circuit display

the circuit diagram.

3. SFC (STL <step ladder>) programming

1) Features

In an SFC (sequential function chart) program, sequences can be designed in accordance with the flow of machine operations.
2) Compatibility between SFC programs and other programs

SFC programs can be converted into another program format. And when list programs and circuit programs are created according to certain rules, they can be converted inversely into SFC programs.

4. ST (structured text)

1) Features

The ST language is a text language with a similar grammatical structure to the C language.
The ST language can describe control achieved by syntax using selective branches with conditional statements and repetition by repetitive statements in the same way as high-level languages such as the C language. By using the ST language, you can create simple programs that are easy to understand.

5. Structured ladder

1) Features

The structured ladder language is a graphic language developed based on the relay ladder programming technique.
The structured ladder language is a graphic language for writing programs using ladder symbols such as contact, coils, functions, and function blocks.
Since it can be understood intuitively, it is commonly used for the sequence programming.
A circuit always starts from the bus line located on the left side.

6. FBD (Function Block Diagram)

1) Features

The FBD (function block diagram) language is a graphic language for writing programs using parts for special processing (functions and function blocks), variables and constants.
You can create programs easily by connecting parts along the flow of data and signals, and improve the programming efficiency.

1.1.2 Applicability of programming languages in programming software

The table below shows the applicability of programming languages in GX Works2 and GX Developer:

Programming Language	GX Works2	GX Developer
List programming	-	\checkmark
Circuit programming	\checkmark	\checkmark
SFC programming	\checkmark	\checkmark
ST	\checkmark	-
Structured ladder/FBD	\checkmark	-

1.1.3 Compatibility among programs

All sequence programs created by list programming, circuit programming or SFC programming are stored in the form of instruction words (contents at the time of list programming) in the program memory inside the PLC.

- Programs created by these three types of input methods can be converted mutually, and then displayed and edited as shown in the figure below.

It is not possible to display or edit sequence programs created using ST, structured ladder or FBD programming by converting them from the form of instruction words (contents at the time of list programming).
For displaying and editing such sequence programs using ST, structured ladder or FBD programming, the symbolic information (data indicating the program configuration such as structure and labels) is required.
\rightarrow Refer to the GX Works2 Version 1 Operating Manual (Common) for the details on symbolic information.

2. Overview (Sequence Program)

This chapter explains the basic functions of $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX}_{3} \mathrm{UC}$ PLCs.
This chapter includes not only the features of PLCs but also introduction of representative functions, parameters and memory to utilize the functions of PLCs. Read this chapter before designing sequences.

2.1 Introduction of Convenient Functions

FX3s/FX3G/FX3Gc/FX3U/FX3uc PLCs have the following instruction functions.

2.1.1 Convenient functions for input processing

1. "High-speed counter" function of 1-phase or 2-phase for counting high-speed inputs*1

High-speed counters can count regardless of the scan time because they process high-speed pulses from specific input relays as interrupts.
The counting result can be immediately handled as high-speed counter output interrupts by specific program processing and high-speed counter counted values by comparison instructions dedicated to high-speed counters.

- 1-phase high-speed counters
- FX3s/FX3G/FX3GC PLCs: up to 60 kHz
- FX3U/FX3uc PLCs: up to 100 kHz (200 kHz when a special high-speed input adapter ${ }^{*}$ 2 is used)
- 2-phase high-speed counters
- FX3S/FX3G/FX3GC PLCs: up to 30 kHz
- $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs: up to 50 kHz (100 kHz when a special high-speed input adapter ${ }^{*}{ }^{2}$ is used)
*1. This function is supported only for DC input type.
*2. Can only be connected to the FX3U PLC.
\rightarrow Related instructions: High-speed counter compare; HSCS (FNC 53), HSCR (FNC 54),
HSZ (FNC 55) and HSCT (FNC280)
If the number of high-speed counters is insufficient, $\mathrm{FX} 3 \mathrm{U}-2 \mathrm{HC}$ can be connected.
By extending hardware counters in the $\mathrm{FX}_{3} \mathrm{U}-2 \mathrm{HC}^{* 3}$, high-speed pulses at up to 200 kHz can be received (except 2 and 4 edge count).
*3. Can only be connected to the FX3U/FX3Uc PLCs.
\rightarrow For details, refer to FX3U-2HC User's Manual.

2. "I/O refresh" function for receiving the latest input information

The input terminal information of the PLC in the batch refresh method is input all at once by the input image memory before step 0 . The output information is output at one time when END instruction is executed.
I/O refresh instruction can get the latest input information and immediately output the operation result during sequence operation.
\rightarrow Related instruction: Refresh REF (FNC 50)
3. "Input filter adjustment" function for changing the time constant of input relays* ${ }^{*}$

Input relays in the main unit are equipped with a C-R filter of approximately 10 ms as countermeasures against chattering and noise in input signals. Because a digital filter is adopted for the input relays X 000 to $\mathrm{X} 017^{* 5}$, however, the filter value can be changed in sequence programs.
*4. This function is supported only for DC input type.
*5. X000 to X007 in the FX3G/FX3Gc PLCs.
\rightarrow Related instruction: Refresh and filter adjust instruction REFF (FNC 51)
4. "Pulse catch" function ${ }^{*} 6$

The pulse catch function is provided as a method to receive short-time pulse signals.
The pulse catch function monitors signals from specific input relays, and sets special auxiliary relays in the interrupt processing as soon as signals are input.
The pulse catch function can be used in a wide range of applications because even narrow pulses can be easily received.
When complicated operations should be processed with high priority as interrupt by using specific trigger signals, the "interrupt" function described later is suitable.
*6. This function is supported only for DC input type.
\rightarrow Refer to Section 36.7.
5. Three types of "interrupt" functions for receiving short-period pulses and priority processing
\rightarrow Refer to Chapter 36.

1) Input interrupt ${ }^{* 1}$

Signals from specific input relays are monitored. At the rising edge or falling edge of the monitored input, a specified interrupt routine is executed with highest priority.
2) Timer interrupt

Specified interrupt routines are executed with highest priority at every specified time.
3) Counter interrupt ${ }^{* 1 * 2}$

Depending on the present value of a high-speed counter, a specified interrupt routine is executed with highest priority.
*1. This function is supported only for DC input type.
*2. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{CLCs}$.
6. Pulse width/Pulse period measurement function*3

The pulse width or pulse period of pulses input from input terminals (X000, X001, X003 and X004) of the main unit can be measured in units of $10 \mu \mathrm{~s}$.
The pulse width/pulse period measurement function is available in a wide range of applications because the pulse width or pulse period can be easily taken in accordance with the setting of special auxiliary relays.
The input signal delay time can be measured using two or more input terminals.
\rightarrow Refer to Section 36.8.
*3. This function is supported only in FX3G/FX3GC PLCs.

2.1.2 Convenient functions for output processing

1. "I/O refresh" function for outputting the latest input information

The input terminal information of the PLC in the batch refresh method is input at one time by the input image memory before operation in the step 0 . The output information is output at one time when END instruction is executed.
I/O refresh instruction can get the latest input information and immediately output the operation result during sequence operation.
\rightarrow Related instruction: Refresh REF (FNC 50)
2. "Pulse output" function for pulse train output control
\rightarrow Related instructions: Pulse Y Output PLSY (FNC 57) and Acceleration/Deceleration Setup PLSR (FNC 59)
3. "Positioning" function for positioning control

2.1.3 Functions for supporting sequence control

1. "Constant scan" mode for making the operation cycle of the PLC constant

The operation cycle in the PLC adopting the cyclic operation method varies depending on the contents of the program execution.
In the constant scan mode (M8039 and D8039), the operation cycle can be made constant. As a result, instructions executed in synchronization with the operation can be processed in a constant cycle.
2. "All outputs disable" mode for turning OFF all output signals

When the special auxiliary relay M8034 is driven, the output latch memory is cleared. Accordingly, all output relays (Y) turn OFF while the PLC is continuing its operation.
However, the status of output relays (Y) in each device image memory is not cleared. As a result, when devices are monitored using a programming tool, they may be regarded as the ON status.
3. "Memory hold stop" function for holding the output status during the RUN mode even in the STOP mode
When the special auxiliary relay M8033 is driven, the PLC stops and holds the output status during the RUN mode.

4. Registration of "entry code" for protecting programs

The entry code can be registered to prevent erroneous read/incorrect write protection of created sequence programs. With regard to online operations from GX Works2, GX Developer (Ver. 8.24A or later) and handy programming panels, the program protection level can be set by the entry code specification method. In this case, such specification that "changes of a program are disabled, but monitoring and changes of present values are enabled" is available.
\rightarrow Refer to the manual of the used programming tool.

5. Addition of "comments" for a sequence program

By setting parameters, the device comment area (where Katakana, Kanji and alphanumeric characters are available) can be secured in the program memory.
\rightarrow Refer to the manual of the used programming tool.

6. Writing programs in the RUN mode

Programs can be changed while the PLC is operating (RUN mode).
By this function, programs can be adjusted and changed efficiently without stopping the machine.
\rightarrow Refer to the manual of the used programming tool.

7. Symbolic information storage

The $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs Ver. 3.00 or later can store symbolic information (data indicating the program configuration such as structure and labels).
By using this function, you can read the symbolic information from the PLC, and edit labels, function blocks, etc. GX Works2 Ver. 1.62Q or later is required to store symbolic information.
\rightarrow Refer to the GX Works2 Version 1 Operating Manual (Common) for the details on symbolic information.

2.2 Introduction of Applied Instructions

1. Excellent fundamental performance
$\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 30 c$ PLCs are equipped with not only fundamental applied functions for data transfer, data comparison, arithmetic operations, logical operations, data rotation, and data shift but also high-speed processing instructions for I/O refresh, interrupt, comparison dedicated to high-speed counters, and high-speed pulse output as well as initial state instructions by which standard operations for machine control are made into packages in the SFC control. In this way, $\mathrm{FX}_{3} / \mathrm{FX}_{3} / \mathrm{FX}_{3} \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX}_{3} \cup \mathrm{P}$ PLCs have the specifications offering fundamental functions, highspeed processing, and good operability.
2. Advanced control easily available

In addition, FX PLCs offer many handy instructions by which complicated sequence control is made into packages to mitigate the load for creating sequence programs and save the number of I/O points.
FX PLCs also offer floating point arithmetic operations and PID operations to cope with more advanced control.

2.2.1 Major applied instructions

This subsection introduces representative ones among many applied instructions.

1. Program flow

- Conditional jump (CJ/FNC 00)
- Call subroutine (CALL/FNC 01)
- Enable interrupt (EI/FNC 04)
- Disable interrupt (DI/FNC 05)
- Start a FOR/NEXT loop (FOR/FNC 08)
\rightarrow Refer to Chapter 8.

2. Move and compare

- Compare (CMP/FNC 10)
- Data comparison (FNC224 to FNC246)
- Floating point compare (ECMP/FNC110 and EZCP/FNC111)
- Zone compare (ZCP/FNC 11)
- High-speed counter compare (FNC 53 to FNC 55)
- High-speed counter compare with data table (HSCT/FNC280)
- Move (MOV/FNC 12)
- Floating point move (EMOV/FNC112)
- High-speed counter move (HCMOV/FNC189)
- Conversion to binary-coded decimal (BCD/FNC 18)
- Conversion to binary (BIN/FNC 19)
- Decimal to gray code conversion (FNC170) and gray code to decimal conversion (FNC171)
\rightarrow Refer to Chapter 9, Chapter 13, Chapter 18,
Chapter 22, Chapter 24, Chapter 28 and Chapter 32.

3. Arithmetic and logical operations

- Addition (ADD/FNC 20)
- Subtraction (SUB/FNC 21)
- Multiplication (MUL/FNC 22)
- Division (DIV/FNC 23)
- Increment (INC/FNC 24)
- Square root (SQR/FNC 48)
- Trigonometry (FNC130 to FNC135)
- Conversion from/to floating point (FNC 49, FNC118, FNC119 and FNC129)
- Floating point arithmetic operations (FNC120 to FNC123)
- Floating point square root (ESQR/FNC127)
\rightarrow Refer to Chapter 10, Chapter 12 and Chapter 18.

4. Rotation and shift operation

- Rotation right (ROR/FNC 30)
- Rotation left (ROL/FNC 31)
- Rotation right with carry (RCR/FNC 32)
- Rotation left with carry (RCL/FNC 33)
- Bit shift right (SFTR/FNC 34)
- Bit shift left (SFTL/FNC 35)
- Word shift right (WSFR/FNC 36)
- Word shift left (WSFL/FNC 37) \rightarrow Refer to Chapter 11.

5. Data operation

- Zone reset (ZRST/FNC 40)
- Decode (DECO/FNC 41)
- Encode (ENCO/FNC 42)
- Sum of active bits (SUM/FNC 43)
- Mean (MEAN/FNC 45)
- Word to byte (WTOB/FNC141) and byte to word (BTOW/FNC142)
- 4-bit linking/grouping of word data (FNC143 and FNC144)
- Limit control (LIMIT/FNC256)
- Dead band control (BAND/FNC257)
- Zone control (ZONE/FNC258)
- Block data operation (FNC192 to FNC199)
- Character string control (FNC200 to FNC209) \rightarrow Refer to Chapter 12, Chapter 19, Chapter 25, Chapter 26 and Chapter 29.

6. High-speed processing

- Refresh (REF/FNC 50)
- Refresh and filter adjust (REFF/FNC 51)
- Speed detection (SPD/FNC 56)
- Pulse Y output (PLSY/FNC 57)
- Pulse ramp (PLSR/FNC 59)
\rightarrow Refer to Chapter 13.

7. Handy instructions and instructions for external devices

- Initial state (IST/FNC 60)
- Teaching timer (TTMR/FNC 64)
- Alternate state (ALT/FNC 66)
- Ramp variable value (RAMP/FNC 67)
- Rotary table control (ROTC/FNC 68)
- Ten-key input (TKY/FNC 70)
- Digital switch (thumbwheel input) (DSW/FNC 72)
- Seven-segment decoder (SEGD/FNC 73)
- Seven-segment with latch (SEGL/FNC 74)
- ASCII code data input (ASC/FNC 76)
- BFM Read, BFM Write (FNC 78, FNC 79, FNC278, and FNC279)
- Serial communication (FNC 80 and FNC 87)
- Analog volume (FNC 85 and FNC 86)
- Inverter communication (FNC270 to FNC275)
- MODBUS communication (ADPRW/FNC276)
- Hexadecimal to ASCII conversion (ASCI/FNC 82)
- ASCII to hexadecimal conversion (HEX/FNC 83)
- Cyclic redundancy check (CRC/FNC188)
- Random number generation (RND/FNC184)
- Real time clock control (FNC160 to FNC167)

2.3 Analog/Positioning Special Control

For details, refer to the manual of each product.

1. Analog I/O control

- Analog input
- Analog output
- Pt100 temperature sensor input
- Thermocouple temperature sensor input
- Block dedicated to temperature control

2. Positioning control

- SSCNETIII - Positioning Block.
- Pulse output block (controlled by sequence program)
- Positioning unit (controlled by instructions dedicated to positioning)
- Cam switch (resolver detection)

3. High-speed counter

- High-speed counter (hardware counter equipped with multiplication function)
- Hour meter (HOUR/FNC 169)
- Timing pulse generation (DUTY/FNC186)
- Logging R and ER (LOGR/FNC293)
\rightarrow Refer to Chapter 14, Chapter 15, Chapter 16,
Chapter 21, Chapter 24, Chapter 30, Chapter 31 and Chapter 33.

8. Complicated control

- Search a data stack (SER/FNC 61)
- Sort tabulated data (FNC 69 and FNC149)
- PID control loop (PID/FNC 88)
\rightarrow Refer to Chapter 14, Chapter 16 and Chapter 19.

9. Positioning control

- Dog search zero return (DSZR/FNC150)
- Interrupt positioning (DVIT/FNC151)
- Batch data positioning mode (TBL/FNC152)
- Absolute present value read (ABS/FNC155)
- Zero return (ZRN/FNC156)
- Variable speed pulse output (PLSV/FNC157)
- Drive to increment (DRVI/FNC158)
- Drive to absolute (DRVA/FNC159)
\rightarrow Refer to Chapter 20.

2.4 Link and Communication

$\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs support the following communication functions:

1. CC-Link

The CC-Link system can be constructed with an FX3G/FX3GC/FX ${ }_{3 U} / F X_{3} U C$ PLCs working as the master station.
An A or QnA PLC can work as the master station, and FX PLCs can be connected as remote device stations.
A Q PLC can work as the master station, and FX PLCs can be connected to remote device stations or intelligent device stations.
The CC-Link is an open network allowing connection of not only FX PLCs but also inverters, AC servo systems, and sensors.
\rightarrow Refer to the respective product manual.
2. CC-Link/LT

The CC-Link/LT system can be constructed with an
 master station.
General X (input) and Y (output) devices are assigned to remote I/O units, and operated by programs for general-purpose I/O.
\rightarrow Refer to the FX3uc Hardware Edition for the built-in type CC-Link/LT master.
\rightarrow Refer to the product manual for the
FX2N-64CL-M.

3. MELSEC I/O LINK

The MELSEC I/O LINK is a remote I/O system whose master station is an FX3U/FX3UC (D, DS, DSS) PLCs.
Units for MELSEC I/O LINK remote I/O system (A PLCs) can be used as remote units.
\rightarrow Refer to the respective product manual.

4. AnyWireASLINK

Use $F X_{3 G} / F_{3} X_{3} / F X_{3 U / F} / X_{3} u c$ PLC as a master to construct AnyWireASLINK system.
\rightarrow Refer to the respective product manual.

5. AS-i system

A network system at the actuator or sensor level can be constructed with an FX3U/FX3UC PLCs working as the master station in the AS-i system.
Refer to the respective product manual.
6. Ethernet communication

An FX PLC can be connected to the host system such as personal computer or workstation via Ethernet (100BASE-TX or 10BASE-T) using TCP/IP, UDP/IP or UDP communication protocol.
\rightarrow Refer to the respective product manual.
7. $\mathbf{N}: \mathbf{N}$ Network

Up to eight $F X_{3 S} / F X_{3} / F X_{3 G C} / F X_{3} / / F X_{3} u c$ PLCs are connected, and data is automatically transferred among them.
\rightarrow Refer to the Data Communication Edition.

8. Parallel link

Two PLCs are connected, and data is automatically transferred between them.
\rightarrow Refer to the Data Communication Edition.

9. Computer link

A computer such as personal computer works as the master station, up to sixteen FX and A PLCs are connected to the master station, the master station directly specifies devices in the PLC, and then data is transferred.
Protocols in the computer link support the formats 1 and formats 4.
By using MX Component and MX Sheet, monitoring and logging for the PLC system can be easily set by Excel ${ }^{\circledR}$.
\rightarrow Refer to the Data Communication Edition. \rightarrow For MX Component and MX Sheet, refer to the respective product manual.

10.Non-protocol communication

Non-protocol serial communication is available between an FX PLCs and interface equipment in accordance with RS-232C/RS-485 such as bar code reader, printer, personal computer and measuring instrument.
\rightarrow Refer to the Data Communication Edition.

11.Inverter communication

An FX PLCs can control up to eight inverters via communication in accordance with RS-485.
\rightarrow Refer to the Data Communication Edition.

12.MODBUS communication

MODBUS serial communication is available between an FX PLCs and interface equipment in accordance with RS-232C/RS-485.
\rightarrow Refer to the MODBUS Serial Communication Edition.

2.5 Introduction of Devices Constructing PLC

Many relays, timers, and counters are built into an $\mathrm{FX}_{3} / / \mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3} \mathrm{GC} / \mathrm{FX} 3 \mathrm{X} / \mathrm{FX} 34 \mathrm{CLCs}$, with many NO (normally open) contacts and NC (normally closed) contacts.
These contacts and coils are connected to make a sequence circuit.
A PLC is also equipped with data registers (D) and extension data registers (R) functioning as memory devices to store numeric data values.

2.5.1 Relationship among devices

Arrows show transfer of signals.

Input relay: X
Input relays function as receiving ports when the PLC receives signals from external input switches.
The assigned device mnemonic is " X ".
The PLC has built-in input relays in accordance with its size.

2.5.2 Device list

1. Input relays (X) and output relays (Y) \rightarrow Refer to Section 4.2.

- Input relay and output relay numbers are assigned to each main unit in octal "X000 to X007, X010 to X017 ..., Y000 to Y007, Y010 to Y017 ..." The input relay (X) numbers and output relay (Y) numbers in extension units and extension blocks are also sequential numbers in octal respectively in the order of connection to the main unit.
- A digital filter is applied to the input filter of specific input relays, and the filter value can be changed by a program. Accordingly, for a purpose requiring high-speed receiving, assign such input relay numbers.
(Refer to explanation of filter adjustment, input interrupt, high-speed counter, various applied instructions, etc.)

2. Auxiliary relays (M)

\rightarrow Refer to Section 4.3.

- Relays built into the PLC are auxiliary relays, and are used for programs. Different from I/O relays, auxiliary relays cannot receive external inputs or directly drive external loads
- There are latched (battery or EEPROM backed) type relays whose ON/OFF status is stored even if the PLC turns OFF.

3. State relays (S)

\rightarrow Refer to Section 4.4

- State relays are used in the step ladder or as process numbers in the SFC expression.
- When a state relay is not used as a process number, it can be programmed as a general contact/coil in the same way as an auxiliary relay.
- State relays can be used as annunciators for external fault diagnosis.

4. Timers (T)

\rightarrow Refer to Section 4.5

- A timer adds and counts clock pulses of 1,10 or 100 ms , and turns its output contact ON or OFF when the counted result reaches a specified set value.
A timer can count from 0.001 to 3276.7 seconds depending on the clock pulse.
- In the FX3s PLC, 100 ms timers T32 to T62 are changed to 10 ms timers when the special auxiliary relay M8028 is driven in the program.
- The timers T192 to T199 are dedicated to subroutines and interrupt routines.
The timers T250 to T255 (T132 to T137 in FX3s PLC) are retentive type base clock timers for 100 ms pulses. This means that the present value is retained even after the timer coil drive input turns OFF. And when the drive input turns ON again, a retentive type timer will continue its counting from where it left off.

5. Counters (C)

The following types of counters are provided, and can be used in accordance with the purpose or application.

1) For latched (battery or EEPROM backed) counters
\rightarrow Refer to Section 4.6.
Counters are provided for internal signals of the PLC, and their response speed is usually tens of Hz or less.

- 16-bit counter: Provided for up-counting, counting range: 1 to 32767
- 32-bit counter: Provided for up-counting and down-counting, counting range: $-2,147,483,648$ to $+2,147,483,647$

2) For latched (battery or EEPROM backed) highspeed counters

\rightarrow Refer to Section 4.7 or 4.8

High-speed counters can execute counting at several kHz regardless of operations in the PLC.

- 32-bit counter: Provided for up-counting and down-counting, counting range: $-2,147,483,648$ to $+2,147,483,647$ (1phase 1 -counting, 1 -phase 2 -counting and 2-phase 2-counting), assigned to specific input relays

6. Data registers (D)

\rightarrow Refer to Section 4.9.
Data registers store numeric data values.
All data registers in FX PLCs are 16-bit type (whose most significant bit is positive or negative). When two consecutive registers are combined, they can handle 32-bit numeric value (whose most significant bit is positive or negative).
(For the numeric value range, refer to "Counter" on the previous page.)
In the same way as other devices, data registers are classified into general type and latched type (battery or EEPROM backed).

7. Extension registers (R) and extension file registers (ER)

\rightarrow Refer to Section 4.10.
Extension registers (R) are the extended form of data registers (D). They are protected by the battery against power failure in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 30 \mathrm{C}$ PLCs.
In FX3G/FX3GC PLCs, general type devices can be protected against power failure when the optional battery is connected.
In FX3G/FX3GC/FX3U/FX3UC PLCs, the contents of extension registers (R) can be stored in extension file registers (ER).
In $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 30 \mathrm{C}$ PLCs, extension file registers (ER) can only be used while a memory cassette is mounted.

8．Index registers（V）（Z）

\rightarrow Refer to Section 4．11．
Among registers，there are index type registers V and Z used for modification．
A data register V or Z is added to another device as follows：
［In the case of＂V0， $\mathrm{ZO}=5$＂］
D100V0 $=$ D105，C20Z0 $=$ C25 \leftarrow Device number + $\mathrm{V} \square$ or $\mathrm{Z} \square$ value
Data registers and index registers are used for indirectly specifying the set value of timers and counters，or used in applied instructions．

9．Pointers（P）（I）

\rightarrow Refer to Section 4．12．
Pointers are classified into branch pointers and interrupt pointers．
－A branch pointer（P）specifies the jump destination of the conditional jump CJ（FNC 00）or the call subroutine CALL（FNC 01）instruction．
－An interrupt pointer（I）specifies the routine of an input interrupt，timer interrupt or counter interrupt．

10．Constants（K）（H）（E）

\rightarrow Refer to Chapter 5.

Constant numerical values used in the PLC，＂K＂ indicates a decimal integer value，＂ H ＂indicates a hexadecimal value，and＂E＂indicates a real number （floating point data）．
Constants are used as set values or present values of timers and counters，or operands for applied instructions．

2.6 Program Memory and Devices

2.6.1 Memory structure

1. In FX3S PLC

FX3S PLC are equipped with the EEPROM memory as standard.

1) When using the built-in memory (without attached memory cassette)

2) When using an attached memory cassette (without using the built-in program memory)

2. In $F X_{3 G} / F X_{3} G C$ PLCs

FX3G/FX3GC PLCs are equipped with the EEPROM memory as standard.

1) When using the built-in memory (without attached memory cassette)

2) When using an attached memory cassette ${ }^{* 1}$ (without using the built-in program memory)

3. In FX3U/FX3uc PLCs

FX3U/FX3UC PLCs are equipped with the RAM memory as standard.
By mounting a memory cassette, the memory type can be changed.

1) When using the built-in memory (without attached memory cassette)

2) When using an attached memory cassette (does not use the built-in program memory)

*1. Supported in Ver. 3.00 or later.

2.6.2 Memory operations and latched (battery or EEPROM backed) devices (power ON/OFF and RUN/STOP)

1. Backup operation

The operations of the data memory, bit device memory and program memory in FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs are classified as shown below:

1) Types of program memory

Item		Power OFF	Power $\mathrm{OFF} \rightarrow \mathrm{ON}$	STOP \rightarrow RUN	RUN \rightarrow STOP
Parameter		Does not change.*2			
Sequence program		Does not change.*2			
Comment	Can be secured by parameter setting.	Does not change.*2			
File register		Does not change. ${ }^{2}$			
Special setting		Does not change. ${ }^{2}$			
Symbolic information ${ }^{* 1}$		Does not change. ${ }^{*}$			

*1. Symbolic information is supported in the $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs Ver. 3.00 or later.
*2. The contents of the program memory and device values are not backed up correctly in FX3U/FX3uc PLCs when the battery voltage becomes lower than the holding voltage if a memory cassette is not attached.
2) Types of word device memory
a) FX_{3} PLC

Item		Power OFF	Power OFF \rightarrow ON	STOP \rightarrow RUN	RUN \rightarrow STOP
Data register (D)	General type	Cleared.		Does not change.	Cleared.
				Does not change	M8033 is ON.
	Latched (EEPROM backed) type	Does not change.			
	File type	Does not change.			
	Special type	Cleared.	Set to initial values.*3	Does not change. ${ }^{* 3}$	
Index register (V, Z)	V, Z	Cleared.		Does not change.	
Timer present value register (T)	For 100 ms	Cleared.		Does not change.	Cleared.
				Does not change	e M8033 is ON.
	For 10 ms	Cleared.		Does not change.	Cleared.
				Does not change	e M8033 is ON.
	For 1 ms	Cleared.		Does not change.	Cleared.
				Does not change	e M8033 is ON.
	Retentive type for 100 ms (EEPROM backed)	Does not change.			
	Retentive type for 1 ms (EEPROM backed)	Does not change.			
Counter present value register (C)	General type	Cleared.		Does not change.	Cleared.
				Does not change	e M8033 is ON.
	Latched (EEPROM backed) type	Does not change.			
	High-speed type (EEPROM backed)	Does not change.			
Clock data	Present value	Does not change. ${ }^{*}{ }^{\text {a }}$			

*3. Some devices are cleared when the PLC status switches from STOP to RUN.
\rightarrow For special data registers, refer to Chapter 37.
*4. The clock data is held by the electricity charged in the large-capacity capacitor built in the PLC.
When the voltage of the large-capacity capacitor becomes low, the clock data is not held correctly.
The capacitor can hold the clock data for 10 days (when the ambient temperature is $25^{\circ} \mathrm{C}$) in the full charge state (achieved by powering ON the PLC for 30 minutes or more).
b) $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs

Item		Power OFF	Power OFF $\rightarrow \mathrm{ON}$	STOP \rightarrow RUN	RUN \rightarrow STOP
Data register (D)	General type	Cleared.*1		Does not change.	Cleared.
				Does not change	M8033 is ON.
	Latched (EEPROM backed) type	Does not change.			
	File type	Does not change.			
	Special type	Cleared.	Set to initial values. ${ }^{*}$ 2	Does not change. ${ }^{\text {2 }}$	
Extension register (R)	General type	Cleared. ${ }^{* 1}$		Does not change.	
Extension file register (ER)	File type	Does not change.			
Index register (V, Z)	V, Z	Cleared.		Does not change.	
Timer present value register (T)	For 100 ms	Cleared.		Does not change.	Cleared.
				Does not chang	M8033 is ON.
	For 10 ms	Cleared.		Does not change.	Cleared.
				Does not chang	M8033 is ON.
	For 1 ms	Cleared.		Does not change.	Cleared.
				Does not change	e M8033 is ON.
	Retentive type for 100 ms (EEPROM backed)	Does not change.			
	Retentive type for 1 ms (EEPROM backed)	Does not change.			
Counter present value register (C)	General type	Cleared.		Does not change.	Cleared.
				Does not change	e M8033 is ON.
	Latched (EEPROM backed) type	Does not change.			
	High-speed type (EEPROM backed)	Does not change.			
Clock data	Present value	Does not change. ${ }^{*}{ }^{\text {a }}$			

*1. These registers can be changed from the general type to the latched (battery backed) type by the parameter setting when the optional battery is installed.
*2. Some devices are cleared when the PLC status switches from STOP to RUN.

$$
\rightarrow \text { For special data registers, refer to Chapter } 37 .
$$

*3. The clock data is held by the electricity charged in the large-capacity capacitor built in the PLC.
When the voltage of the large-capacity capacitor becomes low, the clock data is not held correctly.
The capacitor can hold the clock data for 10 days (when the ambient temperature is $25^{\circ} \mathrm{C}$) in the full charge state (achieved by powering ON the PLC for 30 minutes or more).
The clock data is backed up by the battery when the optional battery is installed and the battery mode is selected in the parameter setting.
c) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs

Item		Power OFF	Power $\mathrm{OFF} \rightarrow \mathrm{ON}$	STOP \rightarrow RUN	RUN \rightarrow STOP
Data register (D)	General type	Cleared.		Does not change.	Cleared.
				Does not change	M8033 is ON.
	Latched (battery backed) type	Does not change. ${ }^{* 1}$			
	File type	Does not change. ${ }^{\text {2 }}$			
	Special type	Cleared.	Set to initial values. ${ }^{* 3}$	Does not change.*3	
Extension register (R)	Latched (battery backed) type	Does not change. ${ }^{* 1}$			
Extension file register $(E R)^{*} 4$	File type	Does not change.			
Index register (V, Z)	V, Z	Cleared.		Does not change.	
Timer present value register (T)	For 100 ms	Cleared.		Does not change.	Cleared.
				Does not change	M8033 is ON.
	For 10 ms	Cleared.		Does not change.	Cleared.
				Does not change	M8033 is ON.
	Retentive type for 100 ms (battery backed)	Does not change. ${ }^{* 1}$			
	Retentive type for 1 ms (battery backed)	Does not change. ${ }^{* 1}$			
Counter present value register (C)		Cleared.		Does not change.	Cleared.
	General type			Does not change	M8033 is ON.
	Latched (battery backed) type	Does not change.*1			
	High-speed type (battery backed)	Does not change. ${ }^{* 1}$			
Clock data	Present value	Does not change. ${ }^{* 1}$			

*1. Device values are not backed up correctly when the battery voltage becomes lower than the holding voltage.
*2. The contents of the program memory and device values are not backed up correctly when the battery voltage becomes lower than the holding voltage if a memory cassette is not attached.
*3. Some devices are cleared when the PLC status switches from STOP to RUN.
\rightarrow For special data registers, refer to Chapter 37.
*4. An optional memory cassette is required.

Caution

Programs (when a memory cassette is not attached), latched (battery backed) type device values and clock data is not backed up correctly when the battery voltage becomes low due to expiration of the battery life or another reason. In such a case, clear latched (battery backed) type devices, transfer programs again (when a memory cassette is not attached), and then set initial values and clock data if necessary.
\rightarrow For a rough guide to the life and replacement of the battery, refer to the PLC User's Manual [Hardware Edition]. \rightarrow For the latched type device initialization method, refer to Subsection 2.6.5.
3) Types of bit device memory
a) $F X_{3}$ PLC

Item		Power OFF	Power $\mathrm{OFF} \rightarrow \mathrm{ON}$	STOP \rightarrow RUN	RUN \rightarrow STOP
Contact image memory (X, Y, M, S)	Input relay (X)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Output relay (Y)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	General type auxiliary relay (M)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (EEPROM backed) type auxiliary relay (M)	Does not change.			
	Special type auxiliary relay (M)	Cleared.	Set to initial values. ${ }^{* 1}$	Does not change. ${ }^{* 1}$	
	General type state relay (S)	Cleared.		Does not change.	
	Latched (EEPROM backed) type state relay (S)	Does not change.			
Timer contact Time counting coil Reset coil (T)	For 100 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	For 10 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	For 1 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Retentive type for 100 ms	Does not change.			
	Retentive type for 1 ms	Does not change.			
Counter contact Counting coil Reset coil (C)	General type	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (EEPROM backed) type	Does not change.			
	High-speed type	Does not change.			

*1. Some devices are cleared when the PLC status switches from STOP to RUN.
\rightarrow For special data registers, refer to Chapter 37.
b) $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs

Item		Power OFF	Power OFF \rightarrow ON	STOP \rightarrow RUN	RUN \rightarrow STOP
Contact image memory (X, Y, M, S)	Input relay (X)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Output relay (Y)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	General type auxiliary relay (M)	Cleared. ${ }^{* 1}$		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (EEPROM backed) type auxiliary relay (M)	Does not change.			
	Special type auxiliary relay (M)	Cleared.	Set to initial values. ${ }^{*}$ 2	Does not change. ${ }^{*}$	
	General type state relay (S)	Cleared.*1		Does not change.	
	Latched (EEPROM backed) type state relay (S)	Does not change.			
	Annunciator (S)	Does not change.			
Timer contact Time counting coil Reset coil (T)	For 100 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	For 10 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	For 1 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON .	
	Retentive type for 100 ms	Does not change.			
	Retentive type for 1 ms	Does not change.			
Counter contact Counting coil Reset coil (C)	General type	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (EEPROM backed) type	Does not change.			
	High-speed type	Does not change.			

*1. These registers can be changed from the general type to the latched (battery backed) type by the parameter setting when the optional battery is installed.
*2. Some devices are cleared when the PLC status switches from STOP to RUN
c) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs

Item		Power OFF	Power $\mathrm{OFF} \rightarrow \mathrm{ON}$	STOP \rightarrow RUN	RUN \rightarrow STOP
Contact image memory (X, Y, M, S)	Input relay (X)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Output relay (Y)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	General type auxiliary relay (M)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (battery backed) type auxiliary relay (M)	Does not change.			
	Special type auxiliary relay (M)	Cleared.	Set to initial values. *1	Does not change. ${ }^{* 1}$	
	General type state relay (S)	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (battery backed) type state relay (S)	Does not change.			
	Annunciator (S)	Does not change.			
Timer contact Time counting coil Reset coil (T)	For 100 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	For 10 ms	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Retentive type for 100 ms	Does not change.			
	Retentive type for 1 ms	Does not change.			
Counter contact Counting coil Reset coil (C)	General type	Cleared.		Does not change.	Cleared.
				Does not change while M8033 is ON.	
	Latched (battery backed) type	Does not change.			
	High-speed type	Does not change.			

*1. Some devices are cleared when the PLC status switches from STOP to RUN.
\rightarrow For special auxiliary relay names and definitions, refer to Chapter 37.

2.6.3 Types of backup methods against power failure

There are the following types of latch (battery backup) for the program memory and built-in PLC devices.

1. Battery backup method
a) $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} \mathrm{X}_{3} \mathrm{Gc}$ PLCs

Item	Description
Latched contents	The optional battery backs up the RAM memory built in the PLC and clock data.
Maintenance	The battery life is around 5 years, (when the ambient temperature is $\left.25^{\circ} \mathrm{C}\right)$. For replacement information, refer to the Users Manual [Hardware Edition] of each PLC. Cautions When the optional battery voltage becomes low, the RAM memory built in the PLC and clock data is lost.

b) $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \mathrm{C}$ PLCs

Item	Description
Latched contents	The battery backs up the RAM memory built in the PLC, latched (battery backed) type devices and clock data.
Maintenance	The battery life is around 5 years, (when the ambient temperature is $25^{\circ} \mathrm{C}$). For replacement information, refer to the Users Manual [Hardware Edition] of each PLC.
Cautions	1)When the battery voltage becomes low, sequence programs and other latched (battery backed) contents are lost. 2)When an optional memory cassette (flash memory) is mounted, it is not necessary to back up sequence programs by the battery.

2. Memory cassette backup method
a) $F X_{3 s} / F X_{3 G}$ PLCs

Item	Description
Latched contents	The EEPROM memory built in the memory cassette backs up sequence programs.
Maintenance	Maintenance is not necessary.
Cautions	The upper limit is set to the number of times for overwriting. (Refer to the Hardware Edition of the main unit.)

b) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} X_{3} \mathrm{C}$ PLCs

Item	Description
Latched contents	1) The flash memory built into the memory cassette backs up sequence programs.
	2) A battery is required to back up latched (battery backed) devices and clock data from failure.
Maintenance	Maintenance is not necessary.
Cautions	The upper limit is set to the number of times for overwriting. (Refer to the Hardware Edition of the main unit.)

3. EEPROM memory (built in PLC) backup method

a) $\mathrm{FX} 3 \mathrm{~s} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs

Item	Description
Latched contents	The EEPROM memory built in the PLC backs up latched (EEPROM backed) type devices and sequence programs.
Maintenance	Maintenance is not necessary.
Cautions	The upper limit is set to the number of times for overwriting. (Refer to the Hardware Edition of the main unit.)

2.6.4 Change between general devices and latched (battery backed) devices

1. When using latched (battery backed) type devices as non-latch type devices

In FX3U/FX3UC PLCs, some latched (battery backed) type devices can be changed into non-latch type devices by the parameter settings.
Devices dedicated to latched type cannot be changed into non-latch type devices even by the parameter settings. Such devices can be handled as non-latch type devices by clearing all latched (battery backed) type devices by the initial pulse (M8002) in a program.
2. When using non-latch type devices as latched (battery backed) type devices

In FX3U/FX3Uc PLCs, non-latch type devices can be changed into latched (battery backed) type devices by the parameter settings.
In FX3G/FX3GC PLCs, non-latched type devices can be changed to latched (battery backed) type devices when the optional battery is installed and the battery mode is selected in the parameter setting.

2.6.5 How to initialize devices (battery backed)

Latched type devices can be initialized by clearing the entire PLC memory using peripheral equipment, clearing all latched memory using the special auxiliary relay M8032, or executing the ZRST instruction.
This subsection describes two major methods.

1. M8032 (latch memory all clear)

When M8032 is turned ON, all latched type devices ${ }^{* 1}$ (including reset coils of timers and counters) are cleared.
M8032 can be turned ON and OFF using the forced ON/OFF operation from peripheral equipment or within the sequence program. Note that latched type devices cannot be turned ON while M8032 is ON.
When turning ON M8032 within the sequence program, note that latched type devices are cleared during END processing after M8032 is turned ON
Program example: This program clears all latched type devices.

\rightarrow For details, refer to Subsection 37.2.12.
*1. Includes general type devices in FX3G/FX3GC PLCs whose type is changed to the latched (battery backed) type when the optional battery is installed.

2. ZRST (FNC 40) instruction (zone reset)

The ZRST instruction can clear multiple devices all at once.
(Because only a limited device range can be specified for the ZRST instruction, only a part of the latched type devices can be cleared at a time.)
Program example: This program clears latched (battery backed) type devices in the ranges shown in the table below in $F^{2} 3 /$ /FX3uc PLCs

	Latched (battery backed) type device range
Auxiliary relay	M500~M7679
State	S500~S4095
Timer	T246~T255
Counter	C100~C199, C220~C255
Data register	D200~D7999

\rightarrow For details on the ZRST (FNC 40) instruction, refer to Section 12.1. \rightarrow For details on latched type devices, refer to Subsection 2.6.2 and Chapter 4.

2．7 Types and Setting of Parameters

Setting of parameters means setting the environment where the PLC operates．
Almost all FX PLC can be used with factory default values．
However，when it is necessary to attach a memory cassette，set the comment capacity，set the communication condition for serial ports，etc．，the parameter settings must be changed using a programming tool such as personal computer．
Some items cannot be set depending on the used PLC or programming tool．Refer to the manual of the used PLC and programming tool for details．

2．7．1 Parameter list

The following items may be set in the parameter settings．

Classification	Item	Description
Memory capacity	Memory capacity	This parameter specifies the maximum value for the number of steps to which a sequence program can be input． 1）The upper limit is determined by the capacity of the built－in memory or optional memory． 2）The program memory，file register，comment area，and other special setting capacities are contained in this memory capacity．
	Comment area	This parameter incorporates comments into the program memory． 1）Because comments remain in the PLC，the contents can be easily understood at the time of maintenance． 2）Up to 50 comments can be input when one block is specified，but the comment area requires 500 steps in the memory capacity．
	File register	This parameter incorporates data registers into the program memory． 1）A sequence program and control data such as machining set values can be handled together，which is convenient． 2）Up to 500 file registers can be created when one block is specified，but the file registers require 500 steps in the memory capacity．
	Other special setting capacity	1）This parameter sets whether or not the special unit／block initial value setting function is used． When this function is used，this function requires 4000 steps（ 8 blocks）in the memory capacity． 2）This parameter sets whether or not the positioning setting（constants and setting table）in TBL（FNC152）instruction is used．When this setting is used，this setting requires 9000 steps （18 blocks）in the memory capacity． 3）This parameter sets whether or not the built－in CC－Link／LT function is used． When this function is used，this function requires 500 steps（ 1 block）in the memory capacity．
Device setting	Latch range setting	This parameter enables to change the latched（battery backed）device range and the non－latch device range inside the PLC．
I／O assignment setting	I／O assignment setting	This setting is not written to the PLC． When the I／O range is set according to the system configuration，however，inputs and outputs are checked by the program check in GX Developer．
Special unit setting	Special unit setting	This parameter sets the initial values of the buffer memory（BFM）for each special unit／block number． It is necessary to set the memory capacity．
	Built－in CC－Link／LT Setup	This parameter sets the transmission speed，point mode and station information．The memory capacity setting is required to set the station information．
PLC system setting	Batteryless mode	This parameter sets the PLC operation mode without a battery． When the baterryless mode is set，detection of battery voltage low level error is stopped automatically，and consequently，contents of latched devices becomes inconsistent and are initialized automatically．
	Battery mode	This parameter sets the PLC operation mode with a battery． When the check box＂Use Battery＂is checked，general type devices are changed to latched （battery backed）type devices．
	Modem initialization	This parameter automatically sends a specified AT command as an initialization command to a modem connected to the serial port．
	RUN terminal input setting	This parameter sets whether one input terminal in the PLC is used for RUN input．
	RUN terminal input number	This parameter specifies the input number of the RUN input described above． X000 to X017（Up to the built－in input number of main unit）

Classification	Item	Description
PLC system setting	Serial port operation setting	This parameter sets the communication setting of the serial port. Setting of communication format (D8120, D8400 and D8420) Setting of station number (D8121 and D8421) Setting of timeout check (D8129, D8409 and D8429)
Positioning instruction setting	Constant setting	This parameter sets interrupt inputs for the maximum speed, bias speed, creep speed, zero return speed, acceleration time, deceleration time, and the DVIT instruction. It is necessary to set the memory capacity.
	Detailed setting	This parameter sets the operation table. It is necessary to set the memory capacity.
	Ethernet port setting	Network parameter Special parameters are used in special adapters, special function blocks, etc.
Others	They are stored in the main unit.	
	Keyword	This parameter sets protection to prevent erroneous read/incorrect write protection of a sequence program. The entry code (8 characters), 2nd entry code (8 characters) and the customer keyword (16 characters) can each be specified in characters in the ranges of A to F and 0 to 9. In addition, a permanent PLC lock can be specified.

2.7.2 Parameter initial values and available tools for changing parameter values

1) $F X_{3 S} P L C$

Item		GX Works2 Initial value	Setting range	Programming tool	Display unit	
		FX-30P		GOT1000*1		
Memory capacity			16000	Refer to Subsection 2.7.3.	4000	16000
	Program capacity (steps)	4000	4000		4000	
	Comment capacity (blocks)	24	0		-	
	File register capacity (blocks)	0	0		0	
Program title		Not registered	Refer to Subsection 2.7.1.	-	-	
Entry code		Not registered		Not registered	-	
Modem initialization		Not set		NONE	-	
RUN terminal input		OFF		INVALID	OFF	
Serial port operation setting		Not set		No	-	

*1. Parameter values can not be changed by the GT1020 and GT1030.
2) $\mathrm{FX}_{3} / \mathrm{F} X_{3} \mathrm{Gc}$ PLCs

Item		GX Works2 Initial value	GX Developer Initial value ${ }^{* 1}$	Setting range	Programming tool			Display unit		
		FX-30P			$\begin{gathered} \text { FX-10P } \\ (-E)^{* 2} \\ \text { FX-20P } \\ (-E)^{* 2} \end{gathered}$	$\begin{aligned} & \text { FX-PCS/ } \\ & \text { WIN(-E) }{ }^{* 2} \end{aligned}$	$\begin{gathered} \text { GOT } \\ 1000 \\ * 3 \end{gathered}$	GOT-F900 Series ${ }^{* 2 *}$		
Memory capacity	Program capacity (steps)		8000	8000	Refer to Subsection 2.7.3.	8000	2000	8000	8000	8000
	Comment capacity (blocks)	0	0	0		0	0	-	-	
	File register capacity (blocks)	0	0	0		0	0	0	0	
	Positioning instruction setting	Not used	Not used	-		-	-	-	-	
Program title		Not registered	Not registered	Refer to Subsection 2.7.1.	-	-	Not registered	-	-	
Entry code		Not registered	Not registered		Not registered	Not registered	Not registered	-	-	
Battery mode		OFF	OFF		No	-	OFF	-	-	
Modem initialization		Not set	Not set		NONE	-	Not set	-	-	
RUN terminal input		OFF	OFF		INVALID	Not used	Not used (X0)	OFF	-	
Serial port operation setting		Not set	Not set		No	-	Not set	-	-	

*1. In the case of $F X_{3 G C}$ PLC, select " $F X_{3 G}$ " as the PLC type.
*2. These programming tools are not applicable to FX3G/FX3GC PLCs. The initial values in FX1N PLC are shown above.
*3. Parameter values can not be changed by the GT1020 and GT1030.
*4. Parameter values can be changed only by the F940WGOT, F94 \square GOT and F94 \square handy GOT.
3) $\mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs

Item		GX Works2 Initial value	GX Developer Initial value	Setting range	Programming tool			Display unit		
		FX-30P			$\begin{gathered} \text { FX-10P } \\ (-E)^{* 2} \\ \text { FX-20P } \\ (-E)^{* 2} \end{gathered}$	$\begin{aligned} & \text { FX-PCS/ } \\ & \text { WIN(-E) } \\ & \star_{2} \end{aligned}$	$\begin{gathered} \text { GOT } \\ 1000 \\ * 3 \end{gathered}$	GOT-F900 Series*4		
Memory capacity	Program capacity (steps)		16000	$16000{ }^{* 1}$	Refer to Subsection 2.7.3	8000	2000	8000	16000	8000
	Comment capacity (blocks)	0	0	0		0	0	-	-	
	File register capacity (blocks)	0	0	0		0	0	0	0	
	Special unit initial value setting ${ }^{* 5}$	Not used	Not used	-		-	-	-	-	
	Positioning instruction setting ${ }^{* 5}$	Not used	Not used	-		-	-	-	-	
	Built-in CC-Link/LT Setup ${ }^{*}{ }^{6}$	Not used	Not used	-		-	-	-	-	
Latch range (battery backed)	Auxiliary relay [M]	500 to 1023	500 to 1023	0 to 1023	500 to 1023					
	State relay [S]	500 to 999	500 to 999	0 to 999	500 to 999					
	Counter [C] (16 bits)	100 to 199	100 to 199	0 to 199	100 to 199					
	Counter [C] (32 bits)	220 to 255	220 to 255	200 to 255	220 to 255					
	Data register [D]	200 to 511	200 to 511	0 to 511	200 to 511					
Program title		Not registered	Not registered	Refer to Subsection 2.7.1.	-	-	Not registered	-	-	
Entry code		Not registered	Not registered		Not registered	Not registered	Not registered	-	-	
Batteryless mode		OFF	OFF		No	-	OFF	-	-	
Modem initialization		Not set	Not set		NONE	-	Not set	-	-	
RUN terminal input		OFF	OFF		INVALID	Not used	Not used (X0)	OFF	-	
Serial port operation setting		Not set	Not set		No	-	Not set	-	-	

*1. The initial value is 8000 steps in GX Developer Ver. 8.18U to Ver. 8.22Y.
*2. These programming tools are not applicable to FX3U/FX3UC PLCs. The initial values in FX2N PLC are shown above.
*3. Parameter values can not be changed by the GT1020 and GT1030.
*4. Parameter values can be changed only by the F940WGOT, F94 \square GOT and F94 \square handy GOT.
*5. GX Developer Ver. 8.24A or later is applicable.
*6. This item is supported only in the FX3Uc-32MT-LT-2, and can be set using GX Developer Ver. 8.68 W or later.

2.7.3 Memory capacity setting range

Cautions on setting the memory capacity

- After changing the memory capacity setting, make sure to write both the programs and parameters to the PLC. If only the parameters are written to the PLC, program errors (such as parameter error, circuit error and grammar error) may occur in the PLC.
- When one block is set in each capacity setting, the memory capacity is reduced by 500 steps.

Each setting should satisfy the following expression:

1) With regard to the comment capacity, up to 50 device comments can be set in one block.
2) With regard to the file register capacity, up to 500 (16-bit) file registers can be set in one block.
3) In the special unit initial value setting, 8 blocks (4000 steps) are used.
4) In the positioning instruction setting, 18 blocks (9000 steps) are used.
5) In the built-in CC-Link/LT setup, 1 block (500 steps) are used.

1. FX3S PLC

\odot Built-in memory capacity $\quad \checkmark$ Can be set by changing parameter

Memory capacity setting Unit: Step	Comment capacity setting Unit: Block	File register capacity setting Unit: Block	
2000	\checkmark	0 to 3	0 to 3
4000	\checkmark	0 to 7	0 to 4
16000	\odot	20 to 24	0 to 4

Caution

When the memory capacity of the FX3S is 16,000 steps, the program capacity is fixed to 4,000 steps, and the total of the comment capacity and the file register capacity is limited to 12,000 steps (24 blocks).
The comment capacity is automatically set when the file register capacity is set.

2. FX3G/FX3GC PLCs

\odot Built-in memory capacity $\quad \checkmark$ Can be set by changing parameter

Memory capacity setting Unit: Step	Comment capacity setting Unit: Block	File register capacity setting Unit: Block	Built-in positioning setting Unit: Block	
$\mathbf{2 0 0 0}$	\checkmark	0 to 3	0 to 3	-
$\mathbf{4 0 0 0}$	\checkmark	0 to 7	0 to 7	-
$\mathbf{8 0 0 0}$	\checkmark	0 to 15	0 to 14	-
$\mathbf{1 6 0 0 0}$	\checkmark	0 to 31	0 to 14	18
$\mathbf{3 2 0 0 0}$	\odot	0 to 63	0 to 14	18

Caution
FX3G/FX3GC PLCs operate in the extension mode when the program capacity is 16,001 steps or more, and operate in the standard mode when the program capacity is 16,000 steps or less. The instruction execution time is longer in the extension mode than in the standard mode.

Example: Time required to execute the basic instruction "LD" Standard mode: $0.21 \mu \mathrm{~s} \quad$ Extension mode: $0.42 \mu \mathrm{~s}$

3. FX3u/FX3uc PLCs

\odot Built-in memory capacity $\quad \checkmark$ Can be set by changing parameter

Memory capacity setting Unit: Step	Comment capacity setting Unit: Block	File register capacity setting Unit: Block	Special unit initial value setting Unit: Block	Built-in positioning setting Unit: Block	Built-in CC-Link/LT Setup Unit: Block	
$\mathbf{2 0 0 0}$	\checkmark	0 to 3	0 to 3	-	-	1
$\mathbf{4 0 0 0}$	\checkmark	0 to 7	0 to 7	-	-	1
$\mathbf{8 0 0 0}$	\checkmark	0 to 15	0 to 14	8	-	1
$\mathbf{1 6 0 0 0}$	\checkmark	0 to 31	0 to 14	8	18	1
$\mathbf{3 2 0 0 0}$	\checkmark	0 to 63	0 to 14	8	18	1
$\mathbf{6 4 0 0 0}$	\odot	0 to 127	0 to 14	8	18	1

Caution

- The FX3U/FX3Uc PLCs can store symbolic information in the following capacity:
- The FX3U-FLROM-1M (memory cassette) has an area dedicated to the storage of symbolic information, and can store up to 1300 kB
- When storing the symbolic information in any memory cassette other than the FX3U-FLROM-1M or to the built-in memory, make sure that amount of the symbolic information to be stored does not exceed the available memory capacity.
It is recommended to use the FX3U-FLROM-1M when there is a large amount of symbolic information to be stored.

Symbolic information capacity = Maximum capacity of memory cassette - Memory capacity set by parameters

It is possible to check the symbolic information capacity using the memory capacity calculation (offline) of GX Works2.
\rightarrow Refer to the GX Works2 Version 1 Operating Manual (Common) for details.

- When symbolic information is stored, it is deleted if the memory capacity set by parameters is changed.

After changing the memory capacity, write the symbolic information again.

2.7.4 Compatible optional memory model

1. $\mathrm{FX} 3 \mathrm{~s} / \mathrm{FX} 3 \mathrm{G}$ PLCs

Model name	Maximum number of steps	Memory type	Allowable number of times of writing	Remarks
FX3G-EEPROM-32L	$32000^{* 1}$	EEPROM memory	10000 times	Write-protect switch and loader function are provided.

*1. The FX3s Series PLC can hold 16,000 steps of memory, but user program capacity is limited to 4,000 steps.

2. $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

Model name	Maximum number of steps	Memory type	Allowable number of times of writing	Remarks
FX3U-FLROM-64	64000	Flash memory	10000 times	Write-protect switch is provided.
FX3U-FLROM-16 ${ }^{* 2}$	16000	Flash memory	10000 times	Write-protect switch is provided.
FX3U-FLROM-64L*2	64000	Flash memory	10000 times	Write-protect switch and loader function are provided.
FX3U-FLROM-1M ${ }^{* 3}$	64000	Flash memory	10000 times	Write-protect switch and there is an area (1300 kB) dedicated to the storage of symbolic information.

*2. Can be used with FX3uc PLCs Ver. 2.20 or later.
*3. Ver. 3.00 or later is applicable.

2.7.5 Keyword (entry code)

By registering the entry code in a PLC, the functions of programming tools, display modules, and display units to change programs, monitor devices, and the current value changing function in the PLC can be restricted (access restriction).
\rightarrow For the operations and restricted functions of display modules, refer to the PLC main unit Hardware Edition.
\rightarrow For the operations and restricted functions of display units, refer to the respective display unit manual.

1. Differences in operations caused by the entry code type

The operations to change, cancel (delete) and reset the registered entry code vary depending on the entry code type.

Registered entry code	Entered entry code	Change	Cancel	Disable	Outline
Permanent PLC lock	-	-	-	-	The permanent PLC lock cannot be changed, canceled or reset.
Entry code	Entry code	\checkmark	\checkmark	\checkmark	The entry code can be changed, canceled and reset.
Entry code + Second entry code	Entry code + Second entry code	\checkmark	\checkmark	\checkmark	The entry code and second entry code can be changed, canceled and reset.
Entry code + Second entry code + Customer keyword	Entry code + Second entry code	\checkmark	\checkmark	\checkmark	The entry code, second entry code and customer entry code can be changed, canceled and reset.

2. Correspondence between PLC and peripheral equipment

	Available characters	Number of registered characters	Applicable PLC	GX Works2	GX Developer	$\begin{aligned} & \text { GOT } \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { GOT- } \\ & \text { F900 } \end{aligned}$	FX-30P	$\begin{gathered} \text { FX-10P } \\ \text { (-E) } \\ \text { FX-20P } \\ (-E) \end{gathered}$	FX-PCS /WIN(-E)
Permanent PLC lock	-	-	FX3S/FX3G/FX3GC (From first product) FX3U/FX3UC (Ver. 2.61 or later)	Ver. 1.08J or later	Ver. 8.72A or later	Not applicable	Not applicable	Applicable	Not applicable	Not applicable
Entry code	0 to 9 and A to F	8	FX3S/FX3G/FX3GC/ FX3U/FX3UC (From first product)	Ver. 1.08J or later	Ver. 2.00A or later	Applicable	Only reset of entry code is allowed	Applicable	Applicable	Applicable
Second entry code	0 to 9 and A to F	8 (16 total including entry code)	FX3S/FX3G/FX3GC (From first product) FX3U/FX3UC (Ver. 2.20 or later)	Ver. 1.08J or later	Ver. 8.24A or later	Applicable	Not applicable	Applicable	Not applicable	Not applicable
Customer keyword	0 to 9 and A to F	16	FX3S/FX3G/FX3GC (From first product) FX3U/FX3UC (Ver. 2.61 or later)	Ver. 1.08J or later	Ver. 8.72A or later	Applicable	Not applicable	Applicable	Not applicable	Not applicable

The security provided by the entry code, second entry code and customer keyword is limited, and is not always perfect.

3. Entry code setting and access restriction

Setting status	Peripheral equipment and access restriction				
When the permanent PLC lock is selected	The programming tool performs the following operations in accordance with the selected registration condition: Once the permanent PLC lock is set, it cannot be reset. To reset the permanent PLC lock or write programs again to the PLC, all-clear the PLC memory.				
	Reg			Monitoring	Present value
		Read	Write	Monitoring	change
	Write prohibited	\checkmark	-	\checkmark	\checkmark
	Read and write prohibited	-	-	\checkmark	\checkmark
	All online operations prohibited	-	-	-	-

The programming tool performs the following operations in accordance with the selected registration condition:
It is not possible to cancel the entry code using the customer keyword.

When the customer keyword is set

Registration condition	Program		Monitoring	Present value change
	Read	Write		\checkmark
Write prohibited	\checkmark	-	\checkmark	\checkmark
Read and write prohibited	-	-	\checkmark	-
All online operations prohibited	-	-	-	-

The programming tool performs the following operations in accordance with the selected registration condition:

When both the entry code and second entry code are set

Registration condition	Program		Monitoring	Present value change
	Read	Write		\checkmark
Write prohibited	\checkmark	-	\checkmark	\checkmark
Read and write prohibited	-	-	\checkmark	-
All online operations prohibited	-	-	-	-

1) When using handy programming panel FX-10P(-E)/FX-20P(-E)

The programming tool performs the following operations in accordance with the head character of the entry code (in 8 characters):

	Head character of entry code	Program		Monitoring	Present value change
		Write			
All operations prohibited	A,D to F,0 to 9	-	-	-	\checkmark
Read/Incorrect write protection	B	-	-	\checkmark	\checkmark
Erroneous write prohibited	C	\checkmark	-	\checkmark	\checkmark

2) When using any programming tool or data access unit other than the FX-10P(-E)/FX-20P(-E) Read/Incorrect write protection is set for all entry codes.

When no entry code is set
All operations are enabled.

Caution on selecting the permanent PLC lock

- Once the permanent PLC lock is set, it cannot be reset

To reset the permanent PLC lock or write programs again to the PLC, all-clear the PLC memory.

Caution on registering the entry code

- The entry codes are provided to restrict access from peripheral equipment to programs created by the user. Take care to save/remember the entry codes.
If a registered entry code is forgotten, the online operations from the programming tool to the PLC are disabled depending on the programming tool type and the contents of the registered entry code.
- In an FX3U/FX3uc PLC whose version is earlier than Ver. 2.61, do not use a memory cassette where the customer keyword and permanent PLC lock are set.
If a memory cassette where the permanent PLC lock is set is used in an $F_{3} X_{3} / F X_{3} U C$ PLC whose version is earlier than Ver. 2.61, the PLC does not function normally.
If the PLC memory is cleared or the keyword is canceled in an FX3U/FX3UC PLC whose version is earlier than Ver. 2.61 for a memory cassette where the customer keyword and permanent PLC lock are set, access restrictions set by the keyword may not be able to be removed normally.

Registering and changing the entry codes

This section explains the operating procedure of GX Works2, GX Developer.
\rightarrow For the entry code registration/change procedure in FX-10P(-E), FX-20P(-E), FX-30P, and FX-PCS/WIN(-E), refer to the manual of each product.

1. Set the PLC to the STOP mode.

2. Open New keyword registration dialog box.

- GX Works2

Select [Online] \rightarrow [Password/Keyword $] \rightarrow[$ New...] to open New Keyword Registration dialog box.

- GX Developer

Select [Online] \rightarrow KKeyword setup] \rightarrow [Register...] to open New keyword register dialog box.
3. Set the function selection, keyword input, protection level.

The setting method is different between GX Works2 and GX Developer.

- GX Works2

Set item		Contents of setting	Remarks
Function Selection		Select one of the following. - Keyword Protection(16 digits) - Keyword Protection(8 digits) - Permanent PLC Lock	When "Permanent PLC lock" is selected, it cannot be reset. To reset the permanent PLC lock or write programs again to the PLC, all-clear the PLC memory. To use two keywords, select "Keyword Protection(16 digits)".
Keyword Input	Keyword(16 digits)	Input 16 characters. Available characters are A to F and 0 to 9.	Set 8 characters in the first field, and set 8 characters in the second field.
	Keyword(8 digits)	Input 8 characters. Available characters are A to F and 0 to 9.	Set 8 characters in the first field.
	Retype Keyword	Set the same keyword.	This input is required for confirmation.
	Customer Keyword	Input 16 characters. Available characters are A to F and 0 to 9 .	Put a check mark in the check box "Customer keyword is used(16 digits)". Set 8 characters in the former area, and set 8 characters in the latter area.
	Retype Keyword	Set a same keyword.	This input is required for confirmation.
Protection Level		Select one of the following. - Read/Write Protection - Write Protection - All Online Operation Protection	To select "Protection Level", set "Keyword Protection(16 digits)" or "Permanent PLC Lock" in "Function Selection".

- GX Developer

New keyword register				
Function selection - Keyword protection C Permanent PLC lock When selecting Permanent PLC lock, the protection level setting cannot be removed.		Execution Close		
$\left[\begin{array}{l}\text { Protection level- } \\ \text { C } \\ \subset \text { Read/Write protection } \\ C \text { Aille protection } \\ \text { Cline operation protection }\end{array}\right.$				
Set item			Contents of setting	Remarks
Function Selection			Select one of the following. - Keyword Protection - Permanent PLC Lock	When "Permanent PLC lock" is selected, it cannot be reset. To reset the permanent PLC lock or write programs again to the PLC, all-clear the PLC memory.
Keyword Input	Keyword		Input 8 characters. Available characters are A to F and 0 to 9 .	-
	2nd Keyword		Input 8 characters. Available characters are A to F and 0 to 9 .	Before setting the second entry code, set the entry code first.
	Customer keyword		Input 16 characters. Available characters are A to F and 0 to 9 .	Before setting the customer keyword, set the entry code and second entry code first.
Protection level			Select one of the following: - Read/Write protection - Write protection - All online operation protection	Before setting the protection level, set the second entry code or select "Permanent PLC lock" in "Function selection".

Caution on registering the entry code

The entry codes are provided to restrict access from peripheral equipment to programs created by the users. Keep the entry codes carefully.
If a registered entry codes is forgotten, the online operations from a programming tool to the PLC are disabled depending on the programming tool type and the contents of the registered entry code.

4. Register the keyword to the PLC.

- GX Works2

Click the [Execute] button to register the keyword to the PLC.
When "Permanent PLC Lock" is selected, however, the following dialog box appears when the [Execute] button is clicked.
Click the [OK] button to register protection to the PLC.

When protection is deleted, a Memory Clear is required. (The program will be deleted.)
Do you want to continue?

Cancel
－GX Developer
Click［Execution］button to open Keyword confirmation dialog box．
Enter the same keyword again，and click the［OK］button to register the keyword to the PLC．

When＂Permanent PLC Lock＂is selected，however，the following dialog box appears when the［Execute］button is clicked．
Click the［OK］button to register protection to the PLC．

Reading/writing a program from/to a PLC with the entry codes registered

This section explains the operating procedure of GX Works2, GX Developer.
\rightarrow For the program reading/writing procedure in FX-10P(-E), FX-20P(-E), FX-30P, and FX-PCS/WIN(-E), refer to the manual of each product.

1. Select [Online] \rightarrow [Read from PLC...]/[Write to PLC...] to open Input current keyword dialog box.

2. Input the keyword (8 digits, 16 digits), 2nd keyword or customer keyword currently registered in the PLC.
The setting method is different between GX Works2 and GX Developer

- GX Works2

Set item	Contents of setting	Remarks
Keyword	Input 16 characters. Available characters are A to F and 0 to 9.	Enter only the first 8 digits when "Keyword Protection (8 digits)" is registered. When the customer keyword is set, 16 characters for the customer keyword are available.

- GX Developer

Set item	Contents of setting	Remarks
Keyword	Input 8 characters. Available characters are A to F and 0 to 9.	When cancelling the keyword using the customer keyword instead of entering the keyword, enter the former 8 characters of the customer keyword.
2nd Keyword	Input 8 characters. Available characters are A to F and 0 to 9.	When cancelling the 2nd keyword using the customer keyword instead of entering the 2nd keyword, enter the latter 8 characters of the customer keyword.

3. Click [Execution] button to verify the keywords you have input with the keywords currently registered in the PLC.

- When the entry code inputs are verified, the PLC executes "Read from PLC" or "Write to PLC".
- When the entry code inputs are not verified, the PLC does not execute "Read from PLC" or "Write to PLC".

Canceling the entry codes

This section explains the operating procedure of GX Works2，GX Developer．
\rightarrow For the entry code canceling（deletion）procedure in FX－10P（－E），FX－20P（－E），FX－30P，and FX－PCS／WIN（－E）， refer to the manual of each product．

1．Set the PLC to the STOP mode．
2．Open Keyword cancel dialog box．
－GX Works2
Select［Online］\rightarrow［Password／Keyword］\rightarrow［Delete．．．］to open Keyword Delete dialog box．
－GX Developer
Select［Online］\rightarrow［Keyword setup］\rightarrow［Delete．．．］to open Keyword cancel dialog box．
3．Input the keyword（ 8 digits， 16 digits）and 2 nd keyword currently registered in the PLC．
The setting method is different between GX Works2 and GX Developer．
－GX Works2

Set item	Contents of setting	Remarks
Keyword	Input 16 characters．Available characters are A to F and 0 to 9．	Enter only the first 8 digits when＂Keyword Protection（8 digits）＂is registered． It is not possible to cancel the keyword using the customer keyword．

－GX Developer

Set item	Contents of setting	Remarks
Keyword	Input 8 characters．Available characters are A to F and 0 to 9．	It is not possible to cancel the keyword using the customer keyword．
2nd Keyword	Input 8 characters．Available characters are A to F and 0 to 9.	

4．Click［Execution］button to verify the entry codes you have input with the entry codes currently registered in the PLC．
－When the entry code inputs are verified，the PLC executes＂Keyword Cancel＂．
－When the entry code inputs are not verified，the PLC does not execute＂Keyword Cancel＂．

Resetting the entry codes, and validating the reset entry codes (Keyword Protect)

This section explains the operating procedure of GX Works2, GX Developer.
\rightarrow For the entry code reset procedure in FX-10P(-E), FX-20P(-E), FX-30P, and FX-PCS/WIN(-E), refer to the manual of each product.

1. Open Keyword disable dialog box.

- GX Works2

Select [Online] \rightarrow PPassword/Keyword] \rightarrow [Disable...] to open Keyword Disable dialog box.

- GX Developer

Select [Online] \rightarrow [Keyword setup] \rightarrow [Disable...] to open Keyword Disable dialog box.
2. Input the keyword (8 digits, 16 digits), 2nd keyword or customer keyword currently registered in the PLC.
The setting method is different between GX Works2 and GX Developer.

- GX Works2

Set item		Contents of setting	Remarks
Keyword Disable	Keyword	Input 16 characters. Available characters are A to F and 0 to 9.	Enter only the first 8 digits when "Keyword Protection (8 digits)" is registered. When cancelling the keyword using the customer keyword instead of entering the keyword, enter the former 8 characters of the customer keyword.
Keyword Protect	Reset entry codes are made valid again.		

- GX Developer

Set item		Contents of setting	Remarks
Keyword Disable	Keyword	Input 8 characters. Available characters are A to F and 0 to 9.	When the customer keyword is set in the FX3S/ FX3G/FX3GC/FX3U/FX3UC PLCs, its former 8 characters are available.
	2nd Keyword	Input 8 characters. Available characters are A to F and 0 to 9.	When the customer keyword is set in the FX3S/ FX3G/FX3GC/FX3U/FX3UC PLCs, its latter 8 characters are available.
	Reset entry codes are made valid again.	-	

3. Click [Execution] button to reset the entry codes or validate the reset entry codes again.

2.7.6 Special unit initial value setting

The initial values of the buffer memory (BFM) in special function units/blocks connected to an FX3uc PLC Ver.2.20 or later and FX3U PLC can be set as a parameter in GX Works2 or GX Developer.
When this parameter is used, it is not necessary to execute initial setting in a user program for special function units/ blocks requiring initial setting. The special unit initial value setting uses 4000 steps (8 blocks) in the memory capacity.
\rightarrow For the setting procedure, refer to Subsection 2.7.9.
\rightarrow For GX Developer, refer to the GX Developer Version 8 Operating Manual.

2.7.7 Positioning instruction setting

In the positioning instruction setting available in all FX3uc PLC Ver. 2.20 or later and FX3G/FX3GC/FX3u PLCs, constants can be set in the table for the TBL (FNC152) instruction. Make sure to set this parameter when using TBL (FNC152) instruction.
The positioning instruction setting for TBL (FNC152) instruction uses 9000 steps (18 blocks) in the memory capacity.
\rightarrow For details on TBL (FNC152) instruction, refer to the Positioning Control Manual.
\rightarrow For the setting procedure, refer to the Positioning Control Manual or Subsection 2.7.9.
\rightarrow For GX Developer, refer to the GX Developer Version 8 Operating Manual.

2.7.8 Built-in CC-Link/LT Setup (dedicated to FX3UC-32MT-LT-2)

The set item "Built-in CC-Link/LT Setup" is dedicated to the FX3uc-32MT-LT-2.
The CC-Link/LT setting (transmission speed, point mode and station information) is available in the parameter setting using GX Works2 or GX Developer.
The built-in CC-Link/LT setup uses 500 steps (1 block) in the memory capacity.
\rightarrow For the setting procedure, refer to the FX3uc Hardware Edition or Subsection 2.7.9. \rightarrow For GX Developer, refer to the GX Developer Version 8 Operating Manual.

2.7.9 Parameter settings

This subsection explains the parameter setting procedures by GX Works2.
\rightarrow For network parameter setting, refer to the GX Works2 Version 1 Operating Manual (Common). \rightarrow For Ethernet adapter setting, refer to FX3U-ENET-ADP User's Manual.

Opening the parameter setting screen

In the project view area provided on the navigation window, double-click [Parameter] \rightarrow [PLC parameter]. If the navigation window is not displayed, select [View] \rightarrow [Docking Window] \rightarrow [Navigation] from the menu bar.

2
 Setting memory capacity

Caution

- When the memory capacity of the $F X_{3}$ is 16,000 steps, the program capacity is fixed to 4,000 steps, and the total of the comment capacity and the file register capacity is limited to 12,000 steps (24 blocks).
The comment capacity is automatically set when the file register capacity is set.
- $F X_{3 G} / F X_{3 G C}$ PLCs operate in the extension mode when the program capacity is 16,001 steps or more, and operate in the standard mode when the program capacity is 16,000 steps or less.
The instruction execution time is longer in the extension mode than in the standard mode.
Example: Time required to execute the basic instruction "LD"

$$
\text { Standard mode: } 0.21 \mu \mathrm{~s} \quad \text { Extension mode: } 0.42 \mu \mathrm{~s}
$$

- In FX3U/FX3UC PLCs, when symbolic information is stored, it is deleted if the memory capacity set by parameters is changed.
After changing the memory capacity, write the symbolic information again.

3 Setting devices

1. Click [Device] tab, and set devices.

Set item	Contents of setting	Setting range
Supplemental Relay	Set the latched (battery backed) auxiliary relay range. Initial value: 500 to 1023	0 to 1023
State	Set the latched (battery backed) state relay range. Initial value: 500 to 999	0 to 999
Timer	The setting displayed here cannot be changed.	-
Counter (16bit)	Set the latched (battery backed) 16-bit counter range. Initial value: 100 to 199	0 to 199
Counter (32bit)	Set the latched (battery backed) 32-bit counter range. Initial value: 220 to 255	200 to 255
Data Register	Set the data register range (battery backed). Initial value: 200 to 511	0 to 511
Extended Register	All extension registers are latched (battery backed). This setting is fixed, and cannot be changed.	-

4 Setting the PLC name

1. Click [PLC Name] tab, and input the program title.

5 Setting special function block

1. Click the [Special Function Block] tab, and then set the special function unit/block and built-in CC-Link/LT.
In order to use the "Special Function Block" field, the "Special Function Block Settings" box in the [Memory Capacity] tab must be checked first.
When setting the station information in "Built-in CC-Link/LT Setting", it is necessary to put a check mark to "Built-in CC-Link/LT Settings" on the [Memory Capacity] tab.

2. On Special Function Block Settings dialog box, set the initial values of special function units/ blocks.

*1. Input buffer memory addresses (BFM numbers) that in the connected special function unit/block hold.
*2. To each buffer memory address (BFM number), set a value within the allowed range in the connected special function unit/block.
*3. Refer to the manual of the connected special function unit/block.
3. Click [OK] button to finish the setting and close Special Function Block Settings dialog box.

6 Set the Built-in CC-Link/LT

1. Set the built-in CC-Link/LT on the Built-in CC-Link/LT Setting dialog box.

Set item	Contents of setting	Setting range
	Select one of the following supported built-in CC-Link/LT transmission rates: Transmission Speed 625 kbps 156 kbps	-
Point Mode	Select one of the following supported point modes: $16-p o i n t ~ m o d e ~$ 4-point mode	This item indicates the station number of the built-in CC-Link/LT module. Station numbers 1 to 64 are available.
Station No.	Select one of the following station type: Remote I/O station (Input) Remote I/O station (Output) Remote I/O station (Input/Output) Remote device station*1	-
Station Type	Select one of the following supported I/O point counts for each remote I/O and remote device station: 1 to 16, 32, 48, 64 2	-
I/O Points	Select whether or not the Built-in CC-Link/LT station is specified as a reserved station.	-
Specify Reserved Station	-	
Up	This button moves the cursor to the upper line (transposes the upper line).	-
Down	This button moves the cursor to the lower line (transposes the lower line).	$-32,48,64^{* 2}$
Insert Row	This button inserts a line in the currently selected position.	-
Delete Row	This button deletes the currently selected line.	-
Read Buffer Memory	Click this button to read the transmission rate, point mode and station information of the built-in CC-Link/LT module.	-

*1. Select 16-point mode when using remote device stations. Remote device stations cannot be set in 4-point mode.
Only station numbers 40 to 64 are available for remote device stations.
*2. The station numbers 32, 48 and 64 are available when a remote device station is selected in Station type.
2. Click the [OK] button to finish the setup and close the Built-in CC-Link/LT setup dialog box.

7 Setting the PLC system (1)

Click on the [PLC System(1)] tab to setup "Battery Less Mode", "Battery Mode", "MODEM Initialized", and "RUN Terminal Input".

1) $F X_{3 S} / F X_{3} U / F X_{3} U C$ PLC

2) $F X_{3 G} / F X_{3 G C}$ PLCs

Set item	Contents of setting	Setting range
Battery Less Mode ${ }^{* 1}$	Select this to operate the PLC without using the battery. When a check mark is put here, the battery error indicator lamp is automatically turned off and devices in the latched (battery backed) area are automatically cleared.	-
Battery Mode ${ }^{* 2}$	Select this item to operate the PLC with the battery.	-
MODEM Initialized	Set this item to automatically initialize a connected modem when the PLC power is turned ON.	-
RUN Terminal Input	Set this item to use an input terminal (X) to switch the PLC between STOP and RUN.	None R000 to X017

[^1]*2. This area can be set only in FX3G/FX3GC PLCs.
*3. Up to the built-in input number of main unit.

8 Setting the PLC system (2)

1. Click [PLC System(2)] tab.
2. Only when a latch (battery backed) area for a serial port exists through an extended PLC, select a channel to be set and put a check mark next to "Operate Communication Setting".
When not performing the communication setting for a serial port, do not put a check mark next to "Operate Communication Setting".

Set item	Contents of setting	Setting range
Channel selection	Select a channel in which a serial port is set.	$\mathrm{CH} 1, \mathrm{CH} 2{ }^{* 1}$
Operate Communication Setting	Check mark this box when using the selected serial port in "computer link", "non- protocol communication" or "inverter communication". Do not put a check mark when transferring and monitoring sequence programs in GX Works2 or when using the selected serial port in $\mathrm{N}: \mathrm{N}$ Network, parallel link, MODBUS communication or FX3U-ENET-ADP.	-
Protocol	Set each item in accordance with application. \rightarrow For details on each item, refer to the Data Communication Edition manual.	
Data length		
Parity		
Stop Bit		
Transmission Speed		
Header		
Terminator		
Control Line		
H/W Type		
Control Mode		
Sum Check		
Transmission Control Procedure		
Station Number Setting		
Time Out Judge Time		

*1. Ch2 is not available in FX3S PLC.

9 Setting positioning

1. Click [Positioning] tab.

In order to use the [Positioning] tab, the "Positioning Instruction Settings" box in the [Memory Capacity] tab must be checked first.
2. Set the positioning constants in TBL (FNC152) instruction.
\rightarrow For TBL (FNC152) instruction, refer to the Positioning Control Manual.

Set item	Contents of setting	Set range
Bias Speed [Hz]	Set the bias speed for each set of output pulses. Initial value: 0	$1 / 10$ or less of the maximum speed
Max. Speed [Hz]	Set the maximum speed for each set of output pulses. Initial value: 100,000	*1
Creep Speed [Hz]	Set the creep speed in DSZR (FNC150) instruction for each set of output pulses. Initial value: 1000	10 to $32767^{*} 2$
Zero Return Speed [Hz]	Set the zero point return speed in DSZR (FNC150) instruction for each set of output pulses. Initial value: 50000	*1
Acceleration Time [ms]	Set the acceleration time for each set of output pulses. Initial value: 100	50 to 5000
Deceleration Time [ms]	Set the deceleration time for each set of output pulses. Initial value: 100	50 to 5000
Interruption Input of DVIT Instruction ${ }^{*} 4$	Set the interrupt input ${ }^{*} 3$ for DVIT (FNC151) instruction for each set of output pulses. Specify a user interrupt command device (M) for a pulse output destination device not used in DVIT instruction. Initial setting: Setting range: Pulse output destination Y000: X000 X000 to X007, M8460 Pulse output destination Y001: X001 X000 to X007, M8461 Pulse output destination Y002: X002 X000 to X007, M8462 Pulse output destination Y003*6: X003 X000 to X007, M8463	As shown on the left
Y0	Setting for Fixed pulse output destination terminal Y000.	-
Y1	Setting for Fixed pulse output destination terminal Y001.	-
Y2*5	Setting for Fixed pulse output destination terminal Y002.	-
Y3* ${ }^{*}$	Setting for Fixed pulse output destination terminal Y003.	-
Individual Setting	This button displays "Positioning instruction settings" dialog box for setting the table used in TBL (FNC152) instruction. \rightarrow For the setting procedure, refer to the next page.	-

*1. The setting range is from 10 to $100,000 \mathrm{~Hz}$ in $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.
The setting range is from 10 to $200,000 \mathrm{~Hz}$ in FX3U PLC when the pulse output destination is the high-speed output special adapter.
*2. The creep speed should satisfy the relationship "Bias speed \leq Creep speed \leq Maximum speed".
*3. An interrupt input set here cannot be used jointly with a high-speed counter, input interrupt, pulse catch input, input in SPD (FNC 67) instruction, or interrupt input in DVIT (FNC151) instruction.
*4. This area can be set only in $F X_{3} / F X_{3} \cup c$ PLCs.
*5. Y002 is not set in FX3G PLC (14-point and 24-point type) and FX3GC PLC.
*6. Note that this item can only be set if two high-speed output special adapters are connected to the FX3U PLC.
3. Click [Individual setting] button to display Positioning Instruction Settings dialog box. In this dialog box, set the positioning table for each pulse output destination.

Set item	Contents of setting	Setting range
Y0	Set the positioning table for the pulse output destination Y000.	-
Y1	Set the positioning table for the pulse output destination Y001.	-
Y2*1	Set the positioning table for the pulse output destination Y002.	-
Y3*2	Set the positioning table for the pulse output destination Y003.	-
Rotation Direction Signal	Set the relay number of the rotation direction output signal. Initial setting: Pulse output destination Y000: Y010 Pulse output destination Y001: Y011 Pulse output destination Y002*1: Y012 Pulse output destination Y003*2: Y013 \rightarrow Refer to the Positioning Control Manual.	FX3U/FX3UC: Y000 to Y357
		$\begin{aligned} & \text { FX3G/FX3GC: } \\ & \text { Y000 to Y177 } \end{aligned}$
Head Address	Set the head number of devices storing the set data (pulse number and frequency). 1600 devices (FX3U and FX3UC) or 1200 devices (FX3G and FX3GC) are occupied starting from the head device number set here regardless of the number of axes. Initial setting: R0 \rightarrow Refer to the Positioning Control Manual.	FX3U/FX3UC: D0 to D6400 R0 to R31168
		FX3G/FX3GC: D0 to D6400 R0 to R22800
No.	This column shows the table number. Numbers 1 to 100 can be set.	-
Positioning Instruction	Select the positioning type among the following: DDVIT (Interrupt positioning instruction) ${ }^{* 3}$ DPLSV (Variable speed output pulse instruction) DDRVI (Relative positioning instruction) DDRVA (Absolute positioning instruction) \rightarrow Refer to the Positioning Control Manual.	-
Pulse (PIs)	Set the pulse number output by the operation (instruction) set in "Positioning Instruction" column. \rightarrow Refer to the Positioning Control Manual.	Refer to the Positioning Control Manual.
Frequency [Hz]	Set the speed (pulse frequency) output by the operation (instruction) set in "Positioning Instruction" column. \rightarrow Refer to the Positioning Control Manual.	Refer to the Positioning Control Manual.
Up	This button transposes the selected line to the upper line.	-
Down	This button transposes the selected line to the lower line.	-
Insert Row	This button inserts a line in the currently selected position.	-
Delete Row	This button deletes the currently selected line.	-
Delete all Rows	This button deletes the entire setting of the positioning table for the selected pulse output destination.	-

Set item	Contents of setting	Setting range
Positioning table settings will not be initialized when the PLC is powered on	A check mark here means not to transfer the positioning setting when PLC turns ON.	Check mark this box when changing the positioning setting from a display unit, etc., and then using the changed contents even after restoring power. In this case, set a latched (battery backed) type device to "Head Address".

*1. Y002 is not set in FX3G PLC (14-point and 24-point type) and FX3GC PLC.
*2. Note that this item can only be set if two high-speed output special adapters are connected to the FX3U PLC.
*3. This area can be set only in FX3U/FX3uc PLCs.

10 Transferring parameters (and sequence program) to the PLC

1. Select [Online] \rightarrow [Write to PLC...] from the menu bar to display the online data operation dialog box.

2. Check mark the "Parameter" box, and click [Execute] button.

The selected contents are transferred to the PLC.
The transferred parameters become valid when the PLC switches from RUN to STOP.
When the communication setting is changed in step 8 [PLC System(2)], cycle the PLC power.

Caution

After changing the memory capacity, make sure to write both the programs and parameters to the PLC.
If only the parameters are written to the PLC, program errors (such as parameter error, circuit error and grammar error) may occur in the PLC.

3. Instruction List

This chapter introduces a list of instructions available in programming.

3.1 Basic Instructions

The basic instructions are provided in the following series. The table below shows differences in applicable devices.

Applicable PLC	FX3S	FX3G	FX3GC	FX3U	FX3UC	FX1S	FX1N	FX1NC	FX2N
Fasic instructions other than MEP and MEF instructions	\checkmark								
MEP and MEF instructions	\checkmark	\checkmark	\checkmark	Ver. 2.30 or later	Ver. 2.30 or later	-	-	-	-
Absence/presence of applicable devices (D■. b)	-	-	-	\checkmark	\checkmark	-	-	-	-
Absence/presence of applicable devices (R)	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	

Mnemonic	Name	Symbol	Function	Applicable devices	Reference
Contact Instruction					
LD	Load	Applicable devices	Initial logical operation contact type NO (normally open)	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.1
LDI	Load Inverse	Applicable devices	Initial logical operation contact type NC (normally closed)	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.1
LDP	Load Pulse		Initial logical operation of Rising edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
LDF	Load Falling Pulse	Applicable devices	Initial logical operation of Falling/trailing edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
AND	AND		Serial connection of NO (normally open) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.3
ANI	AND Inverse		Serial connection of NC (normally closed) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.3
ANDP	AND Pulse		Serial connection of Rising edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
ANDF	AND Falling Pulse		Serial connection of Falling/trailing edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
OR	OR		Parallel connection of NO (normally open) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.4
ORI	OR Inverse		Parallel connection of NC (normally closed) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.4
ORP	OR Pulse		Parallel connection of Rising edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
ORF	OR Falling Pulse		Parallel connection of Falling/trailing edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5

Mnemonic	Name	Symbol	Function	Applicable devices	Reference
Connection Instruction					
ANB	AND Block	-	Serial connection of multiple parallel circuits	-	Section 7.7
ORB	OR Block		Parallel connection of multiple contact circuits	-	Section 7.6
MPS	Memory Point Store	$\mid \vdash \text { MPS }$	Stores the current result of the internal PLC operations		Section 7.8
MRD	Memory Read		Reads the current result of the internal PLC operations	-	Section 7.8
MPP	Memory POP		Pops (recalls and removes) the currently stored result		Section 7.8
INV	Inverse		Invert the current result of the internal PLC operations	-	Section 7.10
MEP	MEP	+	Conversion of operation result to leading edge pulse	-	Section 7.11
MEF	MEF	+ - - -	Conversion of operation result to trailing edge pulse	-	Section 7.11
Out Instruction					
OUT	OUT		Final logical operation type coil drive	Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.2
SET	SET	$\mid \vdash$ SET Applicable devices	SET Bit device latch ON	Y,M,S,D $\square . \mathrm{b}$	Section 7.13
RST	Reset	$\|\vdash\|$	RESET Bit device OFF	$\begin{aligned} & \mathrm{Y}, \mathrm{M}, \mathrm{~S}, \mathrm{D} \square . \mathrm{b}, \mathrm{~T}, \mathrm{C}, \\ & \mathrm{D}, \mathrm{R}, \mathrm{~V}, \mathrm{Z} \end{aligned}$	Section 7.13
PLS	Pulse	$\|\vdash\|$	Rising edge pulse	Y,M	Section 7.12
PLF	Pulse Falling	$\|\longmapsto\|$	Falling/trailing edge pulse	Y,M	Section 7.12
Master Control Instruction					
MC	Master Control	$\|\vdash\|$MC N Applicable devices	Denotes the start of a master control block	Y,M	Section 7.9
MCR	Master Control Reset	$\|\vdash\|$	Denotes the end of a master control block	-	Section 7.9
Other Instruction					
NOP	No Operation	-	No operation or null step	-	Section 7.14
End Instruction					
END	END	- END	Program END, I/O refresh and Return to Step 0	-	Section 7.15

3．2 Step Ladder Instructions

Mnemonic	Name	Symbol	Function	Applicable devices	Reference
STL	Step Ladder	STL	Applicable devices	Starts step ladder	S

3．3 Applied Instructions ．．．in Ascending Order of FNC Number

Applied instructions such as Arithmetic operation，Rotation and Shift，Handy instructions etc．are used especially when numeric data is handled．
＊1：The instruction is provided in the FX2N／FX2NC Series Ver． 3.00 or later．
＊2：The function is changed in the FX3UC Series Ver． 1.30 or later．
＊3：The instruction is provided in the FX3uc Series Ver． 1.30 or later．
＊4：The function is changed in the FX3UC Series Ver． 2.20 or later．
＊5：The instruction is provided in the FX3UC Series Ver． 2.20 or later
＊6：The instruction is provided in the FX3G Series Ver． 1.10 or later．．

		Symbol	Function	¢	苞		$\underset{\underset{\sim}{\underset{\sim}{x}}}{\text { To }}$	$\underset{\text { તĩ }}{\underset{\sim}{\mathrm{K}}}$	Applicable PLC					Reference
FNC No．	Mnemonic								$\underset{\sim}{\boldsymbol{\pi}}$	$\underset{\text { ² }}{\text { }}$	衣	ス	त	
Program Flow														
00	CJ	НЮ CJ	Conditional Jump	\checkmark	Section 8.1									
01	CALL	－1 CALL Pn ${ }^{\text {Pr｜}}$	Call Subroutine	\checkmark	Section 8.2									
02	SRET	SRET	Subroutine Return	\checkmark	Section 8.3									
03	IRET	IRET	Interrupt Return	\checkmark	Section 8.4									
04	El	EI	Enable Interrupt	\checkmark	Section 8.5									
05	DI	DI	Disable Interrupt	\checkmark	Section 8.6									
06	FEND	－FEND	Main Routine Program End	\checkmark	Section 8.7									
07	WDT	Н⺊ WDT	Watchdog Timer Refresh	\checkmark	Section 8.8									
08	FOR	FOR	Start a FOR／NEXT Loop	\checkmark	Section 8.9									
09	NEXT	$\|$NEXT 	End a FOR／NEXT Loop	\checkmark	Section 8.10									
Move and Compare														
10	CMP	CMP S 1 S 2 D	Compare	\checkmark	Section 9.1									
11	ZCP	ZCP S1 S2 S D	Zone Compare	\checkmark	Section 9.2									
12	MOV	MOV S D	Move	\checkmark	Section 9.3									

＊7：The instruction is provided in the FX3U／FX3UC Series Ver． 2.61 or later． ＊8：The instruction is provided in the FX3G Series Ver． 1.40 or later． ＊9：The instruction is provided in the $\mathrm{FX}_{3} / / \mathrm{FX}_{3} \cup \mathrm{C}$ Series Ver． 2.70 or later． ＊10：The instruction is provided in the FX3G Series Ver． 1.30 or later．
＊11：The instruction is provided in the FX3U／FX3uc Series Ver． 2.40 or later．

		Symbol	Function	$\underset{\sim}{\underset{\sim}{\chi}}$	$\underset{\sim}{\underset{\sim}{\chi}}$			$\underset{\substack{\pi \\ \underset{\sim}{x}}}{ }$	Applicable PLC					Reference
FNC No.	Mnemonic								$\underset{\underset{\omega}{x}}{\underset{\rightharpoonup}{x}}$	$\begin{aligned} & \pi \\ & \underset{z}{x} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\lambda}{\Sigma} \end{aligned}$	N	弪	
Move and Compare														
13	SMOV	SMOV S m 1 m 2 D n	Shift Move	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 9.4
14	CML	1 CML S	Complement	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 9.5
15	BMOV	BMOV S D n	Block Move	\checkmark	Section 9.6									
16	FMOV		Fill Move	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 9.7
17	XCH	$\|$$1 \times \mathrm{XCH}$ D 1 D 2	Exchange	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 9.8
18	BCD	BCD S D	Conversion to Binary Coded Decimal	\checkmark	Section 9.9									
19	BIN	$\|$BIN S D	Conversion to Binary	\checkmark	Section 9.10									
Arithmetic and Logical Operation (,,$+- \times, \div$)														
20	ADD	ADD S 1 S 2 D	Addition	\checkmark	Section 10.1									
21	SUB		Subtraction	\checkmark	Section 10.2									
22	MUL	$\|$MUL S1 S2 D	Multiplication	\checkmark	Section 10.3									
23	DIV	DIV S1 S2 D	Division	\checkmark	Section 10.4									
24	INC	НЮ INC $\mathrm{H}^{\text {D }}$	Increment	\checkmark	Section 10.5									
25	DEC	$\mid \xrightarrow{\text { DEC }}$ D $\mathrm{D}^{\text {\| }}$	Decrement	\checkmark	Section 10.6									
26	WAND	НЮ WAND $\mathrm{S}^{\text {S }}$ S2 $\mathrm{D}^{\text {D }}$ \|	Logical Word AND	\checkmark	Section 10.7									
27	WOR	$\mid \vdash$ WOR S1 S2 D$\|$	Logical Word OR	\checkmark	Section 10.8									
28	WXOR		Logical Exclusive OR	\checkmark	Section 10.9									
29	NEG	НЮ NEG $\mathrm{D}^{\text {N }}$	Negation	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 10.10
Rotation and Shift Operation														
30	ROR	ROR D n	Rotation Right	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 11.1
31	ROL	ROL D n	Rotation Left	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 11.2
32	RCR	$R C R$ D n	Rotation Right with Carry	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 11.3
33	RCL	Hト RCL	Rotation Left with Carry	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 11.4

		Symbol	Function	$\underset{\sim}{\underset{\sim}{\mathrm{N}}}$	$\underset{\sim}{\underset{\sim}{\chi}}$	$\begin{aligned} & \underset{\aleph}{㐅} \\ & \text { ద̀ } \end{aligned}$		$\begin{aligned} & \underset{\sim}{\overleftarrow{\omega}} \\ & \underset{గ}{0} \end{aligned}$	Applicable PLC					Reference
$\begin{aligned} & \text { FNC } \\ & \text { No. } \end{aligned}$	Mnemonic								$\underset{\text { ワ }}{\text { 「 }}$	$\underset{\mathbf{z}}{\boldsymbol{x}}$	苁	范	N	
Rotation and Shift Operation														
34	SFTR	SFTR S D n 1 n 2	Bit Shift Right	\checkmark	Section 11.5									
35	SFTL	SFTL S D n 1 n 2	Bit Shift Left	\checkmark	Section 11.6									
36	WSFR	W WSFR S D n 1 n 2	Word Shift Right	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 11.7
37	WSFL		Word Shift Left	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 11.8
38	SFWR	HЮSFWR S D n	Shift write ［FIFO／FILO control］	\checkmark	Section 11.9									
39	SFRD	SFRD S D n	Shift Read［FIFO Control］	\checkmark	Section 11.10									
Data Operation														
40	ZRST	ZRST D1	Zone Reset	\checkmark	Section 12.1									
41	DECO	DECO S D n	Decode	\checkmark	Section 12.2									
42	ENCO	ENCO S D n	Encode	\checkmark	Section 12.3									
43	SUM	SUM S D	Sum of Active Bits	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.4
44	BON	BON S D n	Check Specified Bit Status	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.5
45	MEAN	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { MEAN } & \mathrm{S} & \mathrm{D} & \mathrm{n} \\ \hline \end{array}$	Mean	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.6
46	ANS	ANS s m	Timed Annunciator Set	－	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.7
47	ANR		Annunciator Reset	－	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.8
48	SQR	H1SQR S D	Square Root	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.9
49	FLT	$F L T$ S D	Conversion to Floating Point	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 12.10
High－speed Processing														
50	REF	REF D n	Refresh	\checkmark	Section 13.1									
51	REFF		Refresh and Filter Adjust	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 13.2
52	MTR	MTR S D1 D2 n	Input Matrix	\checkmark	Section 13.3									
53	HSCS	$\|$HSCS S1 S2 D	High－speed Counter Set	\checkmark	Section 13.4									
54	HSCR	HSCR S1 S2	High－speed Counter Reset	\checkmark	Section 13.5									

		Symbol	Function	$\underset{\sim}{\underset{\sim}{\chi}}$	$\underset{\sim}{\underset{\sim}{\chi}}$		$\underset{\underset{\text { ® }}{\underset{\sim}{㐅}}}{ }$	$\underset{\substack{\pi \\ \\ \hline}}{ }$	Applicable PLC					Reference
FNC No.	Mnemonic								$\underset{\boldsymbol{\omega}}{\boldsymbol{\pi}}$	$\begin{aligned} & \pi \\ & \underset{z}{\boldsymbol{z}} \end{aligned}$		N	N	
High-speed Processing														
55	HSZ	HSZ S 1 S 2 S D	High-speed Counter Zone Compare	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	$\begin{gathered} \text { Section } \\ 13.6 \end{gathered}$
56	SPD		Speed Detection	\checkmark	Section 13.7									
57	PLSY	PLSY S1 S2 D	Pulse Y Output	\checkmark	$\begin{gathered} \text { Section } \\ 13.8 \end{gathered}$									
58	PWM	$\|\longmapsto\|$PWM S1 S2 D	Pulse Width Modulation	\checkmark	Section 13.9									
59	PLSR		Acceleration/Deceleration Setup	\checkmark	Section 13.10									
Handy Instruction														
60	IST	HЮ ${ }_{\text {H }}$	Initial State	\checkmark	Section 14.1									
61	SER		Search a Data Stack	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 14.2
62	ABSD	$\|$ABSD $S 1$ $S 2$ D n	Absolute Drum Sequencer	\checkmark	Section 14.3									
63	INCD	INCD S1 S2 D n	Incremental Drum Sequencer	\checkmark	Section 14.4									
64	TTMR	HトTTMR D n	Teaching Timer	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 14.5
65	STMR	STMR S m D	Special Timer	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 14.6
66	ALT	HЮ ALT $\mathrm{D}_{\text {D }}$	Alternate State	\checkmark	Section 14.7									
67	RAMP	RAMP S 1 S 2 D n	Ramp Variable Value	\checkmark	Section 14.8									
68	ROTC	$\|\vdash\|$ ROTC s m 1 m 2 D	Rotary Table Control	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 14.9
69	SORT		SORT Tabulated Data	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 14.10
External FX I/O Device														
70	TKY	TKY S D 1 D 2	Ten Key Input	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 15.1
71	HKY	HKY S D1 D2 D3	Hexadecimal Input	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	$\begin{gathered} \text { Section } \\ 15.2 \end{gathered}$
72	DSW	DSW S D 1 D 2 n	Digital Switch (Thumbwheel Input)	\checkmark	Section 15.3									
73	SEGD	H1 SEGD S S D \|	Seven Segment Decoder	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 15.4
74	SEGL		Seven Segment With Latch	\checkmark	Section 15.5									

		Symbol	Function	$\underset{\sim}{\underset{\sim}{㐅}}$	$\underset{\sim}{\underset{\sim}{\chi}}$		$\underset{\text { ※ }}{\underset{\text { T}}{㐅}}$	$\underset{\substack{\pi \\ \\ \hline}}{ }$	Applicable PLC					Reference
FNC No．	Mnemonic								$\underset{\underset{\sim}{x}}{\underset{\sim}{x}}$	$\underset{\text { ² }}{\text { 亿 }}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\lambda}{\Sigma} \end{aligned}$	サ	N	
External FX Device														
75	ARWS	ARWS S D 1 D 2 n	Arrow Switch	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	$\begin{gathered} \text { Section } \\ 15.6 \end{gathered}$
76	ASC	ASC S D	ASCII Code Data Input	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 15.7
77	PR	$\|$PR S D	Print（ASCII Code）	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 15.8
78	FROM	$\|$FROM m 1 m 2 D n	Read From A Special Function Block	－	\checkmark	\checkmark	\checkmark	\checkmark	－	\checkmark	\checkmark	\checkmark	\checkmark	Section 15.9
79	TO	$\|$TO m 1 m 2 S H	Write To A Special Function Block	－	\checkmark	\checkmark	\checkmark	\checkmark	－	\checkmark	\checkmark	\checkmark	\checkmark	Section 15.10
80	RS	$R \mathrm{RS}$ S m D n	Serial Communication	\checkmark	Section 16.1									
81	PRUN	PRUN S	Parallel Run（Octal Mode）	\checkmark	Section 16.2									
82	ASCI	ASCI S D n	Hexadecimal to ASCII Conversion	\checkmark	Section 16.3									
83	HEX	HЮ HEXHE d n	ASCII to Hexadecimal Conversion	\checkmark	Section 16.4									
84	CCD	CCD S D n	Check Code	\checkmark	Section 16.5									
85	VRRD	НЮ VRRD $\mathrm{S}_{\text {S }} \mathrm{D}$｜	Volume Read	\checkmark	＊6	－	＊9	＊9	\checkmark	\checkmark	－	\checkmark	－	Section 16.6
86	VRSC	VRSC S D	Volume Scale	\checkmark	＊6	－	＊9	＊9	\checkmark	\checkmark	－	\checkmark	－	Section 16.7
87	RS2	1 $R S 2$ S m D n	Serial Communication 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－	－	Section 16.8
88	PID		PID Control Loop	\checkmark	Section 16.9									
Data Transfer 2														
102	ZPUSH	HЮ ZPUSH D $^{\text {O }}$	Batch Store of Index Register	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 17.1
103	ZPOP	$\|$ZPOP D	Batch POP of Index Register	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 17.2
Floating Point														
110	ECMP		Floating Point Compare	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.1
111	EZCP	$\|$EZCP S1 S2 S D	Floating Point Zone Compare	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.2
112	EMOV	H1 EMOV S S $\mathrm{D}^{\text {EM }}$	Floating Point Move	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	－	－	Section 18.3
116	ESTR	$\|\mapsto\|$ESTR S1 S2 D	Floating Point to Character String Conversion	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.4
117	EVAL		Character String to Floating Point Conversion	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.5

		Symbol				Function	$\underset{\sim}{\underset{\sim}{㐅}}$	$\underset{\sim}{\underset{\sim}{\chi}}$	$\begin{aligned} & \text { N్ట్ర力 } \\ & \text { ® } \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{x}}}{ }$	$\underset{\substack{\pi \\ \\ \hline}}{ }$	Applicable PLC					Reference	
FNC No．	Mnemonic					$\underset{\text { 心 }}{\underset{\sim}{x}}$						$\begin{aligned} & \boldsymbol{x} \\ & \mathbf{z} \end{aligned}$		ス	N			
Floating Point																		
118	EBCD	HトEBCD S D					Floating Point to Scientific Notation Conversion	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	$\begin{gathered} \text { Section } \\ 18.6 \end{gathered}$
119	EBIN	EBIN S D				Scientific Notation to Floating Point Conversion	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.7	
120	EADD					Floating Point Addition	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.8	
121	ESUB	$\left\lvert\, \mapsto \vdash$ESUB S1 S2 D\right.				Floating Point Subtraction	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.9	
122	EMUL	$\|$EMUL S1 S2 D				Floating Point Multiplication	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.10	
123	EDIV	Wト．EDIV H_{1} S2 $\mathrm{D}^{\text {D }}$｜				Floating Point Division	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.11	
124	EXP	H1－EXPEX D				Floating Point Exponent	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.12	
125	LOGE	LOGE S D				Floating Point Natural Logarithm	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.13	
126	LOG10	LOG10 S D				Floating Point Common Logarithm	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.14	
127	ESQR					Floating Point Square Root	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.15	
128	ENEG	HЮ ENEG $\mathrm{D}^{\text {H｜}}$				Floating Point Negation	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.16	
129	INT	HЮINT S D				Floating Point to Integer Conversion	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.17	
130	SIN					Floating Point Sine	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 18.18	
131	COS					Floating Point Cosine	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	$\begin{gathered} \text { Section } \\ 18.19 \end{gathered}$	
132	TAN	$\|$TAN S D				Floating Point Tangent	－	－	－	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	$\begin{gathered} \text { Section } \\ 18.20 \end{gathered}$	
133	ASIN	HЮ ASIN				Floating Point Arc Sine	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.21	
134	ACOS	HЮ ACOS $\mathrm{S}^{\text {S }}$ D				Floating Point Arc Cosine	－	－	－	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 18.22 \end{gathered}$	
135	ATAN	HЮ ATAN S （ D \mid				Floating Point Arc Tangent	－	－	－	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 18.23 \end{gathered}$	
136	RAD					Floating Point Degrees to Radians Conversion	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 18.24	
137	DEG	$\|$DEG S D				Floating Point Radians to Degrees Conversion	－	－	－	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 18.25 \end{gathered}$	
Data Operation 2																		
140	WSUM	WSUM S D n				Sum of Word Data	－	－	－	\checkmark	＊5	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 19.1 \end{gathered}$	
141	WTOB	WTOB S D n				WORD to BYTE	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 19.2	

		Symbol	Function	$\underset{\sim}{\underset{\sim}{\chi}}$	$\underset{\sim}{\underset{\sim}{\chi}}$				Applicable PLC					Reference
FNC No.	Mnemonic								$\underset{\omega}{\boldsymbol{\pi}}$	$\begin{aligned} & \pi \\ & \underset{z}{\mathbf{z}} \end{aligned}$		ㄲ	䒫	
Data Operation 2														
142	BTOW	BTOW S D n	BYTE to WORD	-	-	-	\checkmark	*5	-	-	-	-	-	Section 19.3
143	UNI	UNI S D n	4-bit Linking of Word Data	-	-	-	\checkmark	*5	-	-	-	-	-	Section 19.4
144	DIS	DIS S D n	4-bit Grouping of Word Data	-	-	-	\checkmark	*5	-	-	-	-	-	Section 19.5
147	SWAP	HЮ SWAP S	Byte Swap	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	Section 19.6
149	SORT2	SORT2 S m 1 m 2 D n	Sort Tabulated Data 2	-	-	-	\checkmark	*5	-	-	-	-	-	Section 19.7
Positioning Control														
150	DSZR		DOG Search Zero Return	\checkmark	\checkmark	\checkmark	\checkmark	*4	-	-	-	-	-	Section 20.1
151	DVIT		Interrupt Positioning	-	-	-	\checkmark	$\begin{gathered} \text { *2, } \\ 4 \end{gathered}$	-	-	-	-	-	Section 20.2
152	TBL	TBL D n	Batch Data Positioning Mode	-	\checkmark	\checkmark	\checkmark	*5	-	-	-	-	-	Section 20.3
155	ABS	ABS S D 1 D 2	Absolute Current Value Read	\checkmark	*1	*1	Section 20.4							
156	ZRN	$\|$ZRN S1 S2 S3 D	Zero Return	\checkmark	\checkmark	\checkmark	\checkmark	*4	\checkmark	\checkmark	\checkmark	-	-	Section 20.5
157	PLSV	PLSV S D 1 D 2	Variable Speed Pulse Output	\checkmark	-	-	Section 20.6							
158	DRVI	DRVI S 1 S 2 D 1 D 2	Drive to Increment	\checkmark	-	-	Section 20.7							
159	DRVA	DRVA S 1 S 2 D 1 D 2	Drive to Absolute	\checkmark	-	-	Section 20.8							
Real Time Clock Control														
160	TCMP		RTC Data Compare	\checkmark	Section 21.1									
161	TZCP	$\|$TZCP S 1 S 2 S D	RTC Data Zone Compare	\checkmark	Section 21.2									
162	TADD	$\|$TADD S1 S2 D	RTC Data Addition	\checkmark	Section 21.3									
163	TSUB		RTC Data Subtraction	\checkmark	Section 21.4									
164	HTOS	Hト HTOS $\mathrm{S}^{\text {H }}$ D	Hour to Second Conversion	-	-	-	\checkmark	\checkmark	-	-	-	-	-	Section 21.5
165	STOH	HЮ STOH $\mathrm{S}^{\text {S }}$ D	Second to Hour Conversion	-	-	-	\checkmark	\checkmark	-	-	-	-	-	Section 21.6
166	TRD	HЮ TRD $\mathrm{D}^{\text {H\| }}$	Read RTC data	\checkmark	Section 21.7									
167	TWR	HЮ TWR S H\| $^{\text {THe }}$	Set RTC data	\checkmark	Section 21.8									
169	HOUR	HOUR S D 1 D 2	Hour Meter	\checkmark	*1	*1	Section 21.9							

		Symbol	Function	$\underset{\sim}{\underset{\sim}{㐅}}$	$\underset{\sim}{\underset{\sim}{x}}$		$\underset{\underset{\sim}{\underset{\sim}{x}}}{ }$		Applicable PLC					Reference
FNC No．	Mnemonic								$\stackrel{\pi}{x}$	$\begin{aligned} & \boldsymbol{\pi} \\ & \mathbf{x} \end{aligned}$		N	N	
External Device														
170	GRY	－1ト GRY	Decimal to Gray Code Conversion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 22.1
171	GBIN	GBIN S D	Gray Code to Decimal Conversion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	\checkmark	Section 22.2
176	RD3A	НЮ ${ }^{\text {RD3A }}$／m1 $\mathrm{m} 2 \mathrm{D} \mid$	Read form Dedicated Analog Block	－	\checkmark	\checkmark	\checkmark	\checkmark	－	\checkmark	\checkmark	＊1	＊1	Section 22.3
177	WR3A	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \hline \text { WR3A } & \mathrm{m} 1 & \mathrm{~m} 2 \\ \mathrm{~s} \\ \hline \end{array}\right.$	Write to Dedicated Analog Block	－	\checkmark	\checkmark	\checkmark	\checkmark	－	\checkmark	\checkmark	＊1	＊1	Section 22.4
Extension Function														
180	EXTR	НЮ EXTR $\mathrm{S}^{\text {S }}$ SD1 \mid SD2 \mid SD3 $3 \mid$	External ROM Function （FX2N／FX2NC）	－	－	－	－	－	－	－	－	＊1	＊1	－
Others														
182	COMRD		Read Device Comment Data	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 24.1
184	RND	Hト RND $\mathrm{D}^{\text {P }}$	Random Number Generation	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 24.2
186	DUTY	НЮDUTY n 1 n 2 D	Timing Pulse Generation	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 24.3
188	CRC		Cyclic Redundancy Check	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 24.4
189	HCMOV	Hト HCMOV S S D （ n （	High－speed Counter Move	－	－	－	\checkmark	＊4	－	－	－	－	－	Section 24.5
Block Data Operation														
192	BK＋	$\|$$\mathrm{BK}+$ S 1 S 2 D n	Block Data Addition	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.1
193	BK－	BK－ S 1 S 2 D n	Block Data Subtraction	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.2
194	BKCMP＝		Block Data Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.3
195	BKCMP＞	BKCMP＞ S1 S2 D n	Block Data Compare $\mathrm{S}_{1}>\mathrm{S}_{2}$	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.3
196	BKCMP＜		Block Data Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	－	－	－	\checkmark	＊5	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 25.3 \end{gathered}$
197	BKCMP＜＞		Block Data Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.3
198	BKCMP＜＝		Block Data Compare $\mathrm{S} 1 \mathrm{~S}, \mathrm{~S} 2$	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.3
199	BKCMP＞＝		Block Data Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 25.3
Character String Control														
200	STR	Hト STR $\mathrm{H}^{\text {S }}$ S $\mathrm{S} 2\|\mathrm{D}\|$	BIN to Character String Conversion	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 26.1
201	VAL	$\|$VAL S D 1 D 2	Character String to BIN Conversion	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 26.2

		Symbol	Function	$\underset{\sim}{\underset{\sim}{㐅}}$	$\underset{\sim}{\underset{\sim}{\chi}}$			$\underset{\substack{\pi \\ \\ \hline}}{ }$	Applicable PLC					Reference
FNC No．	Mnemonic								$\underset{\omega}{\underset{\omega}{x}}$	$\underset{\text { z }}{\underset{\Sigma}{x}}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\lambda}{\Sigma} \end{aligned}$	N	弪	
Character String Control														
202	\＄＋		Link Character Strings	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.3
203	LEN	LEN S D	Character String Length Detection	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.4
204	RIGHT	RIGHT S D n	Extracting Character String Data from the Right	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.5
205	LEFT	LEFT S D n	Extracting Character String Data from the Left	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.6
206	MIDR	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { MIDR } & \mathrm{S} 1 & \mathrm{D} & \mathrm{~S} 2 \\ \hline \end{array}$	Random Selection of Character Strings	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.7
207	MIDW		Random Replacement of Character Strings	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.8
208	INSTR		Character string search	－	－	－	\checkmark	＊5	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 26.9 \end{gathered}$
209	\＄MOV	\＄MOV S D	Character String Transfer	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 26.10
Data Operation 3														
210	FDEL	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { FDEL } & \mathrm{S} & \mathrm{D} & \mathrm{n} \\ \hline \end{array}$	Deleting Data from Tables	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 27.1
211	FINS	HЮ FINS $\mathrm{H}^{\text {S }}$	Inserting Data to Tables	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 27.2
212	POP	HトPOP S D n	Shift Last Data Read ［FILO Control］	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 27.3
213	SFR	SFR D n	Bit Shift Right with Carry	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 27.4
214	SFL	SFL D n	Bit Shift Left with Carry	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 27.5
Data Comparison														
224	LD＝		Load Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	\checkmark	Section 28.1									
225	LD＞		Load Compare $\left.\mathrm{S}_{1}\right)>\mathrm{S}_{2}$	\checkmark	Section 28.1									
226	LD＜	$L D<$ $S 1$	Load Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	\checkmark	Section 28.1									
228	LD＜＞		Load Compare $S_{1} \neq(2$	\checkmark	Section 28.1									
229	LD＜＝	$\text { LD }<=$	Load Compare $\mathrm{S}_{1} \leq \mathrm{S}_{2}$	\checkmark	Section 28.1									
230	LD＞＝		Load Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	\checkmark	Section 28.1									
232	AND＝	$H \mapsto A N D=\|S 1\| S 2$	AND Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.2 \end{gathered}$									
233	AND＞	$\text { HНAND> } \mathrm{S} 1 \mid \mathrm{S} 2$	AND Compare $\left.\mathrm{S}_{1}\right)>\mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.2 \end{gathered}$									

		Symbol	Function	$\underset{\sim}{\underset{\sim}{㐅}}$	$\underset{\sim}{\underset{\sim}{\mathrm{N}}}$	$\begin{aligned} & \text { N్ట్స } \\ & \text { م̂ } \end{aligned}$	$\underset{\text { ®ِ }}{\underset{\sim}{x}}$		Applicable PLC					Reference
FNC No.	Mnemonic								$\underset{\underset{\sim}{x}}{\underset{\sim}{x}}$	$\underset{\text { ² }}{\text { ¢ }}$	$\begin{aligned} & \pi \\ & \underset{\sim}{\Sigma} \end{aligned}$	N	N	
Data Comparison														
234	AND<	HЮ $\mathrm{AND}<\mathrm{S} 1 \mid \mathrm{S} 2$	AND Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.2 \end{gathered}$									
236	AND<>	$\text { H } \mathrm{AND}<>\|\mathrm{S} 1\| \mathrm{S} 2$	AND Compare $\mathrm{S}_{1} \neq \mathrm{S}_{2}$	\checkmark	Section 28.2									
237	AND<=		AND Compare $\mathrm{S}_{1} \leq \mathrm{S} 2$	\checkmark	Section 28.2									
238	AND>=	$\mapsto \vdash \mathrm{AND}>=\|\mathrm{S} 1\| \mathrm{S} 2$	AND Compare $\mathrm{S} 1 \mathrm{~S} \geq \mathrm{S}_{2}$	\checkmark	Section 28.2									
240	$\mathrm{OR}=$		OR Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.3 \end{gathered}$									
241	OR>	\|l	l		OR Compare $\text { S1 }>\mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.3 \end{gathered}$							
242	OR<		OR Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.3 \end{gathered}$									
244	OR<>		OR Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	\checkmark	$\begin{gathered} \text { Section } \\ 28.3 \end{gathered}$									
245	OR<=		OR Compare $\mathrm{S}_{1} \leq \mathrm{S}_{2}$	\checkmark	$\begin{gathered} \text { Section } \\ 28.3 \end{gathered}$									
246	OR>=		OR Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	\checkmark	$\begin{gathered} \text { Section } \\ 28.3 \end{gathered}$									
Data T	e Operation													
256	LIMIT	LIMIT S1 S2 S3 D	Limit Control	-	-	-	\checkmark	\checkmark	-	-	-	-	-	Section 29.1
257	BAND	$\|$BAND S1 S2 S3 D	Dead Band Control	-	-	-	\checkmark	\checkmark	-	-	-	-	-	Section 29.2
258	ZONE		Zone Control	-	-	-	\checkmark	\checkmark	-	-	-	-	-	$\begin{gathered} \text { Section } \\ 29.3 \end{gathered}$
259	SCL	$\|\vdash\|$SCL $S 1$ $S 2$ D	Scaling (Coordinate by Point Data)	-	-	-	\checkmark	\checkmark	-	-	-	-	-	$\begin{gathered} \text { Section } \\ 29.4 \end{gathered}$
260	DABIN	DABIN S D	Decimal ASCII to BIN Conversion	-	-	-	\checkmark	*5	-	-	-	-	-	Section 29.5
261	BINDA		BIN to Decimal ASCII Conversion	-	-	-	\checkmark	*5	-	-	-	-	-	Section 29.6
269	SCL2		Scaling 2 (Coordinate by X/Y Data)	-	-	-	\checkmark	*3	-	-	-	-	-	Section 29.7
External Device Communication														
270	IVCK		Inverter Status Check	\checkmark	*6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	$\begin{gathered} \text { Section } \\ 30.1 \end{gathered}$

		Symbol	Function	$\underset{\sim}{\underset{\sim}{\chi}}$	$\underset{\sim}{\underset{\sim}{\chi}}$			$\underset{\substack{\pi \\ \underset{\sim}{x}}}{ }$	Applicable PLC					Reference
FNC No．	Mnemonic								$\underset{\underset{\omega}{\boldsymbol{x}}}{\underset{\sim}{x}}$	$\begin{aligned} & \pi \\ & \underset{z}{x} \end{aligned}$	$\begin{aligned} & \text { শ } \\ & \text { 㐅 } \\ & \text { ¿ } \end{aligned}$	范	N	
External Device Communication														
271	IVDR	IVDR S1 S2 S3 n	Inverter Drive	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 30.2 \end{gathered}$
272	IVRD	IVRD S1 S2 D n	Inverter Parameter Read	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 30.3 \end{gathered}$
273	IVWR	IVWR S1 S2 S3 n	Inverter Parameter Write	\checkmark	＊6	\checkmark	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 30.4 \end{gathered}$
274	IVBWR	IVBWR S1 S2 S3 n	Inverter Parameter Block Write	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 30.5
275	IVMC	HVMC S1 S2 S3 D n	Inverter Multi Command	\checkmark	＊8	\checkmark	＊9	＊9	－	－	－	－	－	Section 30.6
276	ADPRW		MODBUS Read／Write	\checkmark	10	\checkmark	11	11	－	－	－	－	－	Section 30.7
Data Transfer 3														
278	RBFM	RBFM m 1 m 2 D n 1 n 2	Divided BFM Read	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 31.1
279	WBFM	WBFM m 1 m 2 S n 1 n 2	Divided BFM Write	－	－	－	\checkmark	＊5	－	－	－	－	－	Section 31.2
High－speed Processing 2														
280	HSCT	HSCT S1 m S 2 D n	High－speed Counter Compare With Data Table	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 32.1
Extension File Register Control														
290	LOADR	LOADR S n	Load From ER	－	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 33.1 \end{gathered}$
291	SAVER	Hト．SAVER	Save to ER	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 33.2
292	INITR	INITR S n	Initialize R and ER	－	－	－	\checkmark	\checkmark	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 33.3 \end{gathered}$
293	LOGR	LOGR S m D 1 n D 2	Logging R and ER	－	－	－	\checkmark	\checkmark	－	－	－	－	－	Section 33.4
294	RWER	RWER S n	Rewrite to ER	－	\checkmark	\checkmark	\checkmark	＊3	－	－	－	－	－	Section 33.5
295	INITER	INITER S n	Initialize ER	－	－	－	\checkmark	＊3	－	－	－	－	－	$\begin{gathered} \text { Section } \\ 33.6 \end{gathered}$
FX3U－CF－ADP Applied Instructions														
300	FLCRT	FLCRT S1 S2 S3 n	File create／check	－	－	－	＊7	＊7	－	－	－	－	－	Section 34.1
301	FLDEL	FLDEL S 1 S 2 n	File delete／CF card format	－	－	－	＊7	＊7	－	－	－	－	－	Section 34.2
302	FLWR		Data write	－	－	－	＊7	＊7	－	－	－	－	－	Section 34.3
303	FLRD	FLRD S 1 S 2 D 1 D 2 n	Data read	－	－	－	＊7	＊7	－	－	－	－	－	Section 34.4
304	FLCMD	FLCMD S n	FX3U－CF－ADP command	－	－	－	＊7	＊7	－	－	－	－	－	Section 34.5
305	FLSTRD	FLSTRD S D n	FX3U－CF－ADP status read	－	－	－	＊7	＊7	－	－	－	－	－	Section 34.6

4. Devices in Detail

This chapter explains how numeric values are handled in the PLC as well as the roles and functions of various built-in devices including I/O relays, auxiliary relays, state relays, counters and data registers.
The following content provides a basis for handling the PLC.

4.1 Device Number List

Device numbers are assigned as shown below.
For input relay numbers and output relay numbers when I/O extension equipment and special extension equipment are connected to the PLC main unit, refer to the Hardware Edition.

1) $F X_{3} S$ PLC

Device name	Description			Reference
I/O relay				
Input relay	X000 to X017	16 points	Device numbers are octal.	Section 4.2
Output relay	Y000 to Y015	14 points		
Auxiliary relay				
General type	M0 to M383	384 points		Section 4.3
EEPROM keep type	M384 to M511	128 points		
General type	M512 to M1535	1024 points		
Special type*1	M8000 to M8511	512 points		Chapter 37
State relay				
Initial state type (EEPROM keep)	S0 to S9	10 points		Section 4.4
EEPROM keep type	S10 to S127	118 points		
General type	S128 to S255	128 points		
Timer (on-delay timer)				
100 ms	T0 to T31	32 points	0.1 to 3,276.7 sec	Section 4.5
$100 \mathrm{~ms} / 10 \mathrm{~ms}$	T32 to T62	31 points	0.1 to $3,276.7 \mathrm{sec} / 0.01$ to 327.67 sec They can be switched from 100 ms to 10 ms by driving the special auxiliary relay M8028.	
1 ms	T63 to T127	65 points	0.001 to 32.767 sec	
Retentive type for 1 ms (EEPROM keep)	T128 to T131	4 points	0.001 to 32.767 sec	
Retentive type for 100 ms (EEPROM keep)	T132 to T137	6 points	0.1 to $3,276.7 \mathrm{sec}$	
Counter				
General type up counter (16 bits)	C0 to C15	16 points	Counts 0 to 32,767	Section 4.6
EEPROM keep type up counter (16 bits)	C16 to C31	16 points	Counts 0 to 32,767	
General type bi-directional counter (32 bits)	C200 to C234	35 points	$-2,147,483,648$ to $+2,147,483,647$ counts	

[^2]| Device name | Description | | | Reference |
| :---: | :---: | :---: | :---: | :---: |
| High－speed counter | | | | |
| 1－phase 1－counting input Bi－directional（32 bits） （EEPROM keep） | C235 to C245 | $-2,147,483,648$ to $+2,147,483,647$ counts
 Software counter
 1 phase： $60 \mathrm{kHz} \times 2$ points， $10 \mathrm{kHz} \times 4$ points 2 phases： $30 \mathrm{kHz} \times 1$ point， $5 \mathrm{kHz} \times 1$ point | | Section 4.7 |
| 1－phase 2－counting input Bi－directional（32 bits） （EEPROM keep） | C246 to C250 | | | |
| 2－phase 2－counting input Bi－directional（ 32 bits） （EEPROM keep） | C251 to C255 | | | |
| Data register（32 bits when used in pair form） | | | | |
| General type（16 bits） | D0 to D127 | 128 points | | Section 4.9 |
| EEPROM keep type （16 bits） | D128 to D255 | 128 points | | |
| General type（16 bits） | D256 to D2999 | 2744 points | | |
| EEPROM keep type （16 bits）＜file register＞ | D1000 to D2999 | 2000 points | Among 2000 latched type data registers backed up by the EEPROM，D1000 and later can be set as file registers in units of 500 points by the parameter setting． | |
| Special type（16 bits）${ }^{* 1}$ | D8000 to D8511 | 512 points | | Chapter 37 |
| Index type（16 bits） | V0 to V7，Z0 to Z7 | 16 points | | Section 4.11 |
| Pointer | | | | |
| For jump and branch call | P0 to P255 | 256 points | For CJ and CALL instructions | Section 4.12 |
| Input interrupt | I0ロロ to I5ロロ | 6 points | | |
| Timer interrupt | I6ロロ to I8ロロ | 3 points | | |
| Nesting | | | | |
| For master control | N0 to N7 | 8 points | For MC instruction | |
| Constant | | | | |
| Decimal（K） | 16 bits | －32，768 to＋32，767 | | Chapter 5 |
| | 32 bits | －2，147，483，6 | to＋2，147，483，647 | |
| Hexadecimal（H） | 16 bits | 0 to FFFF | | |
| | 32 bits | 0 to FFFFFFFFF | | |
| Real number（E） | 32 bits | $-1.0 \times 2^{128} t$
 Both the dec are available | $-1.0 \times 2^{-126}, 0,1.0 \times 2^{-126} \text { to } 1.0 \times 2^{128}$
 al point expression and the exponent expression | |

＊1．For applicable functions，refer to Chapter 37.
For handling of the latched area，refer to Section 2．6．

2) $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs

Device name	Description			Reference	
I/O relay					
Input relay	X000 to X177	128 points	Device numbers are octal. The total number of inputs and outputs is 128.	Section 4.2	
Output relay	Y000 to Y177	128 points			
Auxiliary relay					
General type	M0 to M383	384 points		Section 4.3	
EEPROM keep type	M384 to M1535	1152 points			
General type* ${ }^{*}$	M1536 to M7679*2	6144 points			
Special type ${ }^{*}$	M8000 to M8511	512 points		Chapter 37	
State relay					
Initial state type (EEPROM keep)	S0 to S9	10 points		Section 4.4	
EEPROM keep type	S10 to S899	890 points			
Annunciator type (EEPROM keep)	S900 to S999	100 points			
General type*1	S1000 to S4095	3096 points			
Timer (on-delay timer)					
100 ms	T0 to T191	192 points	0.1 to $3,276.7 \mathrm{sec}$	Section 4.5	
100 ms [for subroutine or interrupt routine]	T192 to T199	8 points	0.1 to $3,276.7 \mathrm{sec}$		
10 ms	T200 to T245	46 points	0.01 to 327.67 sec		
Retentive type for 1 ms (EEPROM keep)	T246 to T249	4 points	0.001 to 32.767 sec		
Retentive type for 100 ms (EEPROM keep)	T250 to T255	6 points	0.1 to 3,276.7 sec		
1 ms	T256 to T319	64 points	0.001 to 32.767 sec		
Counter					
General type up counter (16 bits)	C0 to C15	16 points	Counts 0 to 32,767	Section 4.6	
EEPROM keep type up counter (16 bits)	C16 to C199	184 points	Counts 0 to 32,767		
General type bi-directional counter (32 bits)	C200 to C219	20 points	$-2,147,483,648$ to $+2,147,483,647$ counts		
EEPROM keep bi-directional counter (32 bits)	C220 to C234	15 points	$-2,147,483,648$ to $+2,147,483,647$ counts		
High-speed counter					
1-phase 1-counting input Bi directional (32 bits) (EEPROM keep)	C235 to C245	$-2,147,483,648$ to $+2,147,483,647$ counts Software counter 1 phase: $60 \mathrm{kHz} \times 4$ points, $10 \mathrm{kHz} \times 2$ points 2 phases: $30 \mathrm{kHz} \times 2$ points, $5 \mathrm{kHz} \times 1$ point		Section 4.7	
1-phase 2-counting input Bi directional (32 bits) (EEPROM keep)	C246 to C250				
2-phase 2-counting input Bi directional (32 bits) (EEPROM keep)	C251 to C255				

*1. When the optional battery is installed, general type devices can be changed to latched (battery backed) type devices by the parameter setting. However, the latched range cannot be set.
*2. Operation varies when M2800 to M3071 are used in the LDP, LDF, ANDP, ANDF, ORP and ORF instructions. Refer to Section 7.5 for the details.
*3. For applicable functions, refer to Chapter 37.
For handling of the latched area, refer to Section 2.6.

Device name	Description			Reference
Data register（32 bits when used in pair form）				
General type（16 bits）	D0 to D127	128 points		Section 4.9
EEPROM keep type （16 bits）	D128 to D1099	972 points		
General type（16 bits）${ }^{* 1}$	D1100 to D7999	6900 points		
EEPROM keep type （16 bits）＜file register＞	D1000 to D7999	7000 points	Among 7000 latched type data registers backed up by the EEPROM，D1000 and later can be set as file registers in units of 500 points by the parameter setting．	
Special type（16 bits）${ }^{*}$	D8000 to D8511	512 points		Chapter 37
Index type（16 bits）	V0 to V7，Z0 to Z7	16 points		Section 4.11
Extension register／Extension file register				
Extension register （16 bits）${ }^{* 1}$	R0 to R23999	24000 points		Section 4.10
Extension file register （16 bits） （EEPROM keep）	ER0 to ER23999	24000 points		
Pointer				
For jump and branch call	P0 to P2047	2048 points	For CJ and CALL instructions	Section 4.12
Input interrupt	I0ロロ to I5ロロ	6 points		
Timer interrupt	I6ロロ to I8ロロ	3 points		
Nesting				
For master control	N0 to N7	8 points	For MC instruction	
Constant				
Decimal（K）	16 bits	－32，768 to＋32，767		Chapter 5
	32 bits	－2，147，483，648 to＋2，147，483，647		
Hexadecimal（H）	16 bits	0 to FFFF		
	32 bits	0 to FFFFFFFFF		
Real number（E）${ }^{*}$	32 bits	$-1.0 \times 2^{128} \text { to }-1.0 \times 2^{-126}, 0,1.0 \times 2^{-126} \text { to } 1.0 \times 2^{128}$ Both the decimal point expression and the exponent expression are available．		

＊2．For applicable functions，refer to Chapter 37.
For handling of the latched area，refer to Section 2．6．
＊3．Available in Ver． 1.10 or later．

3) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs

Device name	Description			Reference
I/O relay				
Input relay	X000 to X367*1	248 points	Device numbers are octal. The total number of inputs and outputs is 256 .	Section 4.2
Output relay	Y000 to Y367*1	248 points		
Auxiliary relay				
General type [variable]	M0 to M499	500 points	The setting can be changed between the latched (battery backed) type and the non-latched type using parameters.	Section 4.3
Latched (battery backed) type [variable]	M500 to M1023	524 points		
Latched (battery backed) type [fixed]	M1024 to M7679 ${ }^{*}$	6656 points		
Special type ${ }^{* 3}$	M8000 to M8511	512 points		Chapter 37
State relay				
Initial state (general type [variable])	S0 to S9	10 points	The setting can be changed between the latched (battery backed) type and the non-latched type using parameters.	Section 4.4
General type [variable]	S10 to S499	490 points		
Latched (battery backed) type [variable]	S500 to S899	400 points		
Annunciator (latched (battery backed) type [variable])	S900 to S999	100 points		
Latched (battery backed) type [fixed]	S1000 to S4095	3096 points		
Timer (on-delay timer)				
100 ms	T0 to T191	192 points	0.1 to 3,276.7 sec	Section 4.5
100 ms [for subroutine or interrupt routine]	T192 to T199	8 points	0.1 to 3,276.7 sec	
10 ms	T200 to T245	46 points	0.01 to 327.67 sec	
Retentive type for 1 ms	T246 to T249	4 points	0.001 to 32.767 sec	
Retentive type for 100 ms	T250 to T255	6 points	0.1 to 3,276.7 sec	
1 ms	T256 to T511	256 points	0.001 to 32.767 sec	
Counter				
General type up counter (16 bits) [variable]	C0 to C99	100 points	Counts 0 to 32,767 The setting can be changed between the latched (battery backed) type and the non-latched type using parameters.	Section 4.6
Latched (battery backed) type up counter (16 bits) [variable]	C100 to C199	100 points		
General type bi-directional counter (32 bits) [variable]	C200 to C219	20 points	$\begin{aligned} & -2,147,483,648 \text { to } \\ & +2,147,483,647 \text { counts } \end{aligned}$ The setting can be changed between the latched (battery backed) type and the non-latched type using parameters.	
Latched (battery backed) type bi-directional counter (32 bits) [variable]	C220 to C234	15 points		

*1. Available device numbers vary depending on the PLC. For details, refer to Section 4.2.
*2. Operation varies when M2800 to M3071 are used in the LDP, LDF, ANDP, ANDF, ORP and ORF instructions. Refer to Section 7.5 for the details.
*3. For supported functions, refer to Chapter 37.
For handling of the latched (battery backed) area, refer to Section 2.6.

Device name	Description			Reference
High-speed counter				
1-phase 1-counting input Bi-directional (32 bits)	C235 to C245	8 points maximum can be used among C235 to C255 [latched (battery backed) type]. The setting can be changed between the latched (battery backed) type and the non-latch type using parameters. $-2,147,483,648 \text { to }+2,147,483,647 \text { counts }$ Hardware counter* ${ }^{*}$ 1 phase: $100 \mathrm{kHz} \times 6$ points, $10 \mathrm{kHz} \times 2$ points 2 phases: 50 kHz (1 edge count), 50 kHz (4 edge count) Software counter 1 phase: 40 kHz 2 phases: 40 kHz (1 edge count), 10 kHz (4 edge count)		Section 4.8
1-phase 2-counting input Bi-directional (32 bits)	C246 to C250			
2-phase 2-counting input Bi-directional (32 bits)	C251 to C255			
Data register (32 bits when used in pair form)				
General type (16 bits) [variable]	D0 to D199	200 points	The setting can be changed between the latched (battery backed) type and the non-latched type using parameters.	Section 4.9
latched (battery backed) type (16 bits) [variable]	D200 to D511	312 points		
latched (battery backed) type (16 bits) [fixed] <file register>	$\begin{aligned} & \text { D512 to D7999 } \\ & \text { <D1000 to } \\ & \text { D7999> } \end{aligned}$	$\begin{aligned} & 7488 \text { points } \\ & <7000 \\ & \text { points> } \end{aligned}$	Among the 7488 fixed latched (battery backed) type data registers, D1000 and later can be set as file registers in units of 500 points.	
Special type (16 bits) ${ }^{*}$	D8000 to D8511	512 points		Chapter 37
Index type (16 bits)	V0 to V7, Z0 to Z7	16 points		Section 4.11
Extension register/Extension file register				
Extension register (16 bits)	R0 to R32767	32768 points	latched (battery backed)	Section 4.10
Extension file register (16 bits)	ER0 to ER32767	32768 points	Available only while a memory cassette is mounted	
Pointer				
For jump and branch call	P0 to P4095	4096 points	For CJ and CALL instructions	Section 4.12
Input interrupt Input delay interrupt	$10 \square \square$ to I5 $\square \square$	6 points		
Timer interrupt	I6ロロ to I8 $\square \square$	3 points		
Counter interrupt	1010 to I060	6 points	For HSCS instruction	
Nesting				
For master control	N0 to N7	8 points	For MC instruction	
Constant				
Decimal (K)	16 bits	-32768 to +32767		Chapter 5
	32 bits	-2,147,483,6	to +2,147,483,647	
Hexadecimal (H)	16 bits	0 to FFFF		
	32 bits	0 to FFFFFFFFF		
Real number (E)	32 bits	$-1.0 \times 2^{128} \text { to }-1.0 \times 2^{-126}, 0,1.0 \times 2^{-126} \text { to } 1.0 \times 2^{128}$ Both the decimal point expression and the exponent expression are available.		
Character string (" ")	Character string	Specify chara In a constant available.	ters by quotation marks. f an instruction, up to 32 half-width characters are	

4.2 I/O Relays [X, Y]

Some input relays and output relays are secured in the main unit, and others are assigned to extension devices according to the connection order. Because I/O replays are numbered in octal, numeric values such as " 8 " and " 9 " do not exist.

4.2.1 Numbers of I/O relays

The table below shows input relay (X) and output relays (Y) numbering. (Relay numbers are assigned in octal.)

	Model name	FX3GC-32MT/ $\mathrm{D}(\mathrm{SS})$	When extended	
FX3GC PLC	Input	X 000 to X 017 16 points	X 000 to X 177 128 points	128 points in total
	Output	Y000 to Y017 16 points	Y00 to Y177 128 points	

$\begin{aligned} & \text { FX3U } \\ & \text { PLC } \end{aligned}$	Model name	FX3U-16M	FX3U-32M	FX3U-48M	FX3U-64M	FX3U-80M	FX3U-128M	When extended	$\stackrel{256}{\text { points in }}$ total
	Input	X000 to X007 8 points	X000 to X017 16 points	X000 to X027 24 points	X000 to X037 32 points	X000 to X047 40 points	$\begin{array}{\|c} \mathrm{X} 000 \text { to } \mathrm{X} 077 \\ 64 \text { points } \end{array}$	$\begin{array}{\|c} \hline \text { X000 to } X 367 \\ 248 \text { points } \end{array}$	
	Output	Y000 to Y007 8 points	Y000 to Y017 16 points	Y000 to Y027 24 points	$\begin{aligned} & \text { Y000 to Y037 } \\ & 32 \text { points } \end{aligned}$	$\begin{aligned} & \text { Y000 to Y047 } \\ & 40 \text { points } \end{aligned}$	Y000 to Y077 64 points	$\begin{gathered} \text { Y000 to Y367 } \\ 248 \text { points } \end{gathered}$	

FX3UC (D, DS, DSS) PLC	Model name	FX3UC-16M	FX3UC-32M	FX3UC-64M	FX3UC-96M	When extended	256 points in total
	Input	$\begin{aligned} & \text { X000 to X007 } \\ & 8 \text { points } \end{aligned}$	$\begin{aligned} & \text { X000 to X017 } \\ & 16 \text { points } \end{aligned}$	X000 to X037 32 points	$\begin{aligned} & \text { X000 to X057 } \\ & 48 \text { points } \end{aligned}$	$\begin{aligned} & \text { X000 to X367 } \\ & 248 \text { points } \end{aligned}$	
	Output	$\begin{aligned} & \text { Y000 to Y007 } \\ & 8 \text { points } \end{aligned}$	$\begin{aligned} & \text { Y000 to Y017 } \\ & 16 \text { points } \end{aligned}$	Y000 to Y037 32 points	Y000 to Y057 48 points	$\begin{aligned} & \text { Y000 to Y367 } \\ & 248 \text { points } \end{aligned}$	

FX3UC-32MT-LT(-2) PLC	Model name	FX3UC-32MT-LT (-2)	When extended	
	Input	X000 to X017 16 points	X000 to X357 240 points	256 points in total
	Output	Y000 to Y017 16 points	Y000 to Y357 240 points	

*1. A number inside () indicates the number of occupied points. The difference from the number of valid points is unused.

4.2.2 Functions and roles

Examples of terminal names and wiring (sink input) are for the FX3u Series PLC.

4.2.3 Operation timing of I/O relays

The PLC executes sequence control by repeatedly executing the following processing procedure. In this batch I/O method, not only are there driving times of input filters and output devices but also response delays caused by operation cycles. (Refer to Section 6.3.)

The above method is called the batch I/O method (or refresh method).

4.3 Auxiliary Relay [M]

There are many auxiliary relays inside the PLC. Coils of auxiliary relays are driven by contacts of various devices inside the PLC in the same way as output relays.
Auxiliary relays have many electronically NO contacts and NC contacts which can be used arbitrarily inside the PLC. However, external loads cannot be driven directly by these contacts. External loads should be driven by output relays.

4.3.1 Numbers of auxiliary relays

The table below shows auxiliary relay (M) numbers. (Numbers are assigned in decimal.)

1. FX_{3} PLC

General type	Fixed latched (EEPROM keep) type	General type	Special type
M0 to M383	M 384 to M511	M 512 to M 1535	M 8000 to M 8511
384 points	128 points	1024 points	512 points

2. $\mathrm{FX}_{3} \mathrm{G} / \mathrm{FX}_{3} \mathrm{gc}$ PLCs

General type	Fixed latched (EEPROM keep) type	General type	Special type
M0 to M383	M384 to M1535	M1536 to M7679	M8000 to M8511
384 points	1152 points	6144 points ${ }^{* 1}$	512 points

3. $\mathrm{FX}_{3} \mathrm{u} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

General type	Latched (battery backed) type	Fixed latched (battery backed) type	Special type
M 0 to M499	M500 to M1023	M 1024 to M 7679	M 8000 to M8511
500 points $^{* 2}$	524 points $^{* 3}$	6656 points ${ }^{* 4}$	512 points

*1. These registers can be changed to the latched (battery backed) type by the parameter setting when the optional battery is used. However, the latched range cannot be set.
*2. This area is not latched (battery backed). It can be changed to a latched (battery backed) area by setting the parameters.
*3. This area is latched (battery backed). It can be changed to a non-latched (non-battery-backed) area by setting the parameters.
*4. The characteristics of latch (battery backup) cannot be changed in the parameters.
When N : N Network or parallel link is used, some auxiliary relays are occupied for the link.
\rightarrow Refer to the Data Communication Edition manual.

4.3.2 Functions and operation examples

1. General type

Auxiliary relay circuit

All of general type auxiliary relays turn OFF when the PLC turns OFF. When the ON/OFF status of auxiliary relays just before power failure is required in control, use latched (battery backed) type auxiliary relays.

2. Latched (battery backed) type

When the power is turned OFF while the PLC is operating, all of the output relays and general type auxiliary relays turn OFF.
When restoring the power again, all of the output relays and general type auxiliary relays remain OFF except those whose input condition is ON. In some output relays and auxiliary relays, however, the ON/OFF status just before power failure should be stored and then replicated when restoring the power, depending on control targets. In such a case, use latched (battery backed) type auxiliary relays.
In FX3U/FX3uc PLCs, latched (battery backed) type devices are backed up by the battery built into the PLC.
In FX3s/FX3G/FX3GC PLCs, latched type devices are backed up by the EEPROM built into the PLC. When the optional battery is installed in $F X_{3 G} / F X_{3 G C}$ PLCs, the battery backs up some general type devices.
\rightarrow For details on backup method against power failure, refer to Section 2.6.

Backup against power failure
(set/reset circuit)

The figure on the left shows an operation example of M600 (latched [battery backed] type device) in a self-holding circuit.
When X000 turns ON and M600 turns ON in this circuit, M600 holds its operation by itself even if X000 is opened. Because M600 is a latched (battery backed) type device, it remains activated when the operation is restarted even after X000 has turned OFF due to power failure. If an NC contact of X001 is opened when the operation is restarted, however, M600 is deactivated.

The figure on the left shows a circuit using the SET and RST instructions.

1) Application example of latched (battery backed) type auxiliary relays

$\mathrm{X} 000=\mathrm{ON}$ (at the left limit) $\rightarrow \mathrm{M} 600=\mathrm{ON} \rightarrow$ The table is driven rightward. \rightarrow The power is turned OFF. \rightarrow The table is stopped in an intermediate position. \rightarrow The table is restarted (M600 = ON). \rightarrow X001 = ON (at the right limit) \rightarrow M600 $=$ OFF, M601 $=\mathrm{ON} \rightarrow$ The table is driven leftward.
2) Method for using a fixed latched (battery backed) type auxiliary relay as a general type auxiliary relay When using a fixed latched (battery backed) type auxiliary relay as a general type auxiliary relay, provide a reset circuit shown in the figure below around the head step in the program.
Ex. FX3u/FX3uc PLCs

M8002	FNC 40 ZRST	M1024	M1999	
Initial pulse	M1024 to M1999 are initialized			

4.4 State Relay [S]

State relays (S) are important devices to program stepping type process control simply, and combined with the step ladder instruction STL.
State relays can be used in the SFC (sequential function chart) programming method.
\rightarrow For programming by the step ladder instruction and SFC method, refer to Chapter 35.

4.4.1 Numbers of state relays

The table below shows state relay (S) numbers. (Numbers are assigned in decimal.)

1. FX3s PLC

Initial state type (EEPROM keep)	Fixed latched (EEPROM keep) type	General type
S0 to S9	S 10 to S 127	S 128 to S 255
10 points	118 points	128 points

2. FX3G/FX3GC PLCs

Initial state type (EEPROM keep)	Fixed latched (EEPROM keep) type	Annunciator type (EEPROM keep)	General type
S0 to S9	S 10 to S899	S 900 to S 999	S 1000 to S4095
10 points	890 points	100 points	3096 points ${ }^{* 1}$

3. $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

Initial state type	General type	Latched (battery backed) type	Fixed latched (battery backed) type	Annunciator type
S 0 to S 9	S 0 to S 499	S 500 to S 899	S 1000 to S 4095	S 900 to S 999
10 points $^{* 2}$	500 points $^{* 2}$	400 points $^{* 3}$	3096 points ${ }^{* 4}$	100 points ${ }^{* 3}$

*1. These registers can be changed to the latched (battery backed) type by the parameter setting when the optional battery is used. However, the latched range cannot be set.
*2. This area is not latched (battery backed). It can be changed to a latched (battery backed) area by setting the parameters.
*3. This area is latched (battery backed). It can be changed to a non-latched (non-battery-backed) area by setting the parameters.
*4. The characteristics of latch (battery backup) cannot be changed in the parameters.

4.4.2 Functions and operation examples

1. General type

In the stepping type process control shown in the left figure, when the start signal X000 turns ON, the state relay S20 is set (turned ON) and the solenoid valve Y000 for moving down turns on.
When the lower limit switch X001 turns ON the state relay S21 is set (turned ON) and the solenoid valve Y001 for clamping turns on.
When the clamp confirmation limit switch X002 turns ON, the state relay S22 is set (turned ON).
When the operation proceeds to the next step, the state relay in the preceding step is automatically reset (turned OFF).

When the PLC turns OFF, all of general type state relays are turned OFF.
When the ON/OFF status just before power failure is required, use latched (battery backed) type state relays.

State relays have many NO contacts and NC contacts in the same way as auxiliary relays, and such contacts can be used arbitrarily in sequence programs.
When state relays (S) are not used for step ladder instructions, they can be used in general sequences in the same way as auxiliary relays (M) (as shown in the figure on the right).

2. Latched (battery backed) type

- Latched (battery backed) type state relays store their ON/OFF status even if the power is shut down while the PLC is operating, so the operation can be restarted from the last point in the process.
In $F_{3} 4 / F X_{3} 0 с$ PLCs, latched (battery backed) type devices are backed up by the battery built into the PLC. In $F X_{3 S} / F X_{3 G} / F X_{3 G C}$ PLCs, latched type devices are backed up by the EEPROM built into the PLC. When the optional battery is installed in FX3G/FX3GC PLCs, the battery backs up some general type devices.
\rightarrow For details on backup against power failure, refer to Chapter 2.6.
- When using latched (battery backed) type state relays as general type state relays, provide a reset circuit shown in the right figure around the head step in the program.

Ex. FX3U/FX3uc PLCs

S1000 to S1200 are initialized.

3. Annunciator type

Annunciator type state relays can be used as outputs for external fault diagnosis.
For example, when an external fault diagnosis circuit shown in the figure below is created and the contents of the special data register D8049 are monitored, the smallest number out of the active state relays S900 to S999 is stored in D8049.
If two or more faults have occurred, the smallest state number having a fault is displayed at first. When the fault is cleared, the next smallest state number having a fault is stored.

MUN monitor M8049					- When the special auxiliary relay M8049 is driven, monitoring becomes valid. - If the forward end detection input X000 is not activated within 1 second after the forward output Y000 is driven, S900 is activated.
$\begin{array}{cc} \mathrm{Y} 000 & \mathrm{X} 000 \\ \hdashline \end{array}$	$\begin{gathered} \text { FNC } 46 \\ \text { ANS } \end{gathered}$	T 0	K 10	S900	
$\begin{array}{cc} \mathrm{X} 001 & \mathrm{X} 002 \\ \hdashline & \ldots \end{array}$	$\begin{gathered} \text { FNC } 46 \\ \text { ANS } \\ \hline \end{gathered}$	T 1	K 20	S901	- If both the upper limit detection input X001 and the lower limit detection input X002 are deactivated at the same time for 2 seconds or more, S901 is activated.
$\xrightarrow{\mathrm{X} 003 \quad \mathrm{X} 004}$	$\begin{gathered} \text { FNC } 46 \\ \text { ANS } \\ \hline \end{gathered}$	T 2	K100	S902	- In a machine whose tact time is less than 10 seconds, if the switch X004 which is designed to be activated during one-cycle operation of the machine is not activated while the continuous operation mode input X003 is ON, S902 is activated.
M8048	Yo				- When any annunciator among S900 to S999 turns ON, the special auxiliary relay M8048 is activated and the fault display output Y010 is activated.
X005	FNC 47 ANRP				- The state relays activated by the external fault diagnosis program can be turned OFF by the reset button X005. Every time X005 is set to ON, the active annunciator with the smallest number is reset in turn.

While the special auxiliary relay M8049 is not driven, annunciator type state relays can be used as latched (battery backed) type state relays in sequence programs in the same way as general type state relays.
In the SFC programming mode in the FX-PCS/WIN(-E), however, S900 to S999 cannot be programmed as a processes flow in SFC diagrams. the fault display output Y010 is activated.

4.5 Timer [T]

Timers add and count clock pulses of $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$, etc. inside the PLC. When the counted value reaches a specified set value, the output contact of the timer turns on.
A set value can be directly specified by a constant (K) in the program memory, or indirectly specified by the contents of a data register (D).

4.5.1 Numbers of timers

The table below shows timer (T) numbers. (The numbers are assigned in decimal.)

1. FX_{3} PLC

For 100 ms pulses 0.1 to 3276.7 sec	```For 100/10 ms pulses 0.1 to 3276.7 sec 0.01 to 327.67 sec```	For 1 ms pulses 0.001 to 32.767 sec	Retentive type for 1 ms pulses 0.001 to 32.767 sec	Retentive type for 100 ms pulses 0.1 to 3276.7 sec	Potentiometer type 0 to 255 (numeric value)
T0 to T62 63 points	T32 to T62 31 points	$\begin{aligned} & \text { T63 to T127 } \\ & 65 \text { points } \end{aligned}$	T128 to T131 4 points Interrupt execution Latched type* ${ }^{* 1}$	T132 to T137 6 points Latched type*1	2 built-in points ${ }^{*}{ }^{2}$ Stored in D8030 and D8031

2. FX3G/FX3GC PLCs

For 100 ms pulses 0.1 to 3276.7 sec	For 10 ms pulses 0.01 to 327.67 sec	Retentive type for 1 ms pulses 0.001 to 32.767 sec	Retentive type for 100 ms pulses 0.1 to 3276.7 sec	For 1 ms pulses 0.001 to 32.767 sec	$\begin{gathered} \hline \text { Potentiometer type } \\ 0 \text { to } 255 \\ \text { (numeric value) } \end{gathered}$
T0 to T199 200 points -------- Routine program type T192 to T199	T200 to T245 46 points	T246 to T249 4 points for Interrupt execution Latched type*1	T250 to T255 6 points Latched type*1	T256 to T319 64 points	2 built-in points ${ }^{* 3}$ Stored in D8030 and D8031

3. $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

For 100 ms pulses 0.1 to 3276.7 sec	For 10 ms pulses 0.01 to 327.67 sec	Retentive type for 1 ms pulses ${ }^{*} 4$ 0.001 to 32.767 sec	Retentive type for 100 ms pulses ${ }^{*} 4$ 0.1 to 3276.7 sec	For 1 ms pulses 0.001 to 32.767 sec
T0 to T199 200 points \qquad Routine program type T192 to T199	$\begin{aligned} & \text { T200 to T245 } \\ & 46 \text { points } \end{aligned}$	T246 to T249 4 points for Interrupt execution Latched (battery backed) type*4	$\begin{aligned} & \mathrm{T} 250 \text { to T255 } \\ & 6 \text { points } \\ & \text { Latched (battery } \\ & \text { backed) type }{ }^{*} \end{aligned}$	T256 to T511 256 points

Timer numbers not used for timers can be used as data registers for storing numeric values.
*1. In $F X_{3 S} / F X_{3 G} / F X_{3 G C}$ PLCs, retentive type timers are backed up by the EEPROM memory.
*2. This function is not supported in the FX3s-30M $\square / E \square-2 A D$ PLC.
*3. This function is supported only in FX3G PLC.
*4. In $\mathrm{FX}_{3} \mathrm{U} / \mathrm{F} X_{3} \cup \mathrm{C}$ PLCs, retentive type timers are backed up by the battery.

4.5.2 Functions and operation examples

1. General type

When the drive input X000 of the timer coil T200 turns ON, the current value counter for T200 adds and counts clock pulses of 10 ms . When the counted value becomes equivalent to the set value K 123 , the output contact of the timer turns on.
In other words, the output contact turns on 1.23 seconds after the coil is driven.
When the drive input X000 turns OFF or when the power is turned off the timer is reset and the output contact returns.
[The program of $100 \mathrm{~ms} / 10 \mathrm{~ms}$ type timer of the FX3S PLC]

2. Retentive type

When the drive input X001 of the timer coil T250 turns ON, the current value counter for T250 adds and counts clock pulses of 100 ms .
When the counted value becomes equivalent to the set value K345, the output contact of the timer turns on.
Even if the drive input X001 turns OFF or the power is turned off during counting, the timer continues counting when the operation restarts. The retentive operating time is 34.5 seconds.
When the reset input X002 turns ON, the timer is reset and the output contact is returned.

3. Potentiometer type

1) When variable analog potentiometers built in the $\mathrm{FX}_{3} \mathrm{~S} / \mathrm{FX} 3 \mathrm{G}$ PLCs are used ${ }^{* 1}$
[Basic example]

$$
\begin{aligned}
& \text { This register stores the } 0 \text { to } 25.5 \mathrm{sec} \\
& \text { value (0 to 255) of variable } \\
& \text { analog potentiometer. }
\end{aligned}
$$

[Applied example]

M8000				
RUN monitor	FNC 22 MUL	D8031	K 2	DO (D1)

Values of variable analog potentiometers built in FX3s/FX3G PLCs as standard are stored as numeric data ranging from 0 to 255 in the following special registers in accordance with the scale position.
An obtained numeric value can be specified as the indirectly specified value for a timer to make a variable potentiometer type analog timer.
-VR1 \rightarrow D8030 (Integer from 0 to 255)
-VR2 \rightarrow D8031 (Integer from 0 to 255)

*1. This function is not supported in the $\mathrm{FX} 3 \mathrm{~s}-30 \mathrm{M} \square / \mathrm{E} \square-2 \mathrm{AD}$ PLC.
2) When variable analog potentiometers (expansion board) are used

The analog value of the potentiometer No. 0 is converted into binary 8 -bit data, and a numeric value ranging from 0 to 255 is transferred to DO.
In this application example, the value of D0 is used as the set value of a timer.

The value of a variable analog potentiometer board which can be built in an $F_{3} / / F X_{3 G} / \mathrm{FX}_{3} / \mathrm{FX}_{3} \mathrm{Cl}^{-}$ 32MT-LT(-2) PLC can be obtained as numeric data ranging from 0 to 255 in accordance with the scale position.
An obtained numeric value can be specified as the indirectly specified value for a timer to make a variable potentiometer type analog timer.
Use the FNC 85 (VRRD) instruction to take the value of a variable analog potentiometer into the PLC.
\rightarrow For FNC 85 (VRRD), refer to Section 16.6. Use the FNC 86 (VRSC) instruction to take the value of a variable analog potentiometer as a numeric value ranging from 0 to 10.
\rightarrow For FNC 86 (VRSC), refer to Section 16.7.

4.5.3 Set value specification method

1. Specifying a constant (K)

2. Indirectly specifying a data register

T10 is a $100 \mathrm{~ms}(0.1 \mathrm{sec})$ type timer
When the constant " 100 " is specified, T10 works as a 10second timer ($0.1 \mathrm{sec} \times 100=10 \mathrm{sec}$).

Turns on when T10 reaches the indirectly specified value of the defined data register, previously set by a digital switch. Note that the set value of a latched (battery backed) type register is not held correctly sometimes when the battery voltage becomes low.

4.5.4 Cautions on routines

1) Use timers T 192 to T 199 in subroutines and interrupt routines. These timers execute counting when a coil instruction or END instruction is executed.
When such a timer reaches the set value, its output contact turns on when a coil instruction or END instruction is executed.
Because general type timers execute counting only when a coil instruction is executed (Refer to "4.5.5 Details on timer operation and timer accuracy" below), they do not execute counting and do not operate normally if they are used in subroutines or interrupt routines in which a coil instruction is executed only in a certain condition.
2) When a retentive timer for 1 ms pulses (T246 to T249) is used in a subroutine or interrupt routine, note that its output contact turns on when the first coil instruction is executed after the retentive timer has reached the set value.

4.5.5 Details on timer operation and timer accuracy

A timer (except interrupt execution type) starts counting when a coil is driven, and its output contact turns on when the first coil instruction is executed after the timer has reached timeout.

As shown in the above operation diagram, the accuracy of operation of the timer contact after the coil is driven until the contact turns on is shown in the following outline:

$$
\begin{aligned}
& \text { To: Operation cycle (sec) }
\end{aligned}
$$

If the contact is programmed before the timer coil, " $+2 T_{0}$ " is obtained in the worst case.
When the timer set value is " 0 ", the output contact turns on when a coil instruction is executed in the next cycle. An interrupt execution type timer for 1 ms pulses counts clock pulses of 1 ms as an interrupt processing after a coil instruction has been executed.

4.5.6 Program examples [off-delay timer and flicker timer]

Off-delay timer

Flicker timer (blink)

In addition, the flicker operation can be performed by the ALT (FNC 66) instruction.
Multi-timer by the applied instruction STMR (FNC 65) <FX3U/FX3ис PLC>
By this instruction, off-delay timers, one-shot timers and flicker timers can be easily created.
\rightarrow For details, refer to Section 14.6.

Off-delay timer and one-shot timer

- A value specified by "m" becomes the set value of the timer specified by (S.). 10-second in this example.

- MO is an off-delay timer.
- M1 is a one-shot timer after "ON \rightarrow OFF" operation.
- M2 and M3 are provided for a flicker timer, and connected as shown in the program example for flicker timer (below).

In addition, the timer time can be set according to the switch input time by the teaching timer instruction TTMR (FNC $64)$.

4.5.7 Handling timers as numeric devices

In timers, the output contact operating in accordance with the set value is used in some cases, and the present value is used as numeric data for control in other cases.
The figures below show the structure of the timer present value registers. When a timer number is specified in an operand of an applied instruction, the timer is handled as a device storing 16 -bit or 32 -bit data in the same way as data registers.

1. Structure of timer present value register
1) 16 -bit

2) 32-bit

2. Use examples in applied instructions

For the full use of timers as numeric devices, refer to the explanation of applied instructions later.

4.6 Counter [C]

4.6.1 Numbers of counters

The table below shows counter (C) numbers. (Numbers are assigned in decimal.)

1. FX_{3} PLC
\rightarrow For high-speed counters, refer to Section 4.7.

16-bit up counter Counting range: $\mathbf{0}$ to $\mathbf{3 2 7 6 7}$		32-bit bi-directional counter General type
Fixed latched (EEPROM keep) type	Counting range: $-\mathbf{2 , 1 4 7 , 4 8 3 , 6 4 8 \text { to +2,147,483,647 }}$	
C0 to C15	C16 to C31	General type
16 points	16 points	35 points

2. $\mathrm{FX}_{3} \mathrm{G} / \mathrm{FX}_{3} \mathrm{Gc}$ PLCs
\rightarrow For high-speed counters, refer to Section 4.7.

16-bit up counter Counting range: $\mathbf{0}$ to $\mathbf{3 2 7 6 7}$		32-bit bi-directional counter Counting range: $-\mathbf{2 , 1 4 7 , 4 8 3 , 6 4 8}$ to $\mathbf{+ 2 , 1 4 7 , 4 8 3 , 6 4 7}$	
General type	Fixed latched (EEPROM keep) type	General type	Fixed latched (EEPROM keep) type
C0 to C15	C16 to C199	C 200 to C219	C220 to C234
16 points	184 points	20 points	15 points

3. $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

\rightarrow For high-speed counters, refer to Section 4.8.

16-bit up counter Counting range: $\mathbf{0}$ to $\mathbf{3 2 7 6 7}$		32-bit bi-directional counterCounting range: $-2,147,483,648$ to $+2,147,483,647$	
General type	Latched (battery backed) type (protected by battery against power failure)	General type	Latched (battery backed) type (protected by battery against power failure)
C0 to C99	C100 to C199	C200 to C219	C220 to C234
100 points* ${ }^{*}$	100 points ${ }^{*}{ }^{2}$	20 points ${ }^{* 1}$	15 points*2

*1. This area is not latched (battery backed). It can be changed to a latched (battery backed) area by setting the parameters.
*2. This area is latched (battery backed). It can be changed to a non-latched (non-battery-backed) area by setting the parameters.

Counter numbers not used as counters can be converted as data registers for storing numeric values.

4.6.2 Features of counters

The table below shows the features of 16 -bit counters and 32 -bit counters. They can be used in accordance with the operating condition such as the counting direction switching and counting range, etc.

Item	16-bit counter	32-bit counter
Counting direction	Up-counting	Up-counting and down-counting can be switched (as shown in Subsection 4.6.3)
Set value	1 to 32767	$-2,147,483,648$ to $+2,147,483,647$
Set value specification	Constant (K) or data register	Constant (K) or a pair of data registers
Current value change	Does not change after counting up	Changes even after counting up (ring counter)
Output contact	Latches after counting up	Latches (in up-counting), or reset (in down-counting)
Reset operation	When RST instruction is executed, current value of counter is reset to "0" and output contact returns	
Current value register	16 bits	32 bits

4.6.3 Related devices (to specify counting direction) [32-bit counter]

When an auxiliary relay for switching the counting direction is set to ON, the counter executes down-counting, and when set to OFF, the counter executes up-counting.

Counter No.	Counting direction switching relay						
C200	M8200	C209	M8209	C218	M8218	C227	M8227
C201	M8201	C210	M8210	C219	M8219	C228	M8228
C202	M8202	C211	M8211	C220	M8220	C229	M8229
C203	M8203	C212	M8212	C221	M8221	C230	M8230
C204	M8204	C213	M8213	C222	M8222	C231	M8231
C205	M8205	C214	M8214	C223	M8223	C232	M8232
C206	M8206	C215	M8215	C224	M8224	C233	M8233
C207	M8207	C216	M8216	C225	M8225	C234	M8234
C208	M8208	C217	M8217	C226	M8226		

4.6.4 Functions and operation examples

1. General type and latched (battery backed) type 16-bit up counters

- The valid set range of 16 -bit binary up counter is from K1 to K32767 (decimal constant).

K0 provides the same operation as K1, and the output contact turns on at the first counting.

- In general type counters, the counter value is cleared when the PLC turns off. In latch type counters, however, the counter value just before power failure is stored (backed up by the battery); The counter value in the subsequent operations can be added to the last counter value.
- Every time the coil C0 is driven by the counting input X011, the current value of the counter increases. When a coil instruction is executed 10 times, the output contact turns on.
After that, the current value of the counter does not change even if the counting input X011 turns on after that.
When the RST input X010 turns ON and then RST instruction is executed, the current value of the counter is reset to " 0 " and the output contact returns.

- The counter set value can be set by a constant (K) as shown above, or indirectly specified by a data register number. For example, when D10 is specified and the contents of D10 are "123", it is equivalent to "K123".
- If data beyond the set value is written to the current value register by MOV instruction, etc., the OUT coil turns ON and the current value register becomes the set value when the next counting input is received.
- For latched (battery backed) type counters, the current value, output contact operation and reset status are backed up against power failure.
In $\mathrm{FX}_{3 \mathrm{~J}} / \mathrm{FX} 30 c$ PLCs, latched type counters are backed up by the battery built into the PLC.
In FX3s/FX3G/FX3GC PLCs, latched type counters are backed up by the EEPROM built into the PLC.
\rightarrow For details on backup methods against power failure, refer to Section 2.6.

2. General type and latched (battery backed) type 32-bit bi-directional counters

The valid set range of 32 -bit binary bi-directional counters is from $-2,147,483,648$ to $+2,147,483,647$ (decimal constant). The counting direction (up or down) is specified by special auxiliary relays M8200 to M8234.

- When $\mathrm{M} 8 \triangle \triangle \triangle$ is driven for $\mathrm{C} \triangle \triangle \triangle$, a counter executes down-counting. When $\mathrm{M} 8 \triangle \Delta \Delta$ is not driven, a counter executes up-counting. (Refer to the previous page.)
- The set value (positive or negative) can be specified by a constant (K) or the contents of data registers (D). When data registers are used, 32-bit data composed of paired serial devices are treated as set values. For example, when D0 is specified, D1 and D0 provide a 32-bit set value.
- When the coil C200 is driven by the counting input X014, a counter starts up-counting or down-counting.

When the current value of a counter increases from " -6 " to " -5 ", the output contact is set. When the current value decreases from " -5 " to " -6 ", the output contact is reset.

The current value increases or decreases regardless of the operation of the output contact. When a counter executes up-counting from " $+2,147,483,647$ ", the counter value becomes " $-2,147,483,648$ ". In the same way, when a counter executes down-counting from " $-2,147,483,648$ ", the counter value becomes " $+2,147,483,647$ ". (This type of counter is called ring counter.)

- When the reset input X013 turns ON and then RST instruction is executed, the current value of the counter is reset to " 0 " and the output contact returns.
- For latched (battery backed) type counters, the current value, output contact operation and reset status are backed up against power failure.
In $F_{3} X_{/} / \mathrm{FX}_{3} \cup \mathrm{P}$ PLCs, latched type counters are backed up by the battery built into the PLC.
In FX3s/FX3G/FX3Gc PLCs, latched type counters are backed up by the EEPROM built into the PLC.
\rightarrow For details on backup methods against power failure, refer to Section 2.6.
- A 32-bit counter can be used as a 32-bit data register. 32-bit counters cannot be handled as target devices in 16-bit applied instructions.
- If data beyond the set value is written to the current value register by DMOV instruction, etc., the counter continues counting and the contact does not change when the next counting input is received.

4.6.5 Set value specification method

1. 16-bit counter

1) Specification by constant (K)

2) Indirect specification (D)

Counts to the indirectly specified value of the defined data register, previously set by a digital switch. Note that the set value of a latched (battery backed) type register is not held correctly sometimes when the battery voltage becomes low.

2. 32-bit counter

1) Specification by constant (K)

2) Indirect specification (D)

4.6.6 Response speed of counters

Counters execute counting by cyclic operating for contact operations of internal signals $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{C}$, etc. inside the PLC.
For example, when X011 is specified as counting input, its ON duration and OFF duration should be longer than the scan time of the PLC (which is tens of Hz or less usually).
On the other hand, high-speed counters described later execute counting as an interrupt processing for specific input, and can execute counting at 5 k to 6 kHz regardless of the scan time.
\rightarrow For high-speed counters, refer to Section 4.7 or 4.8.

4.6.7 Handling counters as numeric devices

Counters use output contacts operating in accordance with the set value or use the counter value (current value) as numeric data for control.
The figure below shows the structure of the current value register of a counter. When a counter number is specified in an operand of an applied instruction in execution, the counter is handled as a device storing 16-bit or 32-bit data in the same way as data register.
A 32-bit counter is handled as 32-bit data.

1. Structure of register storing current value of counter

1) 16 -bit

2) 32-bit

2. Examples in applied instructions

For the full use of counters as numeric devices, refer to the explanation of applied instructions later.

	FNC 10 CMP	K100	C 30

C20 (current value) is transferred to D10.

A decimal integer " 100 " is compared with C30 (current value), and the result is output to M0 to M2.

The contents of C10 (current value) are converted into BCD, and output to Y000 to Y007.
(Seven-segment display unit is controlled.)
C5 (current value) is multiplied by 2 , and transferred to (D5, D4).

C 200 (current value) is transferred to (D1, D0).

C200 (current value) is compared with a decima integer zone 100 to 20000, and the result is output to M10 and M12.
*1. Make sure to use 32-bit operation instructions for 32-bit counters.
3. Caution on simultaneous instances of the ZRST instruction and a counter

The ZRST instruction resets also the last stage and reset state of T and C coils.
Accordingly, if the drive contact of X000 is ON in the following program, the counter executes counting after the ZRST instruction is executed.

Circuit program

Timing chart

Program in the following way to disable counting after execution of the ZRST instruction:
Circuit program

4.7 High-Speed Counter [C] (FX3s/FX3G/FX3Gc PLCs)

4.7.1 Types and device numbers of high-speed counters

1. Types of high-speed counters

The main unit has built-in 32-bit high-speed bi-directional counters (1-phase 1-count, 1-phase 2-count and 2-phase 2count). Some high-speed counters are capable of using an external reset input terminal and an external start input terminal (for counting start).
2. Classification of high-speed counters according to counting method

These types of counters execute counting as CPU interrupt processing.
Observe both the restriction in response frequency for each counter and the restriction in total frequency when using high-speed counters.
\rightarrow For the limitation of response frequency depending on the total frequency, refer to Subsection 4.7.7.
3. Types of high-speed counters and input signal forms

The table below shows the types (1-phase 1-count, 1-phase 2-count and 2-phase 2-count) and input signals (waveforms) of high-speed counters.

	Input signal form	Counting direction
1-phase 1-count input	UP/DOWN \qquad \uparrow \uparrow \uparrow \uparrow	Down-count or up-count is specified by turning on or off M8235 to M8245. ON: Down-counting OFF: Up-counting
1-phase 2-count input		A counter executes up-count or downcount as shown on the left. The counting direction can be checked with M8246 to M8250. ON: Down-counting OFF: Up-counting
2-phase 2-count input		A counter automatically executes upcount or down-count according to changes in the input status of the A / B phase as shown on the left. The counting direction can be checked with M8251 to M8255. ON: Down-counting OFF: Up-counting

4. Cautions on counterpart equipment connected to high-speed counter inputs

General-purpose inputs X000 to X007 are used for high-speed counter inputs. An encoder ${ }^{* 1}$ adopting the output method shown in the table below can be connected depending on the connected terminal.
Encoders adopting the voltage output method and absolute encoders cannot be connected to high-speed counter inputs.
\rightarrow For the wiring, refer to the Hardware Edition of the main unit.

Output method of encoder which can be directly connected to input terminal in main unit	Open collector transistor output method compatible with 24V DC
*1. A rotary encoder adopting the output method shown above may not operate correctly depending on the	
electrical compatibility. Check the specifications before connecting an encoder.	

5. High-speed counter device list

Classification	Counter No.	Data length	External reset input terminal	External start input terminal
1-phase 1-count input	C235 C236 C237 C238 C239 C240	32-bit bi-directional counter	Not provided	Not provided
	$\begin{aligned} & \mathrm{C} 241 \\ & \text { C242 } \\ & \text { C243 } \end{aligned}$		Provided	Not provided
	$\begin{aligned} & \hline \mathrm{C} 244 \\ & \mathrm{C} 245 \end{aligned}$		Provided	Provided
1-phase 2-count input	$\begin{gathered} \mathrm{C} 246 \\ \mathrm{C} 248(\mathrm{OP})^{* 1} \\ \hline \end{gathered}$	32-bit bi-directional counter	Not provided	Not provided
	$\begin{aligned} & \hline \text { C247 } \\ & \text { C248 } \end{aligned}$		Provided	Not provided
	$\begin{aligned} & \hline \mathrm{C} 249 \\ & \mathrm{C} 250 \end{aligned}$		Provided	Provided
2-phase 2-count input	$\begin{gathered} \mathrm{C} 251 \\ \mathrm{C} 253(\mathrm{OP})^{* 1} \\ {\mathrm{C} 254(\mathrm{OP})^{* 2}} \end{gathered}$	32-bit bi-directional counter	Not provided	Not provided
	$\begin{aligned} & \hline \text { C252 } \\ & \text { C253 } \end{aligned}$		Provided	Not provided
	$\begin{aligned} & \mathrm{C} 254 \\ & \mathrm{C} 255 \\ & \hline \end{aligned}$		Provided	Provided

*1. C248 and C253 are usually used as counters having reset input, but can be used as counters C248 (OP) and C253 (OP) not having reset input when used together with special auxiliary relays M8388 and M8392.
\rightarrow For the method to switch the counter function, refer to Subsection 4.7.6.
*2. C254 is usually used as a counter having reset input and start input, but can be used as a counter C254 (OP) not having reset input or start input when used together with special auxiliary relays M8388 and M8395. This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC}$ PLCs.
\rightarrow For the method to switch the counter function, refer to Subsection 4.7.6.

Notation of high-speed counter devices

In some high-speed counters in $\mathrm{FX}_{3} \mathrm{~S} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs, the input terminal assignment is changed over when used together with special auxiliary relays.
Such high-speed counter devices are classified below. Note that description as (OP) is not available in programming.

Standard Device Numbers	Switched Device Numbers
C248	C248(OP)
C253	C253(OP)
C254	C254(OP)

4.7.2 Input assignment for high-speed counters

Inputs X000 to X007 are assigned as shown in the table below according to each high-speed counter number.
When a high-speed counter is used, the filter constant of a corresponding input number in the main unit automatically changes.

- FX3s PLC

X000, X001: $10 \mu \mathrm{~s}$
X002, X003, X004, X005, X006, X007: $50 \mu \mathrm{~s}$

- FX3G/FX3Gc PLCs

X000, X001, X003, X004: $10 \mu \mathrm{~s}$
X002, X005, X006, X007: $50 \mu \mathrm{~s}$
Input terminals not used for high-speed counters, however, can be used as general inputs.
\rightarrow For the input specifications of the main unit, refer to the Hardware Edition of the main unit.

	Counter No.	Input terminal assignment							
		X000	X001	X002	X003	X004	X005	X006	X007
1-phase 1-count input	C235	U/D							
	C236		U/D						
	C237			U/D					
	C238				U/D				
	C239					U/D			
	C240						U/D		
	C241	U/D	R						
	C242			U/D	R				
	C243					U/D	R		
	C244	U/D	R					S	
	C245			U/D	R				S
1-phase 2-count input	C246	U	D						
	C247	U	D	R					
	C248				U	D	R		
	C248(OP)				U	D			
	C249	U	D	R				S	
	C250				U	D	R		S
2-phase 2-count input	C251	A	B						
	C252	A	B	R					
	C253				A	B	R		
	C253(OP)				A	B			
	C254	A	B	R				S	
	C254(OP)							A	B
	C255				A	B	R		S

U: Up-counting input
D: Down-counting input
A: A phase input
B: B phase input
R: External reset input
S: External start input

Restriction to overlap input numbers

Inputs X000 to X007 are used for high-speed counters, input interrupt, pulse catch, SPD/ZRN/DSZR instructions and general-purpose inputs. When assigning functions, there should be no overlap between those input terminals.

4.7.3 Handling of high-speed counters

High-speed counters in FX3G/FX3GC PLCs operate in the same way as high-speed counters in FX3U/FX3UC PLCs. For details, refer to Subsection 4.8.3.

4.7.4 Current value update timing and comparison of current value

1. Current value update timing

When pulses are input to an input terminal for a high-speed counter, the high-speed counter executes up-counting or down-counting. The current values of devices are updated when counting is input.
2. Comparison of the Current value

The following two methods are available to compare and output the current value of a high-speed counter.

1) Using the comparison instruction (CMP), zone comparison instruction (ZCP) or comparison contact instruction Use the comparison instruction (CMP), band comparison instruction (ZCP) or contact comparison instruction if the comparison result is necessary at counting. Use these instructions only when high-speed processing is not required because these instructions are processed in the operation cycle of the PLC, and operation delay is generated before the comparison output result is obtained.
If it is necessary to execute comparison to update an output contact with the high-speed counter's changing value, use comparison instructions for high-speed counters HSCS, HSCR and HSZ.
2) Using comparison instructions for high-speed counters (HSCS, HSCR or HSZ)

The comparison instructions for high-speed counters (HSCS, HSCR and HSZ) execute a comparison and output the comparison result during high-speed counting. These instructions have limitations on the number of simultaneously driven instructions as shown in the following table.
When an output relay is specified for the comparison result, the comparison result is directly updated at the ON/ OFF status of the output regardless of the output refresh by END instruction.
Mechanical operation delay (about 10 ms) cannot be avoided in a relay output type PLC. Use a transistor output type PLC.

Instruction	Limitation in number of instructions driven at same time
HSCS	6 instructions
HSCR	

4.7.5 Related devices

1. Devices used to switch the counting direction of 1-phase 1-count input counters

Type	Counter No.	Specifying device	Up-counting	Down-counting
1-phase 1-counting input	C235	M8235	OFF	ON
	C236	M8236		
	C237	M8237		
	C238	M8238		
	C239	M8239		
	C240	M8240		
	C241	M8241		
	C242	M8242		
	C243	M8243		
	C244	M8244		
	C245	M8245		

2. Devices used to check the counting direction of 1-phase 2-count input counters and 2-phase 2-count input counters

Type	Counter No.	Monitoring device	OFF	ON
1-phase 2-counting input	C246	M8246	Up-counting	Down-counting
	C247	M8247		
	C248	M8248		
	C249	M8249		
	C250	M8250		
2-phase 2-counting input	C251	M8251		
	C252	M8252		
	C253	M8253		
	C254	M8254		
	C255	M8255		

3. Devices used to switch the high-speed counter function

Device No.	Name	Description
M8388	Contact for changing function of high-speed counter	Changes the function of high-speed counter.
M8392	Function switching device	Switches the function of C248 and C253. (For details, refer to Subsection 4.7.6.)
M8395		Switches the function of C254. (For details, refer to Subsection 4.7.6.)

4.7.6 Assignment of counter input terminal and switching of function

When the counters C248, C253 and C254 are combined with the following special auxiliary relays, the allocation of the input terminals and functions are changed.
In a program, put a special auxiliary relay just before a target counter.

| Counter No. | When using assignment of counter input terminal and |
| :---: | :---: | :--- | :--- |
| switching of function | |

4.7.7 Response frequency of high-speed counters

1. Response frequency and overall frequency

When any of the following functions/instructions is used, the overall frequency is restricted regardless of the operand of the instruction.
Consider this restriction when examining the system or creating programs, and observe the specified overall frequency range.

- When two or more high-speed counters are used
- When the HSCS, HSCR, HSZ, PLSY, PLSR, DSZR, TBL*1, ZRN, PLSV, DRVI or DRVA instruction is used
- When the pulse width/pulse period measurement function is used. ${ }^{* 1}$
*1. This function is supported only in FX3G/FX3GC PLCs.

In FX ${ }_{3 S}$ PLC

Counter type		Response frequency	Overall frequency determined by condition of used instruction		
		When HSCS, HSCR or HSZ instruction is not used	When HSCS, HSCR or HSZ instruction is used		
1-phase 1-counting input	C235, C236, C241		60 kHz	$200 \text { kHz }$ - Number of positioned axes*2 $\text { x } 40 \text { kHz }$	$60 \text { kHz }$ - Number of positioned axes ${ }^{* 2} \times 5 \mathrm{kHz}$
	C237, C238, C239, C240, C242, C243, C244, C245	10kHz			
$\begin{aligned} & \text { 1-phase } \\ & \text { 2-counting } \\ & \text { input } \end{aligned}$	C246	60 kHz			
	$\begin{aligned} & \text { C247, C248, } \\ & \text { C248(OP), C249, } \\ & \text { C250 } \end{aligned}$	10kHz			
2-phase 2-counting input	C251	30 kHz			
	$\begin{aligned} & \text { C252, C253, C254, } \\ & \text { C253(OP), C255 } \end{aligned}$	5 kHz			

In FX3G/FX3GC PLCs

Counter type		Response frequency	Overall frequency determined by condition of used instruction		
		When HSCS, HSCR or HSZ instruction is not used	When HSCS, HSCR or HSZ instruction is used		
1-phase 1-counting input	$\begin{aligned} & \text { C235, C236, C238, } \\ & \text { C239, C241 } \end{aligned}$		60kHz	$200 \text { kHz }$ - (Number of positioned axes ${ }^{* 3}$ + Number of pulse width/period measurement inputs) $\text { x } 40 \text { kHz }$	$60 \text { kHz }$ - (Number of positioned axes ${ }^{* 3} \times 5 \mathrm{kHz}$) - (Number of pulse width/period measurement inputs x 20 kHz)
	$\begin{aligned} & \text { C237, C240, C242, } \\ & \text { C243, C244, C245 } \end{aligned}$	10kHz			
```1-phase 2-counting input```	C246, C248(OP)	60kHz			
	$\begin{aligned} & \hline \text { C247, C248, } \\ & \text { C249,C250 } \end{aligned}$	10kHz			
2-phase 2-counting input	C251, C253(OP)	30kHz			
	$\begin{aligned} & \text { C252, C253, C254, } \\ & \text { C254(OP), C255 } \end{aligned}$	5 kHz			

*3. Number of axes used in the following positioning instructions:
PLSY (FNC 57), PLSR (FNC 59), DSZR (FNC150), TBL (FNC152), ZRN (FNC156), PLSV (FNC157), DRVI (FNC158), DRVA (FNC159)
2. Calculation of the total frequency

Obtain the overall frequency using the following expression:
Total frequency $\geq$ [(Sum of used frequency of 1-phase counters) + (Sum of used frequency of 2-phase counters)]
PLSY (FNC 57), PLSR (FNC 59), DSZR (FNC150), ZRN (FNC156), PLSV (FNC157), DRVI (FNC158), DRVA (FNC159)

## 3. Calculation example

Example1: When the HSCS, HSCR or HSZ instruction is not used, and the instructions related to the number of positioning axes (DRVI instruction [Y000], DRVA instruction [Y001]) are used in the FX3G PLC

Overall frequency: $200 \mathrm{kHz}-(2$ axes $\times 40 \mathrm{kHz})=120 \mathrm{kHz}$

<Counter No.>	<Contents of use>
C235(1-phase 1-counting)	50 kHz is input.
C236(1-phase 1-counting)	50 kHz is input.
C237(1-phase 1-counting)	10 kHz is input.
C253(2-phase 2-counting)	5 kHz is input.
	Total $115 \mathrm{kHz} \leq 120 \mathrm{kHz}$ (Overall frequency)

Example2: When the HSCS, HSCR or HSZ instruction is not used, and instructions related to the number of positioning axes (DRVI instruction [Y000]) and the number of pulse width/pulse period measurement inputs [X003] are used in the FX3G PLC

Overall frequency: $200 \mathrm{kHz}-(1$ axes +1 input $) \times 40 \mathrm{kHz}=120 \mathrm{kHz}$

<Counter No.>	<Contents of use>
C235(1-phase 1-counting)	50 kHz is input.
C236(1-phase 1-counting)	50 kHz is input.
	Total $100 \mathrm{kHz} \leq 120 \mathrm{kHz}$ (Overall frequency)

### 4.7.8 Cautions on use

- For a contact to drive the coil of a high-speed counter, use a contact which is normally ON during high-speed counting.

Example: M8000 (RUN monitor NO contact)


Program a contact which is normally ON during counting.


If a number of input relay for counting is specified, high-speed counter cannot execute accurate counting.

- If the operation of a high-speed counter is triggered by a device such as a switch, the counter may malfunction due to extra noise from switch chattering or contact bounce.
- The input filter of an input terminal for a high-speed counter in the main unit is automatically set to $10 \mu \mathrm{~s}$ or $50 \mu \mathrm{~s}$. Accordingly, it is not necessary to use special data register D8020 (input filter adjustment). The input filter for input relays not being used for high-speed counters remains at 10 ms (initial value).
- The inputs X000 to X007 are used for high-speed counters, input interrupt, pulse catch, SPD/DSZR/ZRN instructions and general-purpose inputs. There should be no overlap between each input number.
- When a counting pulse is not provided, none of the high-speed counter output contacts will turn ON, even if the PLC executes an instruction where "present value = set value".
- Counting may be started or stopped for a high-speed counter when the output coil (OUT C***) is set to ON or OFF. Program this output coil in the main routine. If the output coil is programmed in a step ladder (SFC) circuit, subroutine or interrupt routine, counting cannot be started or stopped until the step ladder or routine is executed.
- Make sure that the signal speed for high-speed counters does not exceed the response frequency described above. If an input signal exceeds the response frequency, a WDT error may occur, or the communication functions such as a parallel link may malfunction.
- The response frequency changes depending on the number of used counters, but the input filter value is fixed to 10 $\mu \mathrm{s}$ or $50 \mu \mathrm{~s}$. Note that noise above the response frequency may be counted depending on the filter value of the used input.
- When a high-speed counter is reset by the RST instruction, it cannot count until the RST instruction is set to OFF.

1) Program example

2) Timing chart


- Write the following program to "reset only the current value of a high-speed counter (and does not turn OFF the contact)".

1) Program example

*1. When the driving contact is the continuous execution type, the current value of the counter is reset to " 0 " at each scan while X 010 remains ON.
2) Timing chart


Because X010 turns ON, Because the driving contact is the "FNC 12 DMOV" is executed. pulse execution type, C235 executes The current value of C235 is counting normally after that. reset to " 0 ".

- Write the following program to "turn OFF the contact and reset the current value of a high-speed counter".

1) Program example

*2. When the driving contact is the continuous execution type, the current value of the counter is reset to "0" and the counter reset status is cleared at each scan while X010 remains ON.
2) Timing chart


### 4.8 High-Speed Counter [C] (FX3u/FX3uc PLC)

High-speed counter only available in DC input type main units.

### 4.8.1 Types and device numbers of high-speed counters

## 1. Types of high-speed counters

The main unit has built-in 32-bit high-speed bi-directional counters (1-phase 1-count, 1-phase 2-count and 2-phase 2count). These high-speed counters are classified into hardware type or software type according to the counting method. Some high-speed counters are capable of using an external reset input terminal and an external start input terminal (for counting start).
2. Classification of high-speed counters according to counting method

- Hardware counters: These types of counters execute counting by hardware, but may be switched to software counters depending on the operating condition.
$\rightarrow$ For the condition handled as software counters, refer to Subsection 4.8.9.
- Software counters: These types of counters execute counting as CPU interrupt processing. It is necessary to use each software counter within both limitations of maximum response frequency and total frequency.
$\rightarrow$ For the limitation of response frequency depending on the total frequency, refer to Subsection 4.8.10.

3. Types of high-speed counters and input signal forms

The table below shows the types (1-phase 1-count, 1-phase 2-count and 2-phase 2-count) and input signals (waveforms) of high-speed counters.

		Input signal form	Counting direction
1-phase   1-count input		UP/DOWN $\uparrow$ $\qquad$ $\uparrow$ $\uparrow$ $\square$ $\uparrow$ $\square$	Down-count or up-count is specified by turning on or off M8235 to M8245.   ON: Down-counting   OFF: Up-counting
1-phase 2-count input			A counter executes up-count or downcount as shown on the left.   The counting direction can be checked with M8246 to M8250.   ON: Down-counting   OFF: Up-counting
2-phase 2-count input	1 edge count		A counter automatically executes upcount or down-count according to changes in the input status of the $A / B$
	4 edge count		phase as shown on the left.   The counting direction can be checked with M8251 to M8255.   ON: Down-counting   OFF: Up-counting

4. Cautions on counterpart equipment connected to high-speed counter inputs

General-purpose inputs X000 to X007 are used for high-speed counter inputs. An encoder ${ }^{* 1}$ adopting the output method shown in the table below can be connected depending on the connected terminal.
Encoders adopting the voltage output method and absolute encoders cannot be connected to high-speed counter inputs.

Output method of encoder which can be directly connected to input   terminal in main unit	Open collector transistor output method compatible with 24 V DC
Output method of encoder which can be directly connected to input   terminal in FX3U-4HSX-ADP	Differential line driver output method   (output voltage: 5 V DC or less)
$* 1 . \quad$ A rotary encoder adopting the output method shown above may not operate correctly depending on the	
electrical compatibility. Check the specifications before connecting an encoder.	

$$
\rightarrow \text { For the wiring, refer to the Hardware Edition of the main unit. }
$$

5. High-speed counter device list

*1. They are handled as software counters depending on the operating condition. When they are handled as software counters, they have limitations on both maximum response frequency and total frequency.
$\rightarrow$ For the condition handled as software counters, refer to Subsection 4.8.9.
$\rightarrow$ For the total frequency, refer to Subsection 4.8.10.
*2. Cautions on wiring should be considered for these high-speed counters.
$\rightarrow$ For the wiring, refer to the Hardware Edition of the main unit.
*3. C244, C245 and C248 are usually used as software counters, but can be used as hardware counters C244 (OP), C245 (OP) and C248 (OP) by combining a special auxiliary relay (M8388, M8390 to M8392).
$\rightarrow$ For the method to switch the counter function, refer to Subsection 4.8.7.
*4. 2-phase 2 -input counter is usually 1 edge count counter, but can be used as a 4 edge count counter by combining a special auxiliary relay (M8388, M8198 or M8199).
$\rightarrow$ For the method to use a 2-phase 2-input 4 edge count counter, refer to Subsection 4.8.8.
*5. The external reset input is usually reset by turning ON, but can be changed to be reset by turning OFF by combining special auxiliary relays (M8388 and M8389).
$\rightarrow$ For the method to change the logic of the external reset input, refer to Subsection 4.8.6.
*6. The counter C253 is usually used as a hardware counter, but can be used as the counter C253 (OP) not equipped with reset input by combining special auxiliary relays (M8388 and M8392). In this case, C253 (OP) is handled as a software counter.

## Notation of high-speed counter devices

For some high-speed counters in FX3U and FX3UC PLCs, the assignment of input terminals will switch when special auxiliary relays are used.
Such high-speed counter devices are classified below. Note that description as (OP) is not available in programming.

Standard Device Numbers	Switched Device Numbers
C 244	$\mathrm{C} 244(\mathrm{OP})$
C 245	$\mathrm{C} 245(\mathrm{OP})$


Standard Device Numbers	Switched Device Numbers
C 248	$\mathrm{C} 248(\mathrm{OP})$
C 253	$\mathrm{C} 253(\mathrm{OP})$

### 4.8.2 Input assignment for high-speed counters

Inputs X000 to X007 are assigned as shown in the table below according to each high-speed counter number.
When a high-speed counter is used, the filter constant of a corresponding input number in the main unit automatically changes (X000 to X005: $5 \mu \mathrm{~s}$, X006 and X007: $50 \mu \mathrm{~s}$ ). Input terminals not used for high-speed counters, however, can be used as general inputs.
When $\mathrm{FX}_{3} \mathrm{U}-4 \mathrm{HSX}$-ADP unit is connected to an $\mathrm{FX}_{3}$ PLC, input terminals inside bold-line frames in the table below are assigned to the first $\mathrm{FX}_{3} \mathrm{U}-4 \mathrm{HSX}$-ADP unit, and other input terminals are assigned to the second FX3U-4HSX-ADP unit.
$\rightarrow$ For the input specifications of the FX3U-4HSX-ADP, refer to the FX3u Hardware Edition. $\rightarrow$ For the input specifications of the main unit, refer to the Hardware Edition of the main unit.

	Counter No.	Classification	Input terminal assignment							
			X000	X001	X002	X003	X004	X005	X006	X007
1-phase 1-count input	C235*1	H/W ${ }^{*}{ }^{2}$	U/D							
	C236*1	H/W ${ }^{*}{ }^{2}$		U/D						
	C237* ${ }^{\text {1 }}$	H/W ${ }^{*}{ }^{2}$			U/D					
	C238**	H/W * 2				U/D				
	C239*1	H/W ${ }^{*}{ }^{2}$					U/D			
	C240*1	H/W ${ }^{*}{ }^{2}$						U/D		
	C241	S/W	U/D	R						
	C242	S/W			U/D	R				
	C243	S/W					U/D	R		
	C244	S/W	U/D	R					S	
	C244(OP)*3	H/W ${ }^{*}{ }^{2}$							U/D	
	C245	S/W			U/D	R				S
	C245(OP) ${ }^{*}$	H/W ${ }^{*}{ }^{2}$								U/D
1-phase 2-count input	C246* ${ }^{\text {* }}$	H/W * 2	U	D						
	C247	S/W	U	D	R					
	C248	S/W				U	D	R		
	C248(OP) ${ }^{* 1 * 3}$	H/W ${ }^{*}{ }^{2}$				U	D			
	C249	S/W	U	D	R				S	
	C250	S/W				U	D	R		S
2-phase 2-count input*4	C251**	H/W ${ }^{*}{ }^{2}$	A	B						
	C252	S/W	A	B	R					
	C253*1	H/W ${ }^{*}{ }^{2}$				A	B	R		
	C253(OP) ${ }^{*}$	S/W				A	B			
	C254	S/W	A	B	R				S	
	C255	S/W				A	B	R		S
H/W: Hardware counter A: A phase input		S/W: Software counter   B: B phase input			U: Up-counting input   R: External reset input			D: Down-counting input   S: External start input		

*1. Cautions on wiring should be considered for these high-speed counters.
$\rightarrow$ For the wiring, refer to the Hardware Edition of the main unit.
*2. Hardware counters are switched to software counters when a comparison set/reset instruction for high-speed counter (DHSCS, DHSCR, DHSZ or DHSCT) is used.
The counter C253 is switched to a software counter when the logic of the external reset input signal is reversed.
$\rightarrow$ For the condition under which it is handled as a software counter, refer to Subsection 4.8.9.
*3. When a special auxiliary relay is driven in a program, the input terminals and their associated functions are switched.
$\rightarrow$ For the method to use a software counter as a hardware counter, refer to Subsection 4.8.7.
*4. In a 2-phase 2-count input counter, the edge count is usually 1. But the edge count can be set to 4 by combining a special auxiliary relay.
$\rightarrow$ For the method on how to use a 2-phase 2-count input counter with on edge count of 4, refer to Subsection 4.8.8.

## Restriction to overlap input numbers

- Inputs X000 to X007 are used for high-speed counters, input interrupt, pulse catch, SPD/ZRN/DSZR/DVIT instructions and general-purpose inputs. When assigning functions, there should be no overlap between those input terminals.
- Since the FX3U-4HSX-ADP and FX3uc PLC main unit share the same assigned input terminal numbers, only one of them may be used in operation. If both input terminals are used, intended operation is not enabled because the inputs of the FX3U-4HSX-ADP and PLC main unit operate in an "OR" relationship.


### 4.8.3 Handling of high-speed counters

## 1. 1-phase 1-count input



- C 235 counts "OFF $\rightarrow \mathrm{ON}$ " of the input X 000 while X 012 is ON.
- When X011 turns ON and then RST instruction is executed, C235 is reset.
- The counting direction of the counters C235 to C245 is switched to down-count or up-count when M8235 to M8245 turns ON or OFF.
- C244 immediately starts counting when the input X006 turns ON while X 012 is ON . The counting input is X 000 . In this example, the set value is indirectly specified by the contents of data registers (D1 and D0).
- A high-speed counter can be reset using X011 in a sequence as shown in the figure, but C244 immediately reset without any program when X001 is closed. So a program with X011 is not necessary.
- The counting direction of the counters C235 to C245 is switched to down-count or up-count when M8235 to M8245 turns ON or OFF.


## Operation example

The counter C235 shown above operates as follows:


When counting with input $\mathrm{X} 000, \mathrm{C} 235$ executes up-count or down-count as an interrupt.

- When the current value of a counter increases from " -6 " to " -5 ", the output contact is set. When the current value decreases from " -5 " to " -6 ", the output contact is reset.
- The current value increases or decreases regardless of the operation of the output contact. When a counter executes up-count from " $+2,147,483,647$ ", the counter value becomes " $-2,147,483,648$ ". In the same way, when a counter executes down-count from " $-2,147,483,648$ ", the counter value becomes "+2,147,483,647". (This type of counter is called a ring counter.)
- When the reset input X011 turns ON and RST instruction is executed, the current value of the counter is reset to " 0 " and the output contact is restored.
- In a latch type high-speed counter, the current value, output contact operation and reset status of the counter are latched (battery backed) by the backup battery built in the PLC.


## 2. 1-phase 2-count input

These counters are 32-bit binary bi-directional counters, and the operation of the output contact for the current value is equivalent to that in 1-phase 1-count input type high-speed counters described above.


- While X012 is ON, C246 executes up-count when the input X000 turns from OFF to ON, and executes down-count when the input X001 turns from OFF to ON.
- The up/down-count operation of C246 to C250 can be checked with M8246 to M8250.
ON status: Down-counting
OFF status: Up-counting
- While X012 is ON, C249 immediately starts counting when the input X006 turns ON.
The up-count input is X 000 , and the down-count input is X 001 .
- A high-speed counter can be reset by X011 in a sequence as shown in the figure, but C249 is immediately reset without any program when X002 is closed. So a program with X011 is not necessary.
- The up/down-count operation of C246 to C250 can be checked with M8246 to M8250.
ON status: Down-counting
OFF status: Up-counting


## 3. 2-phase 2-count input

These counters are 32-bit binary bi-directional counters, and the operation of the output contact for the current value is equivalent to that in 1-phase high-speed counters described above.


- While X012 is ON, C251 counts the operation of the inputs X000 (A phase) and X001 (B phase) as interrupt.
When X011 turns ON a RST instruction is executed and C251 is reset.
- When the current value becomes equivalent to or larger than the set value, Y002 turns ON. When the current value becomes equivalent to or smaller than the set value, Y002 turns OFF.
- Y003 turns ON (for down-count) or OFF (for up-count) according to the counting direction.
- When X006 turns ON while X012 is ON, C254 immediately starts counting. Its counting inputs are X000 (A phase) and X001 (B phase).
- In addition to reset by X011 in a sequence, C254 is reset immediately when X002 turns ON.
- When the current value becomes equivalent to or larger than the set value (D1, D0), Y004 turns ON. When the current value becomes equivalent to or smaller than the set value, Y004 turns OFF.
- Y005 turns ON (for down-count) or OFF (for up-count) according to the counting direction.
- A 2-phase encoder generates outputs for the A phase and B phase by a phase difference of $90^{\circ}$. With these outputs, a high-speed counter automatically executes up-count and down-count as shown in the figure below.
- When the counter is operating at the 1 edge count

- When the counter is operating at the 4 edge count

- The down/up-count operation of C251 to C255 can be checked with M8251 to M8255

ON status: Down-counting
OFF status: Up-counting

### 4.8.4 Current value update timing and comparison of current value

## 1. Current value update timing

A high-speed counter executes up-count or down-count when a pulse is input to its input terminal, but the current value is updated at the timing shown in the table below. When using the current value of a hardware counter in a MOV, CMP or applied instruction such as the comparison instruction, special care must be taken since the current value update timing is affected by the ladder scans as shown in the table.

	Current value update timing
Hardware counter	When OUT or HCMOV instruction is executed for the counter
Software counter	Every time a pulse is input

## 2. Comparison of the Current value

The following two methods are available to compare and output the current value of a high-speed counter.

1) Using the comparison instruction (CMP), zone comparison instruction (ZCP) or comparison contact instruction When the comparison result is necessary during counting operation ${ }^{* 1}$, comparison may be executed in the main program if the HCMOV instruction is used just before the comparison instruction (CMP or ZCP) or comparison contact instruction.
*1. If it is necessary to execute comparison to update an output contact with the high-speed counter's changing value, use comparison instructions for high-speed counters (HSCS, HSCR, HSZ or HSCT).
2) Using comparison instructions for high-speed counters (HSCS, HSCR, HSZ or HSCT)

The comparison instructions for high-speed counters (HSCS, HSCR, HSZ and HSCT) execute a comparison and output the comparison result during high-speed counting. These instructions have limitations on the number of simultaneously driven instructions as shown in the following table. The HSCT instruction can only be used once in any program.
When an output relay is specified for the comparison result, the comparison result is directly updated at the ON/ OFF status of the output regardless of the output refresh by END instruction.
Mechanical operation delay (about 10 ms ) cannot be avoided in a relay output type PLC. Use a transistor output type PLC

Instruction	Limitation in number of instructions driven at same time
HSCS	32 instructions including HSCT instruction
HSCR	
HSZ $^{* 2}$	Only 1 (This instruction can only be used once.)
HSCT $^{* 2}$	

*2. When HSZ or HSCT instruction is used, the maximum response frequency and total frequency of all software counters are affected.
$\rightarrow$ For the maximum response frequency and total frequency of software counters, refer to Subsection 4.8.10.

### 4.8.5 Related devices

1. Devices used to switch the counting direction of 1-phase 1-count input counters

Type	Counter No.	Specifying device	Up-counting	Down-counting
1-phase 1-counting input	C235	M8235	OFF	ON
	C236	M8236		
	C237	M8237		
	C238	M8238		
	C239	M8239		
	C240	M8240		
	C241	M8241		
	C242	M8242		
	C243	M8243		
	C244	M8244		
	C245	M8245		

4. Operation status of hardware counters and software counters

Device No.	Name	Description	ON	OFF
M8380*1	Operation status flag	Operation status of C235, C241, C244, C246, C247, C249, C251, C252 or C254	Software counter	Hardware
M8381 ${ }^{* 1}$		Operation status of C236		
M8382*1		Operation status of C237, C242 or C245		
M8383 ${ }^{* 1}$		Operation status of C238, C248, C248(OP), C250, C253 or C255		
M8384*1		Operation status of C239 or C243		
M8385* ${ }^{1}$		Operation status of C240		
M8386* ${ }^{1}$		Operation status of C244(OP)		
M8387* ${ }^{1}$		Operation status of C245(OP)		

*1. Cleared when the PLC mode switches from STOP to RUN.

### 4.8.6 Changing the logic of external reset input signal

The counters C241 to C245, C247 to C250 and C252 to C255 are usually reset when the external reset input turns ON.
By using the program shown below, the logic can be inverted so that these counters are reset when the external reset input turns OFF.

Counter No.	When inverting logic of external reset input signal	Description	
C241 to C245		  C247 to C250   C252 to C255	The logic of the external reset input is inverted   so that the counters are reset when the input   turns OFF.
(The logic is inverted for all target counters.)			

## Caution

The counter C253 is switched to a software counter when the logic of the external reset input signal is inverted.

### 4.8.7 Assignment of counter input terminal and switching of function

The assignment of the input terminal and the function of the software counters C244, C245, C248 and C253 are changed as shown below when combined with the following special auxiliary relays.
In a program, put a special auxiliary relay just before a target counter.

Counter No.	When using software counter as hardware counter	Description
C244(OP)		- The counting input is changed from X 000 to X006.   - Reset input is not provided.   - Start input is not provided.   - It operates as a hardware counter.
C245(OP)		- The counting input is changed from X002 to X007.   - Reset input is not provided.   - Start input is not provided.   - It operates as a hardware counter.
C248(OP)		- Reset input is not provided.   - It operates as a hardware counter.
C253(OP)		- Reset input is not provided.   - It operates as a software counter.

### 4.8.8 How to use 2-phase 2-count input counters C251 to C255 with 4 edge counting

For the 2-phase 2-count input counters C251 to C 255 , the edge count is usually set to 1 . By using the programs shown in the table below, the edge count may be set to 4 .

Counter No.	When using 2-phase 2-count input counters with 4 edge counting	Description
C251		1 edge count (before change)
C252		A phase B phase
C253		A phase   B phase
C253(OP)		4 edge count (after change)
C254		A phase B phase   Down-counting
C255		

### 4.8.9 Conditions for hardware counters to be handled as software counters

High-speed counters are classified into hardware counters and software counters. In some conditions, however, hardware counters are handled as software counters.
In this case, use hardware counters within the range of maximum response frequency and total frequency as determined for software counters.

## Conditions under which counters are handled as software counters

Hardware counter No.	Condition in which hardware counters are handled as software counters
$\begin{aligned} & \mathrm{C} 235 \\ & \mathrm{C} 236 \\ & \mathrm{C} 237 \\ & \mathrm{C} 238 \\ & \mathrm{C} 239 \\ & \mathrm{C} 240 \\ & \mathrm{C} 244(\mathrm{OP}) \\ & \mathrm{C} 245(\mathrm{OP}) \\ & \mathrm{C} 246 \\ & \mathrm{C} 248(\mathrm{OP}) \\ & \mathrm{C} 251 \\ & \mathrm{C} 253 \end{aligned}$	Because hardware counters execute counting at the hardware level of the FX3U/FX3UC, they can execute counting regardless of the total frequency.   However, when hardware counters are handled as software counters with the following conditions, their maximum response frequency and total frequency are limited in the same way as the software counters.   Use M8380 to M8387 to verify that high-speed counters are handled as hardware counters or software counters.   - When DHSCS (FNC 53), DHSCR (FNC 54), DHSZ (FNC 55) or DHSCT (FNC280) instruction is used for a hardware counter number, the hardware counter is handled as a software counter.   Example: C235   In this case, C235 is handled as a software counter.   - When an index register is used for a counter number specified in DHSCS (FNC 53), DHSCR   (FNC 54), DHSZ (FNC 55) or DHSCT (FNC280) instruction, all hardware counters are handled as software counters.   Example: C235Z0   - C253 (hardware counter) is handled as a software counter by inverting the logic using the external reset input signal logic changing function.   Example: The logic of the C253 external reset input signal is inverted.   $\rightarrow$ For logic inversion of the external reset input signal, refer to Subsection 4.8.6.

### 4.8.10 Response frequency of high-speed counters

1. Response frequency of hardware counters

The table below shows the maximum response frequency of hardware counters.
When hardware counters are handled as software counters in some operating conditions, their maximum response frequency becomes equivalent to that of software counters, and thus hardware counters are some times subject to restrictions in total frequency.
$\rightarrow$ For the conditions in which hardware counters are handled as software counters, refer to the previous page.

Counter type		Counter No.	Maximum response frequency		
		Main unit	FX3U-4HSX-ADP		
1-phase 1-counting input			C235, C236, C237, C238, C239, C240	100 kHz	200 kHz
		C244(OP), C245(OP)	10 kHz		
1-phase 2-counting input		C246, C248(OP)	100 kHz		
2-phase 2-counting input	1 edge count	C251, C253	50 kHz	100 kHz	
	4 edge count		50 kHz	100 kHz	

2. Response frequency and total frequency of software counters

The table below shows the maximum response frequency and total frequency of software counters.
When using the HSZ or HSCT instruction in a program, both the maximum response frequency and the total frequency are limited for all software counters without regarding the operands of the instruction. When examining a system or creating a program, consider the limitations, and use software counters within the allowable range of maximum response frequency and total frequency.
$\rightarrow$ For the conditions handled as software counters, refer to the previous page.

1) When special analog adapters and $F X_{3} U / F X_{3} U C$ Series special function units/blocks are not used

Counter type				Magnification for calculating total frequency	Response frequency and total frequency according to instructions used								
		Software counter	Following software counter with HSCS, HSCR, HSZ or HSCT instruction*1		When HSZ and HSCT instructions are not used		When only HSCT instruction is used		When only HSZ instruction is used		When both HSZ and HSCT instructions are used		
		Maximum response frequency (kHz)			$\begin{array}{\|c\|} \hline \text { Total } \\ \text { frequency } \\ (\mathrm{kHz}) \end{array}$	Maximum response frequency (kHz)	$\begin{aligned} & \text { Total } \\ & \text { frequency } \\ & (k H z) \end{aligned}$	Maximum response frequency (kHz)	$\begin{gathered} \text { Total } \\ \text { frequency } \\ \text { (kHz) } \end{gathered}$	Maximum response frequency (kHz)	$\begin{gathered} \text { Total } \\ \text { frequency } \\ \text { (kHz) } \end{gathered}$		
1-phase   1-counting input			$\begin{aligned} & \text { C241, C242, } \\ & \text { C243, C244, } \\ & \text { C245 } \end{aligned}$	$\begin{aligned} & \text { C235, C236, } \\ & \text { C237, C238, } \\ & \text { C239, C240 } \end{aligned}$	$\times 1$	40	80	30	60	40-(Number of instruc(tion) ${ }^{*}$	$\begin{gathered} 80- \\ 1.5 \times(\text { Num } \\ \text { ber of } \\ \text { instruc- } \\ \text { tion) } \end{gathered}$	30-(Number of instruction) ${ }^{*}$	$\begin{gathered} 60- \\ 1.5 \times \text { (Num } \\ \text { ber of } \\ \text { instruc- } \\ \text { tion) } \end{gathered}$
		-	$\begin{aligned} & \text { C244(OP), } \\ & \text { C245(OP) } \end{aligned}$	$\times 1$	10	10							
$\begin{array}{r} 1-\mathrm{pl} \\ 2-\mathrm{col} \\ \text { in } \end{array}$	$\begin{aligned} & \text { hase } \\ & \text { unting } \\ & \text { put } \end{aligned}$	$\begin{aligned} & \text { C247, C248, } \\ & \text { C249, C250 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 246, \\ & \mathrm{C} 248(\mathrm{OP}) \end{aligned}$	$\times 1$	40	30							
2-   phase   2-counting input	1 edge count	$\begin{aligned} & \mathrm{C} 252, \\ & \mathrm{C} 253(\mathrm{OP}), \\ & \mathrm{C} 254, \\ & \mathrm{C} 255 \end{aligned}$	C251, C253	$\times 1$	40	30							
	4 edge count			$\times 4$	10	7.5		$\begin{aligned} & \text { (40-Num- } \\ & \text { ber of } \\ & \text { instruc- } \\ & \text { tion) } \div 4 \end{aligned}$		(30-Number of instruction) $\div 4$			

*1. When an index register is added to a counter number specified by a HSCS, HSCR, HSZ or HSCT instruction, all hardware counters are switched to software counters.
*2. The high-speed counters C244 (OP) and C245 (OP) can count up to 10 kHz .
2) When special analog adapters and $\mathrm{FX}_{3} / / \mathrm{FX}_{3} \cup \mathrm{C}$ Series special function units/blocks are used

		Counter type		Magnification for calculating total frequency	Response frequency and total frequency according to instruction use condition								
		Software counter	Following software counter with HSCS, HSCR, HSZ or HSCT instruction*1		When HSZ and HSCT instructions are not used		When only HSCT instruction is used		When only HSZ instruction is used		When both HSZ and HSCT instructions are used		
		Maximum response frequency (kHz)			Total frequency (kHz)	Maximum response frequency (kHz)	Total frequency (kHz)	Maximum response frequency (kHz)	Total frequency (kHz)	Maximum response frequency (kHz)	Total frequency (kHz)		
1-phase 1 -counting input			$\begin{aligned} & \text { C241, C242, } \\ & \text { C243, C244, } \\ & \text { C245 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 235, \mathrm{C} 236, \\ & \mathrm{C} 237, \mathrm{C} 238, \\ & \mathrm{C} 239, \mathrm{C} 240 \end{aligned}$	$\times 1$	30	60	25	50	30 - (Number of instruction) ${ }^{*}$	$\begin{gathered} 50- \\ 1.5 \times(\text { Num } \\ \text { ber of } \\ \text { instruc- } \\ \text { tion) } \end{gathered}$	25-(Number of instruction) ${ }^{*}{ }^{2}$	$\begin{aligned} & 50- \\ & 1.5 \times(\mathrm{Num} \\ & \text { ber of } \\ & \text { instruc- } \\ & \text { tion) } \end{aligned}$
		-	$\begin{aligned} & \text { C244(OP), } \\ & \text { C245(OP) } \end{aligned}$	$\times 1$	10	10							
$\begin{gathered} 1-\mathrm{p} \\ \text { 2-coun } \end{gathered}$	hase ing input	$\begin{aligned} & \text { C247, C248, } \\ & \text { C249, C250 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 246, \\ & \mathrm{C} 248(\mathrm{OP}) \end{aligned}$	$\times 1$	30	25							
2phase	1 edge count	$\begin{aligned} & \mathrm{C} 252, \\ & \mathrm{C} 253(\mathrm{OP}), \\ & \mathrm{C} 254, \\ & \mathrm{C} 255 \end{aligned}$	C251, C253	$\times 1$	30	25							
2-   counting input	4 edge count			$\times 4$	7.5	6.2		(30-Number of instruction) $\div 4$		(25-Number of instruction) $\div 4$			

*1. When an index register is added to a counter number specified by a HSCS, HSCR, HSZ or HSCT instruction, all hardware counters are switched to software counters.
*2. The high-speed counters C244 (OP) and C245 (OP) can count up to 10 kHz .
3. Calculation of the total frequency

Total frequency $\geq$ Sum of "Response frequency of high-speed counter $\times$ Magnification for calculating total frequency"

## 4. Calculation example

When only HSZ instruction is used 6 times in a program, the total frequency and response frequency are calculated as follows in accordance with the columns for "When only HSZ instruction is used" shown above.
This calculation example is provided for a system configuration not including special analog adapters and FX3U/FX3UC Series special function units/blocks.

Used high-speed counter No.		Input   frequency	Maximum response frequency   calculation	Magnification for   calculating total   frequency	Used   instruction
C 237	Operates as   software counter	30 kHz	$40-6$ (times) $=34 \mathrm{kHz}$	$\times 1$	HSZ   C24struction $\times 6$   times
$\mathrm{C} 253(\mathrm{OP})$   $[4$ edge count $]$	Software counter	20 kHz	$40-6($ (times $)=34 \mathrm{kHz}$	$\times 1$	$\times 4$

1) Since only HSZ instruction is used for 6 times, the total frequency is as follows:

Total frequency $\quad=80-1.5 \times 6=71 \mathrm{kHz}$
2) The sum of the response frequencies of the high-speed counters being used is calculated as follows:
"30 kHz × 1[C237]" + "20 kHz × 1[C241]" + "4kHz × 4[C253(OP)]" = $66 \mathrm{kHz} \leq \underline{71 \mathrm{kHz}}$

### 4.8.11 Cautions on use

- For a contact to drive the coil of a high-speed counter, use a contact which is normally ON during high-speed counting.

Example: M8000 (RUN monitor NO contact)


Program a contact which is normally ON during counting


If a number of input relay for counting is specified, high-speed counter cannot execute accurate counting.

- If the operation of a high-speed counter is triggered by a device such as a switch, the counter may malfunction due to extra noise from switch chattering or contact bounce.
- The input filter of an input terminal for a high-speed counter in the main unit is automatically set to $5 \mu \mathrm{~s}$ (X000 to X005) or $50 \mu \mathrm{~s}$ (X006 and X007).
Accordingly, it is not necessary to use the REFF instruction or special data register D8020 (input filter adjustment). The input filter for input relays not being used for high-speed counters remains at 10 ms (initial value).
- The inputs X000 to X007 are used for high-speed counters, input interrupt, pulse catch, SPD/DSZR/DVIT/ZRN instructions and general-purpose inputs. There should be no overlap between each input number.
- When a counting pulse is not provided, none of the high-speed counter output contacts will turn ON, even if the PLC executes an instruction where "present value = set value".
- Counting may be started or stopped for a high-speed counter when the output coil (OUT C***) is set to ON or OFF. Program this output coil in the main routine. If the output coil is programmed in a step ladder (SFC) circuit, subroutine or interrupt routine, counting cannot be started or stopped until the step ladder or routine is executed.
- Make sure that the signal speed for high-speed counters does not exceed the response frequency described above. If an input signal exceeds the response frequency, a WDT error may occur, or communication functions such as a parallel link may malfunction.
- The response frequency changes depending on number of used counters, but the input filter value is fixed to $5 \mu \mathrm{~s}$ (X000 to X005) or $50 \mu \mathrm{~s}$ (X006 and X007). Note that noise above the response frequency may be counted depending on the filter value of the used input.
- When a high-speed counter is reset by the RST instruction, it cannot count until the RST instruction is set to OFF.

1) Program example

2) Timing chart


- Write the following program to "reset only the current value of a high-speed counter (and does not turn OFF the contact)".

1) Program example

X010*1		
	FNC 12   DMOV	K0
DMe	C235	

*1. When the driving contact is the continuous execution type, the current value of the counter is reset to " 0 " at each scan while X 010 remains ON.
2) Timing chart


Because X010 turns ON, Because the driving contact is the "FNC 12 DMOV" is executed. pulse execution type, C235 executes The current value of C 235 is counting normally after that. reset to "0".

- Write the following program to "turn OFF the contact and reset the current value of a high-speed counter".

1) Program example

*2. When the driving contact is the continuous execution type, the current value of the counter is reset to "0" and the counter reset status is cleared at each scan while X010 remains ON.
2) Timing chart


### 4.9 Data Register and File Register [D]

Data registers are devices for storing numeric data. File registers are handled as the initial values of data registers. Each data register or file register stores 16 -bit data (whose most significant bit specifies the positive or negative sign). Two data registers combined or file registers can store 32-bit numeric data (whose most significant bit specifies the positive or negative sign).
$\rightarrow$ For the functions and operations of file registers, refer to Subsection 4.9.4.

### 4.9.1 Numbers of data registers and file registers

The table below shows numbers of data registers and file registers. (Numbers are assigned in decimal.)

1. FX3s PLC

Data registers				File registers   (latched (EEPROM   keep) type)
General type	Fixed latched   (EEPROM keep) type	General type	Special type	D1000*1 and later   D0 to D127   128 points
D128 to D255				
128 points	D256 to D2999   2744 points	D8000 to D8511   512 points	D1000   2000 points maximum	

2. $\mathrm{FX}_{3} / \mathrm{FX}_{3} \mathrm{Gc}$ PLCs

Data registers				File registers (latched (EEPROM keep) type)
General type	Fixed latched (EEPROM keep) type	General type	Special type	
D0 to D127   128 points	$\begin{aligned} & \text { D128 to D1099 } \\ & 972 \text { points } \end{aligned}$	D1100 to D7999 6900 points ${ }^{* 2}$	D8000 to D8511 512 points	D1000*1 and later 7000 points maximum

3. $\mathrm{FX}_{3} \mathrm{u} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

Data registers				File registers (latched (battery backed) type)
General type	Latched (battery backed) type (backed up by battery against power failure)	Fixed latched (battery backed) type (backed up by battery against power failure)	Special type	
$\begin{aligned} & \text { D0 to D199 } \\ & 200 \text { points }{ }^{* 3} \end{aligned}$	$\begin{aligned} & \text { D200 to D511 } \\ & 312 \text { points }{ }^{* 4} \end{aligned}$	$\begin{aligned} & \text { D512 to D7999 } \\ & 7488 \text { points }{ }^{* * 5} \end{aligned}$	D8000 to D8511 512 points	D1000*1 and later 7000 points maximum

*1. Data registers D1000 and later can be used as file registers in units of 500 points by setting parameters.
*2. These registers can be changed to the latched type by the parameter setting when the optional battery is used. However, the latched range cannot be set.
*3. This area is not latched (battery backed). It can be changed to the latched (battery backed) area by setting parameters.
*4. This area is latched (battery backed). It can be changed to the non-latched (non-battery-backed) area by setting parameters.
*5. The latch (battery backup) characteristics cannot be changed using parameters.
When $\mathrm{N}: \mathrm{N}$ Network or parallel link is used, some data registers are occupied for the link.
$\rightarrow$ Refer to the Data Communication Edition.

### 4.9.2 Structures of data registers and file registers

1) 16-bit type

One (16-bit) data register or file register can store a numeric value ranging from $-32,768$ to $+32,767$.


A numeric value can be read from or written to a data register by an applied instruction usually.
Or a numeric value can be directly read from or written to a data register from a display unit, display module, or programming tool.
2) 32-bit type

Two serial data registers or file registers can express 32-bit data.

- A data register with a larger device number handles high-order bits, and a data register with a smaller device number handles low-order bits.
- In the index type, V handles high-order bits, and Z handles low-order bits.

Two data registers or file registers can store a numeric value ranging from $-2,147,483,648$ to $+2,147,483,647$.


In the case of 32-bit type, when a data register or file register on the low-order side (example: D0) is specified, the subsequent number on the high-order side (example: D1) is automatically occupied.
Either an odd or even device number can be specified for the low-order side, but it is recommended to specify an even device number for the low-order side under consideration of the monitoring function of display units, display modules, and programming tools.

### 4.9.3 Functions and operation examples of data registers

Data registers are devices for storing numeric data.
Each data register stores 16-bit data (whose most significant bit specifies the positive or negative sign). Two data registers combined can store 32 -bit numeric data (whose most significant bit specifies the positive or negative sign).

## 1. General type and latched (battery backed) type data registers

- Once data is written to a data register it does not change unless other data overwrite it.

When the PLC mode switches from "RUN" to "STOP" or when the power is interrupted, however, all data stored in general type data registers is cleared to " 0 ".
If the special auxiliary relay M8033 has been driven in advance, data is held even when the PLC mode switches from "RUN" to "STOP".

- Latched (battery backed) type data registers hold their contents even when the PLC mode switches from "RUN" to "STOP" or when the power is interrupted.
In $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 30 \mathrm{PLCs}$, the contents of data registers are backed up by the battery built into the PLC.
In $\mathrm{FX}_{3} / \mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs, the contents of data registers are backed up by the EEPROM built into the PLC. When the optional battery is installed, the battery backs up the contents of some general type data registers against power failure.
The contents of data registers are backed up by the battery built in the PLC.
$\rightarrow$ For details on each backup method, refer to Section 2.6.
- When using fixed latched (battery backed) type data registers as general type data registers, provide the following reset circuit by RST or ZRST instruction at the head step in a program.
Ex. FX3U/FX3uc PLCs

M8002	FNC 40   ZRST	D512	D999

Data stored in D512 to D999 are cleared to "0".
$\rightarrow$ For file registers, refer to Subsection 4.9.4

## 2. Special type data registers

- Special type data registers contain informative, special purpose data and are sometimes written to during program operation.
The contents of special type data registers are cleared to their initial values when restoring the power.
(Generally, these data registers are cleared to " 0 " at first, and then the initial values (if there are any) are written by the system ROM.)
- For example, the watchdog timer time is set initially to D8000 by the system ROM. When changing the contents, write a desired time to D8000 by transfer instruction MOV (FNC 12).

$\rightarrow$ For the data backup characteristics of special data registers, refer to Section 2.6 and Chapter 37. $\rightarrow$ For the types and functions of special data registers, refer to Chapter 37.


## 3. Operation examples

Data registers can be used in various control with numeric data.
This section explains the operations of representative basic instructions and applied instructions among various applications.
For the full use of data registers, refer to the explanation of applied instructions later.

1) Data registers in basic instructions

Specifying the set value of a timer or counter


A counter or timer operates while regarding the contents of a specified data register as its set value.
2) Data registers using applied instructions

Operation examples using MOV (FNC 12) instruction
a) Changing the current value of a counter

FNC 12   MOV	D 5	C 2

The current value of the counter C2 is changed to the contents stored in D5.
b) Reading the current value of a timer or counter to a data register

FNC 12   MOV	C 10	D 4

The current value of the counter C10 is transferred to D4.
c) Storing a numeric value to data registers

16-bit		
$\square$	FNC 12   MOV	K200

"200 (decimal value)" is transferred to D10.

"80000 (decimal value)" is transferred to D10 and D11. Because a numeric value larger than 32767 is 32 -bit data, a 32 -bit operation is required. When a data register on the low-order side (D10) is specified, a data register on the high-order side (D11) is automatically occupied.
d) Transferring the contents of a data register to another data register

|  | FNC 12 <br> MOV | D 10 |
| :--- | :--- | :--- | D $20 \quad$ The contents of D10 are transferred to D20.

3) Using unoccupied timers and counters as data registers

Operation examples using MOV (FNC 12) instruction
Timers and counters not in a program can be used as devices for storing 16-bit or 32-bit numeric values (data registers).

"300 (decimal value)" is transferred to T10.
The contents of T10 are transferred to the current value register of C20.
In this case, T10 is not working as a timer, but is working as a data register.

As in the case of data registers, when 16-bit timers or counters are used as 32-bit devices, two timers or two counters (example: C1 and C0) store 32-bit numeric data.
One 32-bit counter (example: C200) can store 32-bit numeric data.

### 4.9.4 Functions and operation examples of file registers

A file register is a device for setting the initial value of a data register with the same number.
Each file register stores 16 -bit data (whose most significant bit specifies the positive or negative sign). Two file registers combined can store 32-bit numeric data (whose most significant bit specifies the positive or negative sign).
Up to 7000 data registers starting from D1000 can be specified as file registers by the parameter setting.
The number of file registers varies depending on the model.
Refer to Subsection 2.7.3 for the file register setting range.

- In parameter settings, 1 to 14 blocks can be specified. One block secures 500 file registers, but uses the program memory area by 500 steps.
- When some of data registers starting from D1000 are specified as file registers, the remaining data registers not specified as file registers can be used as data registers.

This section explains how to handle file registers.

## 1. Operation of file registers

- The contents of the file register area [A] set inside the built-in memory or memory cassette are batch-transferred to the data memory area $[B]$ inside the system RAM when the PLC power is turned ON or when the PLC mode switches from STOP to RUN.
When data registers are specified as file registers by the parameter setting, the contents of the file register area [A] inside the program memory are transferred when the PLC power is turned ON or when the PLC mode switches from STOP to RUN. This means that the contents changed in the data memory are initialized every time when the PLC turns ON or when the PLC mode switches from STOP to RUN.
When it is necessary to save data changed in the data memory using a sequence program, update the file register area $[A]$ to the changed values by the same-number register update mode in BMOV
(FNC 15) instruction described later.


For devices D1000 and later specified as operands in applied instructions other than BMOV (FNC 15) , indirectly specified values for timers, counters or devices in RST instructions can be read from and written to the data register area $[B]$ in the same way as general data registers.

The remaining area can be used as data registers for general purpose.

- Difference between BMOV (FNC 15) instruction and other instructions

The table below shows the differences between the BMOV (FNC 15) instruction and other applied instructions.

Instruction	Transferred contents	Remarks
BMOV instruction	Data can be read from and written to the file register   area $[A]$ inside the program memory.	-
Applied   instructions other   than BMOV   instruction	Data can be read from and written to the data   register area [B] inside the image memory in the   same way as general data registers.	Because the data register area [B] is provided inside the   system RAM in the PLC, its contents can be arbitrarily   changed without being limited by the optional memory   format.

The data stored in data registers set as file registers are automatically copied from the file register area [A] to the data register area $[B]$ when restoring the power.

- When a file register is monitored from peripheral equipment, the data register area $[B]$ inside the data memory is read.
When "file register device current value change", "file register device forced reset" or "PLC memory all clear" is executed from peripheral equipment, the file register area $[\mathrm{A}]$ inside the program memory is changed, and then the data is automatically transferred to the data register area [B].
Accordingly, when file registers are to be overwritten, the program memory should be "built-in memory" or "memory cassette whose protect switch is set to OFF". (The memory cassette cannot be overwritten from peripheral equipment if its protect switch is set to ON.)


## 2. File register $\leftrightarrow$ Data register <updating the same number registers by BMOV (FNC 15) instruction>

When the same file register is specified for both $S \cdot$ and $D \cdot$ in BOMV (FNC 15) instruction, this instruction specifies the same-number register update mode and executes the following operation:


Read

-When X002 is set to ON while BMOV instruction direction reverse flag M8024 is OFF, the contents of a file register are transferred to the data register area $[B]$ inside the data memory as shown in the figure on the left.

## Write


-When X003 is set to ON while BMOV instruction direction reverse flag M8024 is ON, the contents of a data register inside the data memory are written to the file register area inside the program memory as shown in the figure on the left.

- When updating the contents of a file register in the same-number register update mode, make sure that the file register numbers at $S \cdot$ and $D \cdot$ are equal to each other. Also make sure that the number of transfer points specified by " $n$ " does not exceed the file register area. If the number of transfer points exceeds the file register area, an operation error occurs and the instruction is not executed.
- When $\mathrm{S}^{\cdot}$ and D• are indexed, the instruction is executed if the actual device number is within the file register area and if the number of transfer points is within the file register area also.

3. Data register $\rightarrow$ File register <writing by BMOV (FNC 15) instruction>

When a file register (D1000 or later) is specified for the destination of BMOV (FNC 15) instruction, it is possible to directly write data to the file register area $[A]$ inside the program memory.



- When X001 is set to ON, data is transferred to the data register area $[B]$ and file register area $[A]$ as shown in the figure on the left.
If data cannot be written to the file register area [A] because the protect switch of the memory cassette is ON , data is written to only the data register area $[\mathrm{B}]$. When a file register device is specified for (D•) in a general applied instruction, data is transferred to only the data register area $[\mathrm{B}]$.
- A file register can be specified for $S^{\circ}$. If $D \cdot$ is the same as $S^{\cdot}$, the same-number register update mode is selected.
$\rightarrow$ For the same-number register update mode, refer to the previous page.
- By controlling BMOV instruction direction reverse flag M8024 for BMOV (FNC 15) instruction, data can be transferred in both directions in one program (as shown in the figure below).



## Cautions on reading

When a file register (D1000 or later) is specified for the source of BMOV (FNC 15) instruction and the same number file register is not specified for the destination, the contents of the file register area $[A]$ inside the program memory are not read.

1) When a file register is specified for the source and a data register is specified for the destination


Batch transfer of data registers


- When X000 is set to $O N$, the data register area $[B]$ is read as shown in the figure on the left.
- A file register can be specified for $D^{\cdot}$. If $S^{\cdot}$ is the same as $\mathrm{D}^{\cdot}$, the same-number register update mode is selected.
$\rightarrow$ For the same-number register update mode, refer to the previous page.

2) When file registers of different device numbers are specified for the source and destination



- When X001 is set to ON, the contents of the data register area $[\mathrm{B}]$ are transferred to the data register area $[B]$ and file register area $[A]$ as shown in the figure on the left.
If data cannot be written to the file register area [A] because the protect switch of the memory cassette is ON , data is written to only the data register area $[\mathrm{B}]$.


### 4.9.5 Cautions on using file registers

1. Cautions on using a memory cassette

When changing the contents of file registers stored in the memory cassette, confirm the following conditions:

- Set to OFF the protect switch in the memory cassette.
- Do not turn OFF the power while the contents of file registers are changed. If the power is turned OFF during the change, the data stored in file registers may be filled with unexpected values, or a parameter error may occur.


## 2. Execution time for writing data to file registers

- In FX3u/FX3uc PLCs

It takes 66 to 132 ms to write data in one continuous block ( 500 points) to the memory cassette (flash memory). Execution of the program is paused during this period. Because the watchdog timer is not refreshed during this period, it is necessary to take proper countermeasures such as inserting the WDT instruction into the sequence program.
It takes longer time to write data to file registers stored in a memory cassette (flash memory) compared to writing data to file registers stored in the built-in memory.

- In FX3S/FX3G/FX3GC PLCs It takes 80 ms to write data in one continuous block (500 points) to file registers. Note that execution of the program is paused during this period, but the watchdog timer is automatically refreshed. The time for writing data is same between file registers stored in the built-in memory and file registers stored in a memory cassette (EEPROM).

3. Allowable number of writes to the memory

Data can be written to the memory cassette up to 10,000 times, and to the memory (EEPROM) built in FX3s/FX3G/ FX3GC PLCs up to 20,000 times.
When a continuous operation type instruction is used for data writing in a program, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction (BMOVP).
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).
4. Cautions on handling file registers in the same-number register update mode in BMOV (FNC 15) instruction

- When updating the contents of the same number file register, make sure that the file register number at $\qquad$ and (D.) are equal to each other.
- Make sure that the number of transfer points specified by "n" does not exceed the file register area.
- If the number of transfer points specified by " n " exceeds the file register area, an operation error (M8067) occurs and the instruction is not executed.
- In the case of indexing

When (S• and (D• are indexed, the instruction is executed if the actual device number is within the file register area and the number of transfer points is within the file register area also.

### 4.10 Extension Register [R] and Extension File Register [ER]

Extension registers $(R)$ are the extended form of data registers $(D)$.
The contents of extension registers (R) can be stored in extension file registers (ER). In FX3U/FX3UC PLCs, extension file registers (ER) are available only while the memory cassette is attached.

### 4.10.1 Numbers of extension registers and extension file registers

The table below shows numbers of extension registers (R) and extension file registers (ER). (Numbers are assigned in decimal.)

1. $\mathrm{FX}_{3} / \mathrm{FX}_{3} \mathrm{Gc}$ PLCs

Extension register (R)   (General type)	Extension file register (ER)   (file type)
$R 0$ to R23999	ER0 to ER23999
24000 points $^{* 1}$	24000 points $^{* 2}$

2. $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{UC}$ PLCs

Extension register (R)   (latched [battery backed] type)	Extension file register (ER)   (file type)
R0 to R32767	ER0 to ER32767
32768 points	32768 points ${ }^{* 3}$

*1. These registers can be changed to the latched (battery backed) type by the parameter setting when the optional battery is used. However, the latched range cannot be set.
*2. These registers are stored in the EEPROM built in the PLC, or in the EEPROM in the memory cassette when the memory cassette is attached.
*3. Available only while a memory cassette is mounted (because they are stored in the flash memory inside a memory cassette.)

### 4.10.2 Data storage destination and access method

Because the memory for storing data is different between extension registers and extension file registers, the access method is different as shown in the table below:

Data storage destination

Device	PLC	Data storage destination
Extension register	FX3G/FX3GC	Built-in RAM
	FX3U/FX3UC	Built-in RAM (latched [battery backed] area)
Extension file register	FX3G	Built-in EEPROM or EEPROM in memory cassette
	FX3GC	Built-in EEPROM
	FX3U/FX3UC	Memory cassette (flash memory)

Difference in the access method

Access method	Extension   register	Extension file register	
Reading in program	$\checkmark$	$\triangle$ Only dedicated instructions are   enabled	
Writing in program	$\checkmark$	OUnly dedicated instructions are   enabled	
	Test operation in online mode of GX Works2, GX Developer	$\checkmark$	$\checkmark$
Data change   method	Batch writing by GX Works2, GX Developer	$\checkmark$	$\times$
	Computer link function	$\checkmark$	$\checkmark$

### 4.10.3 Structures of extension registers and extension file registers

One extension register consists of 16 bits. Extension registers can be used in 16-bit and 32 -bit applied instructions in the same way as data registers.

1) 16-bit type

One extension register (consisting of 16 bits) can handle a numeric ranging from -32768 to +32767 .


A numeric value is usually read from and written to an extension register by applied instructions.
However, a numeric value can also be directly read from and written to an extension register from a display unit, display module, or programming tool.
2) 32-bit type

Two serial extension registers (consisting of 32 bits) can express a 32 -bit numeric value ranging from $-2,147,483,648$ to $+2,147,483,647$. (A larger number register handles high-order 16 bits, and a smaller number register handles low-order 16 bits.)


- In the case of 32 bit type, when an extension register on the low-order side (example: R0) is specified, the subsequent serial number on the high-order side (example: R1) is automatically occupied.
Either an odd or even device number can be specified for the low-order side, but it is recommended to specify an even device number for the convenience of the monitoring function for display units, display modules, and programming tools.


### 4.10.4 Initialization of extension registers and extension file registers

The contents of extension registers are backed up by the battery even when the power is turned OFF or when the PLC mode switches from STOP to RUN in FX3U/FX3UC PLCs and in FX3G/FX3GC PLCs if extension registers are changed to the latched (battery backed) type and the optional battery is installed.
When initializing the contents of extension registers, clear them using a sequence program, GX Works2 or GX Developer.

1. When clearing the data using a program

- When initializing some extension registers (R) Example: When initializing (clearing) R0 to R199

Command	FNC 16   FMOVP	K0	R0	K200

- When initializing extension registers and extension file registers in sector units

Sectors are not provided for extension registers and extension file registers in FX3G/FX3GC PLCs. Example: When initializing R0 to R4095 and ER0 to ER4095 (initializing two sectors starting from R0 and ERO) Ex. FX $3 \mathrm{U} / \mathrm{FX} 3 \cup с$ PLCs

| Command | FNC292 <br> INITRP | R0 | K2 |
| :--- | :--- | :--- | :--- | | The current value in Ro to R4095 is initialized |
| :--- |
| to "FFFFH". |

## 2. When clearing the data using GX Works2

Select [Online] $\rightarrow$ [PLC Memory Operation] $\rightarrow$ [Clear PLC memory...] in GX Works2, and clear [Data device]. This operation initializes the contents of timers, counters, data registers, file registers and extension registers.

### 4.10.5 Functions and operation examples of extension registers

Extension registers can be used in various controls with numeric data the same as data registers.
This subsection explains operations in representative basic instructions and applied instructions among various applications.
For the full use of extension registers, refer to the explanation of applied instructions described later.

1. Extension registers in basic instructions

- Specifying an extension register as the set value of a timer or counter


A counter or timer operates with regards to the contents of a specified extension register as the set value.

## 2. Extension registers in applied instructions

Operation examples using MOV (FNC 12) instruction

- Changing the current value of a counter

FNC 12 MOV	R 5	C 2

The current value of the counter C 2 is changed to the contents of R5.

- Reading the current value of a counter to an extension register

FNC 12   MOV	C 10	R 4

The current value of the counter C10 is transferred to R4.

- Storing a numeric value to extension registers

"80000 (decimal value)" is transferred to R10 and R11.
Because a numeric value larger than 32767, the 32-bit operation (double D instruction) is required. When an extension register on the low-order side (R10) is specified, an extension register on the high-order side (R11) is automatically occupied.
- Transferring the contents of a data register to extension register


The contents of D10 are transferred to R20.
"200 (decimal value)" is transferred to R10.

### 4.10.6 Functions and operation examples of extension file registers

Extension file registers (ER) are usually used as log data storage destinations and set data storage destinations.
Extension file registers can be handled only with dedicated instructions shown in the table below. When using data contents with other instructions, transfer them to an extension register of the same device number, and then use the extension register.
However, extension file registers (ER) are available in FX3U/FX3Uc PLCs only when the memory cassette is attached.

- FX3G/FX3Gc PLCs

Instruction	Description
LOADR (FNC290)	This (transfer) instruction reads data of extension file registers (ER) ${ }^{* 1}$ to extension registers (R).
RWER (FNC294)	This (transfer) instruction writes specified extension registers (R) to extension file registers (ER)   Use this instruction to store the contents of any extension register (R) in extension file registers (ER)

*1. When the memory cassette is attached, extension file registers in the memory cassette are accessed. When the memory cassette is not attached, extension file registers in the EEPROM built in the PLC are accessed.

- FX3u/FX3uc PLCs

Instruction	Description
LOADR (FNC290)	This (transfer) instruction reads data of extension file registers (ER)*2 to extension registers (R).
SAVER (FNC291)	This (transfer) instruction writes data of extension registers (R) to extension file registers (ER) ${ }^{* 2}$ in 2048 point ( 1 sector) units. Use this instruction to store newly created sectors (2048 points) of data to extension file registers $(E R)^{*}{ }^{2}$.
INITR (FNC292)	This instruction initializes extension registers (R) and extension file registers (ER) ${ }^{*}$ 2 in 2048 point ( 1 sector) units. Use this instruction to initialize extension registers $(R)$ and extension file registers (ER) ${ }^{*}$ before starting to log data by the LOGR instruction.
LOGR (FNC293)	This instruction logs specified data, and writes it to extension registers (R) and extension file registers (ER) ${ }^{*}$.
RWER (FNC294)	This (transfer) instruction writes specified extension registers (R) to extension file registers (ER) ${ }^{*}$. This instruction is supported in FX3UC PLC Ver. 1.30 or later. Use this instruction to store the contents of any extension register (R) to extension file register (ER)* ${ }^{*}$.
INITER (FNC295)	This instruction initializes extension file registers (ER) ${ }^{*}$ in 2048 point ( 1 sector) units. This instruction is supported in FX3UC PLC Ver. 1.30 or later. Use this instruction to initialize extension file registers (ER) ${ }^{*}$ b before executing SAVER instruction.

*2. Extension file registers are only accessible when a memory cassette is mounted.

1. Relationship between extension file registers and extension registers

Extension file registers and extension registers have the following positional relationship inside the PLC.
a) $\mathrm{FX}_{3} / \mathrm{FX} X_{3 G C}$ PLCs

*3. Memory cassette cannot be connected to FX3GC PLCs.
b) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs

2. Sectors of extension registers and extension file registers

In FX3U/FX3UC PLCs, extension registers and extension file registers are divided into sectors in the data configuration. One sector consists of 2,048 devices. The table below shows the head device number in each sector.
In FX3G/FX3GC PLCs, sectors are not provided for extension registers and extension file registers.

Sector No.	Head device No.	Device range	Sector No.	Head device No.	Device range
Sector 0	R0	ER0 to ER2047, R0 to R2047	Sector 8	R16384	ER16384 to ER18431, R16384 to R18431
Sector 1	R2048	ER2048 to ER4095, R2048 to R4095	Sector 9	R18432	ER18432 to ER20479, R18432 to R20479
Sector 2	R4096	ER4096 to ER6143, R4096 to R6143	Sector 10	R20480	ER20480 to ER22527, R20480 to R22527
Sector 3	R6144	ER6144 to ER8191, R6144 to R8191	Sector 11	R22528	ER22528 to ER24575, R22528 to R24575
Sector 4	R8192	ER8192 to ER10239, R8192 to R10239	Sector 12	R24576	ER24576 to ER26623, R24576 to R26623
Sector 5	R10240	ER10240 to ER12287, R10240 to R12287	Sector 13	R26624	ER26624 to ER28671, R26624 to R28671
Sector 6	R12288	ER12288 to ER14335, R12288 to R14335	Sector 14	R28672	ER28672 to ER30719, R28672 to R30719
Sector 7	R14336	ER14336 to ER16383, R14336 to R16383	Sector 15	R30720	ER30720 to ER32767, R30720 to R32767

### 4.10.7 Cautions on using extension file registers

## 1. Cautions on writing data to extension file registers (FX3u/FX3uc PLCs)

Because extension file registers are stored in the flash memory inside a memory cassette, pay attention to the following points:

- When writing data to extension file registers by SAVER instruction Initialize sectors to be written before executing this instruction. After initialization, store data to be written to extension registers.
In FX3uc PLC Ver. 1.30 or later, it is not necessary to initialize sectors to be written when using RWER instruction.
- When writing data to extension file registers by LOGR instruction Initialize sectors to be written before starting to log data.
- When using INITR instruction

This instruction initializes the contents of specified extension registers and extension file registers. When initializing only extension file registers by this instruction, make sure to temporarily move the contents of extension registers to unused extension registers or unused data registers before executing this instruction. When initializing only extension file registers in FX3UC PLC Ver. 1.30 or later, use INITER instruction.

## 2. Initialization of extension file registers

Because the contents of extension file registers are stored in the memory cassette or built-in EEPROM, use the data clear operation in a sequence program, GX Works2 or GX Developer to initialize them.
For writing data to extension file registers in $F^{2} 3 U / F X_{3} \cup C$ PLCs, it is necessary to initialize the target area to be written in advance.
For writing data to extension file registers in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC}$ PLCs, it is not necessary to initialize the target area to be written in advance.

1) When initializing extension file registers in a program (required only in $F X_{3} U / F X_{3} \cup c$ PLCs)
a) Initializing only extension file registers in sector units [Ver. 1.30 or later]

Example: When initializing ER0 to ER4095 (initializing two sectors starting from ERO)

b) Initializing extension registers and extension file registers in sector units Example: When initializing R0 to R4095 and ER0 to ER4095 (initializing two sectors starting from R0 and ERO)

Command input	FNC292INITRP	R0	K2	The current value is initialized to "FFFFH" in R0 to R4095 and ER0 to ER4095.

2) When initializing extension file registers using GX Works2

Select [Online] $\rightarrow$ [PLC Memory Operation] $\rightarrow$ [Clear PLC memory...] in GX Works2, and clear [Data device].
This operation initializes the contents of timers, counters, data registers, file registers and extension registers.
3. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- In FX3U/FX3uc PLCs

Data can be written to the memory cassette (flash memory) up to 10,000 times.
Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.

- In FX3G/FX3Gc PLCs

Data can be written to the memory cassette (EEPROM) up to 10,000 times, and to the built-in memory (EEPROM) up to 20,000 times.
Every time the RWER (FNC294) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

Execution of the LOADR (FNC290) instruction is not counted as a write to the memory.

### 4.10.8 Registration of data in extension registers and extension file registers

This subsection explains the operating procedures of GX Works2.
$\rightarrow$ For details on GX Developer operating procedures, refer to GX Developer Version 8 Operating Manual.
1 Setting the project type, PLC type and programming language
Select [Project] $\rightarrow[\mathrm{New}]$.

New Project	
Project Type:	
Simple Project	T Use Label
PLC Series:	
FXCPU	
PLC Type:	
FX3U,FX3UC	
Language:	
Ladder	

## 2 Creating the device memory

This operation is not required when using the device memory offered as the default.

1. Right-click [Device Memory] in the project data list to open the submenu.
2. Click [Add New Data] to open the New Data dialog box.
3. Input the data name, and click the [OK] button to display the dialog box for Device Memory.


3 Setting the data

1. Select [Edit] $\rightarrow$ [Input Device] to open the Input Device dialog box.
2. Set the "Device", "Range", "Display Mode" and "Register".

3. Set the data.

Ezevice Memory MAIN1								- $\square$
	+0	+1	+2	+3	+4	+5	+6	+7
ERO	2	1	4	0	1000	0	0	0
ER10	0	0	0	0	0	0	0	0
ER20	0	0	0	0	0	0	0	0
ER30	0	0	0	6000	0	0	0	9000
ER40	0	0	0	0	0	0	0	0
ER50	0	0	0	0	0	0	0	0
ER60	0	0	0	0	0	0	0	0
ER70	0	0	0	0	0	0	0	0
ER80	0	0	0	0	0	0	0	0
ER90	0	0	0	0	0	0	0	0
ER100	0							
(1)								$+\square$

## 4 Writing (transferring) the data to the PLC

1. Select [Online] $\rightarrow$ [Write to PLC] to open the Online Data Operation dialog box.
2. Check the Device Memory to Write (transfer) the data.

3. Click the [Detail] button in the Online Data Operation dialog box to open the Device Data Detail Setting dialog box.
Check the "Ext. file register".

4. Click the [Execute] button in the Online Data Operation dialog box to write (transfer) to the PLC.

### 4.11 Index Register [V and Z]

Index registers can be used in the same way as of data registers. But they are special registers since they can change the contents of device numbers and numeric values by program when combined with another device number or numeric value in operands of applied instructions.

### 4.11.1 Numbers of index registers

The table below shows numbers of index registers ( V and Z ). (Numbers are assigned in decimal.) When only " V " or " $Z$ " is specified, it is handled as "VO" or "ZO" respectively.

Index type
$\mathrm{V} 0(\mathrm{~V})$ to $\mathrm{V7}, \mathrm{Z0}(\mathrm{Z})$ to $\mathrm{Z7}$
16 points $^{* 1}$

*1. The characteristics related to protection against power failure cannot be changed by parameters.

### 4.11.2 Functions and structures

1. 16-bit type

Index registers have the same structures as data registers.


## 2. 32-bit type

Make sure to use Z 0 to Z 7 when indexing a device in a 32-bit applied instruction or handling a numeric value outside the 16 -bit range.

V0 (high-order side)	Z0 (low-order side)
V1 (high-order side)	Z1 (low-order side)
V2 (high-order side)	Z2 (low-order side)
V3 (high-order side)	Z3 (low-order side)
V4 (high-order side)	Z4 (low-order side)
V5 (high-order side)	Z5 (low-order side)
V6 (high-order side)	Z6 (low-order side)
V7 (high-order side)	Z7 (low-order side)

This is because FX PLCs handle $Z$ as the low-order side of a 32-bit register as shown in combinations of V and Z in the figure on the left. Even if V0 to V 7 on the high-order side is specified, indexing is not executed.
When index registers are specified as a 32-bit device, both V (highorder side) and $Z$ (low-order side) are referred to at the same time. If a numeric value for another purpose remains in V (high-order side), consequently the numeric value here becomes extremely large, thus an operation error occurs.
Example of writing to 32-bit index registers


Even if an index value in a 32-bit applied instruction does not exceed the 16 -bit numeric range, use a 32 -bit operation instruction such as DMOV for writing a numeric value to $Z$ as shown in the above figure so that both V (high-order side) and Z (low-order side) are overwritten at the same time.

### 4.11.3 Indexing of devices

Available devices and the contents of indexing are as described below:
$\rightarrow$ For indexing method and cautions, refer to Section 5.7.
Decimal devices/numeric values: M, S, T, C, D, R, KnM, KnS, P and K
For example, when "V0 = K5" is specified and "D20V0" is executed, an instruction is executed for the device number D25 (D20 + 5).
Constants can be indexed also. When "K30V0" is specified, an instruction is executed for decimal value K35 (30 + 5).
Octal devices: X, Y, KnX and KnY
For example, when " $Z 1=K 8$ " is specified and "X0Z1" is executed, an instruction is executed for the device number $\mathrm{X} 10(\mathrm{X} 0+8$ : addition of octal value). When indexing for a device whose device number is handled in octal, a numeric value converted into octal is added for the contents of V and Z .
Accordingly, note that when "Z1 = K10" is specified "X0Z1" indicates that X 12 is specified, and X 10 is not specified.
Hexadecimal numeric values: H
For example, when "V5 = K30" is specified and a constant "H30V5" is specified, it is handled as $\mathrm{H} 4 \mathrm{E}(30 \mathrm{H}+\mathrm{K} 30)$. When "V5 = H30" is specified and a constant "H3OV5" is specified, it is handled as $\mathrm{H} 60(30 \mathrm{H}+30 \mathrm{H})$.

### 4.12 Pointer [P and I]

### 4.12.1 Numbers of pointers

The table below shows numbers of pointers ( P and I ). (Numbers are assigned in decimal.)
When using a pointer for input interrupt, an input number assigned to it cannot be used together with a "high-speed counter" or "speed detection (FNC 56)" which uses the same input range.

1. $\mathrm{FX}_{3}$ PLC

For branch		For input interrupt	For timer interrupt
	For jump to END step		
P0 to P62	P63	$I 00 \square(X 000) I 30 \square(X 003)$	$17 \square \square$
P64 to P255	1 point	$I 10 \square(X 001) I 40 \square(X 004)$	$18 \square \square$
255 points		$I 20 \square(X 002) I 50 \square(X 005)$	3 points

2. $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs

For branch	For jump to END step	For input interrupt	For timer interrupt
P0 to P62 P64 to P2047 2047 points	$\begin{aligned} & \text { P63 } \\ & 1 \text { point } \end{aligned}$	$\begin{gathered} I 00 \square(X 000) I 30 \square(X 003) \\ I 10 \square(X 001) I 40 \square(X 004) \\ I 20 \square(X 002) I 50 \square(X 005) \\ 6 \text { points } \end{gathered}$	$\begin{gathered} \hline \text { I6 } \square \square \\ \text { 17 } \square \square \\ \text { I8 } \square \square \\ 3 \text { points } \end{gathered}$

## 3. $\mathrm{FX}_{3} \mathrm{u} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs

For branch	For jump to END step	For input interrupt/input delay interrupt	For timer interrupt	For counter interrupt
$\begin{aligned} & \text { P0 to P62 } \\ & \text { P64 to P4095 } \\ & 4095 \text { points } \end{aligned}$	P63   1 point	$100 \square(X 000) I 30 \square(X 003)$ $I 10 \square$ (X001) $140 \square$ (X004) $\mathrm{I} 20 \square$ (X002) $150 \square$ (X005) 6 points	$\begin{gathered} \hline 16 \square \square \\ 17 \square \square \\ 18 \square \square \\ 3 \text { points } \end{gathered}$	$\begin{gathered} \hline 1010 I 040 \\ 10201050 \\ 10301060 \\ 6 \text { points } \end{gathered}$

### 4.12.2 Functions and operation examples of pointers for branch

The roles and operations of pointers for branch are as described below.
Because all of these pointers are combined with applied instructions, refer to the explanation of each instruction for the detailed method.
$\rightarrow$ For details on interrupt function, refer to Chapter 36.

## 1. Applied instructions using pointers for branch (P)

- CJ (FNC 00) (conditional jump)

- CALL (FNC 01) call subroutine


When X001 turns ON, the PLC jumps to a label position specified by CJ (FNC 00 ) instruction, and executes the subsequent program.

When X001 turns ON, the PLC executes a subroutine in the label position specified by CALL (FNC 01) instruction, and then returns to the original position by SRET (FNC 02) instruction.

- Role of pointer P63 for jump to the END step


P63 is a special pointer for jumping to the END step when the CJ (FNC 00) instruction is executed.
Note that a program error will occur when P63 is programmed as a label.
$\rightarrow$ Refer to " 5 . Label unnecessary for the pointer P63" in Section 8.1. DI (FNC 05) for interrupt return, enabling interrupt and disabling interrupt.

## 1. Pointers for input interrupt (delay interrupt): 6 points

$\rightarrow$ For details on input interrupt function, refer to Section 36.3 and Section 36.4. The PLC can receive input signals from specific input numbers without influence of the operation cycle of the PLC. By using these input signals as triggers, the PLC executes interrupt routine programs.
Because pointers for input interrupt can handle signals shorter than the operation cycle, use them for high priority processing during sequence control and for control handling short pulses.

Input	Pointer for input interrupt		Interrupt disabling flag	ON duration or OFF duration of input signal		
	Interrupt at rising edge	Interrupt at falling edge		FX3S	FX3G/FX3GC	FX3U/FX3UC
X000	1001	1000	M8050*1	$10 \mu \mathrm{~s}$ or more	$10 \mu \mathrm{~s}$ or more	$5 \mu \mathrm{~s}$ or more
X001	1101	1100	M8051 ${ }^{* 1}$			
X002	1201	1200	M8052 ${ }^{* 1}$	$50 \mu \mathrm{~s}$ or more	$50 \mu \mathrm{~s}$ or more	
X003	1301	1300	M8053 ${ }^{* 1}$		10 us or more	
X004	1401	1400	M8054 ${ }^{* 1}$		$10 \mu$ s or more	
X005	1501	1500	M8055*1		$50 \mu \mathrm{~s}$ or more	

*1. Cleared when the PLC mode switches from RUN to STOP.

## Non-overlap of input numbers

Inputs X000 to X007 are used for high-speed counters, input interrupt, pulse catch, SPD/ZRN/DSZR/DVIT instructions and general-purpose inputs. When assigning functions, there should be no overlap between those input terminals.

## Delay function of input interrupt (Only in FX3U/FX3UC PLCs)

This input interrupt has a function to delay the execution of interrupt routine in units of 1 ms .
The delay time is specified by the following pattern program.
This delay function can electrically adjust the mounting position of sensors for input interrupts without shifting the actual position.

I	Contact for setting delay time			- Delay time specifying program   Make sure to describe the delay time specifying program shown on the left at the head of an interrupt routine program.   Because this is a pattern program, change only the delay time [1].   Only a constant (K) or data register (D) can be used to specify the delay time ${ }^{*}$.
	M8393     FNC 12   MOV	KOOO*	D8393	
	[1] Delay time (unit: ms)			
	Program to be processed by input interrupt			
	$\text { FNC } 03$IRET			- Interrupt program is finished

## Operations



- Interrupt is usually disabled in the PLC. If interrupt is enabled by El instruction, when X000 or X001 turns ON while a program is scanned, the PLC executes the interrupt routine [1] or [2], and then returns to the main program by IRET instruction.
- Make sure to program a pointer for interrupt ( ${ }^{* * * *)}$ as a label after FEND instruction.

2. Pointers for timer interrupt: 3 points
$\rightarrow$ For details on timer interrupt function, refer to Section 36.5.
The PLC executes an interrupt routine program at every specified interrupt cycle time ( 10 to 99 ms ).
Use these pointers for control requiring cyclic processing regardless of the operation cycle of the PLC.

Input No.	Interrupt cycle (ms)	Interrupt disabling flag
16ロロ	An integer ranging from 10 to 99 is put in " $\square \square$ " portion of the pointer name. Ex: $1610=$ Timer interrupt at every 10 ms	M8056*1
$17 \square \square$		M8057 ${ }^{* 1}$
$18 \square \square$		M8058*1

*1. Cleared when the PLC mode switches from RUN to STOP.

## Caution

It is recommended to set the timer interrupt time to 10 ms or more. When the timer interrupt time is set to 9 ms or less, the timer interrupt processing may not be executed at an accurate cycle in the following cases:

- When the processing time of the interrupt program is long
- When an instruction requiring long processing time is used in the main program


## Operations



- Timer interrupt is enabled after El instruction. It is not necessary to program DI (disable interrupt) instruction when no zone to disable timer interrupt is needed.
- "FEND" indicates the end of the main program.
Make sure to describe an interrupt routine after "FEND".
- The PLC executes an interrupt routine at every 20 ms .
The PLC returns to main program by IRET instruction.


## 3. Pointers for counter interrupt: 6 points* ${ }^{* 1}$

$\rightarrow$ For details on counter interrupt function, refer to Section 36.6.
The PLC executes an interrupt routine based on the comparison result obtained by the comparison set instruction for high-speed counter (DHSCS instruction).
Use these pointers for control requiring an interrupt routine based on the counting result from high-speed counters.

Pointer No.	Interrupt disabling flag
1010	M8059*2
1020	
1030	


Pointer No.	Interrupt disabling flag
1040	M8059*2
1050	
1060	

*1. This function is supported only in FX3U/FX3UC PLCs.
*2. Cleared when the PLC mode switches from RUN to STOP.

## Operations



## 5. How to Specify Devices and Constants to Instructions

This chapter explains how to specify sources and destinations in sequence instructions which are the basis for handling PLC instructions.

- Specifying constants as decimal, hexadecimal and real numbers
- Specifying digits of bit devices
- Specifying bit positions in data registers
- Directly specifying BFM (buffer memory) in special function units/blocks
- Indexing with index registers


### 5.1 Numeric Values Handled in PLC <br> (Octal, Decimal, Hexadecimal and Real Numbers)

FX PLCs handle five types of numeric values according to the application and purpose.
This section explains the roles and functions of these numeric values.

### 5.1.1 Types of numeric values

1. Decimal numbers (DEC)

- Set value (constant K) of timers and counters
- Device numbers of auxiliary relays (M), timers ( $T$ ), counters (C), state relays ( S ), etc.
- Numeric values in operands and instruction operations in applied instructions (constant K)

2. Hexadecimal numbers (HEX)

- Numeric values in operands and instruction operations in applied instructions (constant H)

3. Binary numbers (BIN)

For a timer, counter or data register, a numeric value is specified in decimal or hexadecimal as described above. But all of these numeric values are handled in binary format inside PLCs.
When these devices are monitored in peripheral equipment, they are automatically converted into the decimal format as shown in the figure on the right (or can be converted into the hexadecimal format).

- Handling of negative value

A negative value is expressed in complement of PLCs.
For details, refer to the explanation of NEG (FNC 29)

- instruction.


## 4. Octal numbers (OCT)

In FX PLCs, device numbers of input relays and output relays are
 assigned in octal
Because " 8 " and " 9 " do not exist in octal, device numbers are carried in the way " 0 to 7,10 to 17,70 to 77,100 to 107".
5. Binary coded decimal (BCD)

BCD format expresses each numeric value from 0 to 9 constructing each digit of a decimal number in a 4-bit binary number.
Because handling of each digit is easy, this format is adopted in controlling digital switches of BCD output type and seven-segment display units.
6. Real numbers (floating point data)

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs have the floating point operation function to achieve high accuracy operation.
In floating point operations, binary floating points (real numbers) are used, and scientific notation (real numbers) are used for monitoring them.

### 5.1.2 Conversion of numeric values

Numeric values handled in FX PLCs can be converted as shown in the table below:

Decimal number (DEC)	Octal number (OCT)	Cexadecimal number   (HEX)	Binary number (BIN)		BCD	
0	0	00	0000	0000	0000	0000
1	1	01	0000	0001	0000	0001
2	2	02	0000	0010	0000	0010
3	3	03	0000	0011	0000	0011
4	4	04	0000	0100	0000	0100
5	5	05	0000	0101	0000	0101
6	6	06	0000	0110	0000	0110
7	7	07	0000	0111	0000	0111
8	10	08	0000	1000	0000	1000
9	11	09	0000	1001	0000	1001
10	12	$0 A$	0000	1010	0001	0000
11	13	$0 B$	0000	1011	0001	0001
12	15	$0 C$	0000	1100	0001	0010
13	16	$0 D$	0000	1101	0001	0011
14	17	$0 E$	0000	1110	0001	0100
15	20	$0 F$	0000	1111	0001	0101
16	$\vdots$	10	0001	0000	0001	0110
$\vdots$	$\vdots$	63	$\vdots$	$\vdots$	$\vdots$	$\vdots$
99	$\vdots$		0110	0011	1001	1001
$\vdots$		$\vdots$	$\vdots$	$\vdots$	$\vdots$	$\vdots$

Major applications

Decimal number (DEC)	Octal number (OCT)	Hexadecimal number   (HEX)	Binary number (BIN)	BCD
Constants (K) and   numbers of internal   devices except I/O   relays	Numbers of internal   I/O relays	Constants (H)	Processing inside   PLC	BCD digital switches   and seven-segment   display units

### 5.1.3 Handling of numeric values in floating point operations

## $\mathrm{FX}_{3} \quad \mathrm{FX}_{3}$ <br> Ver.1.00 ॥ Ver. 1.10 " <br> F× ${ }^{\text {F3GC }}$ <br> F× $\times 3$ <br> FX ${ }_{3}$ <br> Ver. 1.00 ı $\Rightarrow$ <br> Ver.1.10 $\quad \Rightarrow$ Ver.1.40 $\Rightarrow$ <br> Ver.2.20 $1 \Rightarrow$ <br> Ver.1.00" $\Rightarrow$

## Handling of numeric values in floating point operations

Binary integers are handled inside PLCs.
During division of integers, the answer " $40 \div 3=13 \ldots 1$ " is obtained, for example.
During square root extraction operations, decimal points are ignored.
In FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs, floating point operations are available to achieve higher accuracy in such operations.

## Binary floating point (real number)

When handling a binary floating point (real number) in data registers, use a pair of data registers having consecutive device numbers.
When D11 and D10 are used, for example, a binary floating point is handled as shown below:


Example: $\mathrm{A} 22=1, \mathrm{~A} 21=0, \mathrm{~A} 20=1, \mathrm{~A} 19$ to $\mathrm{A} 0=0, \mathrm{E} 7=1, \mathrm{E} 6$ to $\mathrm{E} 1=0, \mathrm{E} 0=1$

Binary floating point (real number)

$$
\begin{aligned}
= & \pm\left(2^{0}+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+\ldots+0 \times 2^{-23}\right) \\
& \times 2^{(1 \times 2+0 \times 2+\ldots+1 \times 2) / 2^{127}} \\
= & \pm 1.625 \times 2^{129} / 2^{127}= \pm 1.625 \times 2^{2}
\end{aligned}
$$

The sign bit b31 states whether data is positive or negative, but is not handled as a complement.
Number of significant figures
The number of significant figures of binary floating point is approximately 7 when expressed in decimal. The binary floating point range is as follows:

- Least absolute value: $1175494 \times 10^{-44}$
- Most absolute value: $3402823 \times 10^{32}$

Handling of the zero (M8020), borrow (M8021) and carry (M8022) flags
These flags operate as follows in floating point operations.

- Zero flag : 1 when the result is 0
- Borrow flag : 1 when the result does not reach the minimum unit but is not 0
- Carry flag : 1 when the absolute value of the result exceeds the available numeric value range.


## Monitoring of binary floating point (real number)

A programming software supporting the display of floating point such as GX Works2 and GX Developer can directly monitor binary floating point (real number).
A programming tool not supporting the display of floating point can monitor binary floating point (real number) when it is converted into scientific notation (real number).

## Scientific notation（real number）

Because binary floating point（real number）is difficult to understand for users，it can be converted into scientific notation（real number）．But internal operations are executed using binary floating point（real number）．
Scientific notation（real number）is handled by a pair of data registers having serial device numbers．Different from binary floating point（real number），a data register having a smaller device number handles the mantissa part，and the other data register having a larger device number handles the exponent part．
For example，when data registers D1 and D0 are used，they handle scientific notation as shown below．Data can be written to D0 and D1 by MOV instruction．

Scientific notation $($ real number $)=\quad[$ Mantissa D0 $] \times 10[$ Exponent D1］
Mantissa DO $= \pm$（1000 to 9999）or 0
Exponent D1 $=-41$ to +35
The most significant bit of D0 and D1 specifies the positive or negative sign respectively，and is handled as the complement of 2 respectively．
The mantissa D0 does not allow＂100＂，for example．In the case of＂100＂，it is handled as＂ $1000 \times 10^{-1}$＂． The scientific notation（real number）range is as follows：
－Minimum absolute value： $1175 \times 10^{-41}$
－Maximum absolute value： $3402 \times 10^{35}$
Number of significant figures
The number of significant figures of scientific notation is approximately 4 when expressed in decimal．The scientific notation range is as described above．

Scientific notation（real number）is valid in the following instructions：
－Conversion from binary floating point（real number）into scientific notation（real number）：FNC118（［D］EBCD）
－Conversion from scientific notation（real number）into binary floating point（real number）：FNC119（［D］EBIN）

### 5.2 Specification of Constants K, H and E (Decimal, Hexadecimal and Real Number)

When handling constants in a sequence program, use constant K (decimal), H (hexadecimal) or E (floating point). In peripheral equipment for programming, add " K " to a decimal number, " H " to a hexadecimal number and " E " to a floating point (real number) for operations associated with numeric values in instructions. (Examples: K100 (decimal number), H64 (hexadecimal number) and E1.23 (or E1.23 + 10) (real number))
The roles and functions of constants are described below.

### 5.2.1 Constant K (decimal number)

" $K$ " indicates a decimal integer, and is mainly used to specify the set value of timers and counters and numeric values as operands in applied instructions. (Example: K1234)
The decimal constant specification range is as follows:

- When word data (16 bits) is used ...... K-32768 to K32767
- When double data (32 bits) is used ... K-2,147,483,648 to K2,147,483,647


### 5.2.2 Constant H (hexadecimal number)

" H " indicates a hexadecimal number, and is mainly used to specify numeric values as operands in applied instructions. (Example: H1234)
When using digits 0 to 9 , the bit status ( 1 or 0 ) of each bit is equivalent to the BCD code, so BCD data can be specified also.
(Example: $\mathrm{H} 1234 \ldots$ When specifying BCD data, specify each digit of hexadecimal number in 0 to 9 .)
The hexadecimal constant setting range is as follows:

- When word data (16 bits) is used ...... H0 to HFFFF (H0 to H9999 in the case of BCD data)
- When double data ( 32 bits) is used ... H0 to HFFFFFFFFF (H0 to H99999999 in the case of BCD data)


### 5.2.3 Constant E (real number)


" E " indicates a real number (floating point data), and is mainly used to specify numeric values as operands in applied instructions. (Example: E1.234 or E1.234 + 3)
The real number setting range is from $-1.0 \times 2^{128}$ to $-1.0 \times 2^{-126}, 0$ and $1.0 \times 2^{-126}$ to $1.0 \times 2^{128}$.
In a sequence program, a real number can be specified in two methods, "normal expression" and "exponent expression".

Normal expression:	Specify a numeric value as it is.   For example, specify "10.2345" in the form "E10.2345".
- Exponent expression:	Specify a numeric value in the format "(numeric value) $\times 10^{\text {n" }}$ For example, specify "1234" in the form "E1.234 + 3".   "+3" in "E1.234 + 3" indicates "10".

## 5．3 Character Strings

Character strings are classified into character string constants which directly specify character strings in operands in applied instructions and character string data．

## 5．3．1 Character string constant（＂ABC＂）

A device＂character string＂directly specifies a character string in a sequence program．
Put half－width characters inside quotation marks（example：＂ABCD1234＂）in specification．
JIS8 code is available．
Up to 32 characters can be specified as a character string．

## 5．3．2 Character string data

With regard to character string data，a specified device to the NULL code $(00 \mathrm{H})$ is handled as one character string in 1－byte units．
When expressing（recognizing）character string data by bit devices with digit specification，however， 16 bits are required for data including the NULL code $(00 \mathrm{H})$ specifying the end of the character string data because the instruction length is 16 bits．（Refer to Example 2 in the step 2 below．）
In the following cases，an operation error occurs in the applied instruction（error code：K6706）：
－When＂ 00 H ＂is not specified in the corresponding device range after the source device number specified in an applied instruction
－When there are insufficient devices for storing character string data（including＂ 00 H ＂or＂ 0000 H ＂indicating the end of the character string data）in the destination devices specified in an applied instruction
1）Character string data stored in word devices
－Example of data which can be recognized as character string data

	15	b7
D100	2nd character	1st character
D101	4th character	3rd character
D102	6th character	5th character
：	，	
D110	00H	21st character
	个＂ 00 H ＂ the ch detect	icating the end cter string can

－Example of data which cannot be recognized as character string data


＜Example 2＞		16 b
M7623 to M7608	2nd character	1st character
M7639 to M7624	4th character	3rd character
M7655 to M7640	6th character	5th character
M7671 to M7656	8th character	7th character
M7679 to M7672		00H
	  Becau of the bits，th be rec	he data＂ 00 H ＂ racter string d nd of the char ized．

### 5.4 Specification of Digits for Bit Devices (Kn[ ]***)

## Handling of bit devices

Devices which handle only the ON/OFF information such as $\mathrm{X}, \mathrm{Y}, \mathrm{M}$ and S are called bit devices. On the other hand, devices handling numeric values such as T, C, D and R are called word devices.
Even bit devices can handle a numeric value when they are combined. In this case, the number of digits Kn and the head device number are combined.
The number of digits is expressed in 4 bit units (digits); K1 to K4 are used for 16-bit data, and K1 to K8 are used for 32bit data.
For example, "K2M0" indicates two-digit data expressed by M0 to M7.


When 16-bit data is transferred to K1M0 to K3M0, the highest-order bits are not transferred due to insufficient data length.
32-bit data is transferred in the same way.
When the number of digits specified for bit devices is K1 to K3 (or K1 to K7) in a 16-bit (or 32-bit) operation, the insufficient high-order bits are always regarded as "0". It means that such data is always positive.

M0			
$\longrightarrow$	FNC 19   BIN	K2X004	D0

Two-digit BCD data expressed by X004 to X013 is converted into binary data, and then transferred to D0.

A bit device number can be specified arbitrarily, but it is recommended to set the least significant digit to " 0 " for X or Y . (In other words, it is recommended to specify "X000, X010, X020 ... Y000, Y010, Y020 ...")
For M and S , multiples of " 8 " are ideal, but it is recommended to specify "M0, M10, M20 ..." to prevent confusion.

## Specification of consecutive words

A series of data registers starting from D1 means "D1, D2, D3, D4 ....."
In the case of word devices with digit specification, when such word devices are handled as a series, they are specified as shown below:
$\begin{array}{llll}\text { - K1X000, } & \text { K1X004, } & \text { K1X010, } & \text { K1X014 ..... } \\ \text { - K2Y010, } & \text { K2Y020, } & \text { K2Y030 ..... } & \\ \text { - K3M0, } & \text { K3M12, } & \text { M3M24, } & \text { K3M36 .... } \\ \text { - K4S16, } & \text { K4S32, } & \text { K4S48 ..... } & \end{array}$
Use the above devices in digit units so that devices are not skipped.
When "K4Y000" is used in a 32 -bit operation, the high-order 16 bits register as " 0 ". It is necessary to use "K8Y000" when 32-bit data is required.

### 5.5 Bit Specification of a Word Device (D[ ].b)

Ver.1.00 ı
By specifying a bit of a word device, the specified bit can be used as bit data.
When specifying a bit of a word device, use a word device number and bit number (hexadecimal).
(Example: D0.0 ... Indicates the bit 0 of data register (D).)
Indexing is not available for both device numbers and bit numbers.
Target word device : Data register or special data register
Bit number : 0 to $F$ (hexadecimal)


### 5.6 Direct Specification of Buffer Memory (U[ ]IG[ ])

A buffer memory (BFM) of a special function units/blocks can be specified directly.
BFM is 16 -bit or 32 -bit word data, and is mainly used for operands in applied instructions.
For specifying a BFM, specify the unit number (U) of a special function units/blocks and the BFM number (IG) consecutively.
(Example: UOIGO ... Indicates the BFM \#0 in the special function units/blocks whose unit number is 0 .)
Indexing is available for BFM numbers.
The specification range is as follows:


### 5.7 Indexing

The functions and structures of index registers are explained in detail in "4.11 Index Register [V and Z]". Refer to Section 4.11 in advance.

### 5.7.1 Indexing in basic instructions

## In the case of bit devices

Bit devices [X, Y, M (except special auxiliary relays), T, and C (C0 to C199)] used in LD, LDI, AND, ANI, OR, ORI, OUT, SET, RST, PLS, and PLF instructions can be indexed with index registers.
The figure shown on the right explains an indexing operation with the index register $Z(0)$ for X 000 and M0 in the LD instruction. Transfer K5 or K10 to the index register $\mathrm{Z}(0)$ in advance. If $\mathrm{Z}(0)$ is " 5 ", " $\mathrm{X}(0+5)=\mathrm{X} 005$ ". When X005 turns ON, Y000 turns ON and " $\mathrm{M}(0+5)=\mathrm{M} 5$ ". When M5 turns ON, Y001 turns ON.
If $Z(0)$ is " 10 ", " $X(0+10)=X 012^{* 1} 1$. When X012 ${ }^{* 1}$ turns ON, Y000 turns ON and "M(0+10) = M10". When M10 turns ON, Y001 turns ON.
*1. Refer to the caution 3) below.

- The index registers Z 0 to Z 7 and V 0 to V 7 can be used for indexing.
- In OUT instruction for a timer or counter, the timer number (or counter number) and the device specified for the set value can be indexed.


## Cautions

1) 32-bit counters and special auxiliary relays cannot be indexed with index registers.
2) It is not permitted to use 16 -bit counters as 32 -bit counters by executing indexing.

3) When an octal device number of $X$ or $Y$ is indexed with an index register, the contents of the index register are converted into octal, and then added to the device number. For example, when the value of an index register added to the input X000 is changed in the order "K0 $\rightarrow \mathrm{K} 8 \rightarrow$ K16", the device number converted into octal is added to the input X000 and the input number is changed in the order " $\mathrm{X}(000+0)=\mathrm{X} 000 \rightarrow \mathrm{X}(000+8)=\mathrm{X} 10 \rightarrow \mathrm{X}(000+16)=\mathrm{X} 20$ ".

## In the case of word devices and constants

The set value of word devices used in OUT instruction of T and C(0~199) can be indexed with index registers.
The indexing operation is explained in an example in which the set value D0 of T0 used in the index register V2 indexes OUT instruction (as shown in the right figure).
Transfer K0 or K10 to the index register V2 in advance.
When X 001 is set to $\mathrm{ON}, \mathrm{D}(0+0)=\mathrm{D} 0$ " if V 2 is " 0 ", and T 0 operates with the set value D0.
When X 001 is set to $\mathrm{ON}, ~ " \mathrm{D}(0+10)=\mathrm{D} 10$ " if V 2 is " 10 ", and T0 operates with the set value D10.

## Caution

1) When a 32-bit counter is used in OUT instruction, the set value cannot be indexed with an index register.

$\mathrm{V} 2=0:$ The set value of TO is the present value of D0.
$V 2=10$ : The set value of TO is the present value of D10.

### 5.7.2 Indexing in applied instructions

## Expression of applied instructions allowing indexing

In the explanation of applied instructions, " ${ }^{*}$ " is added to the source $S$ or destination $D$ symbol to indicate operands allowing indexing as shown in the figure below so that such operands can be discriminated from operands not allowing indexing.


## In the case of bit devices

The indexing operation is explained in an example in which the comparison result M0 in CMP (FNC 10) instruction is indexed with the index register V 1 (as shown in the figure on the right).
Transfer K0 or K10 to the index register V1 in advance.
When X001 is set to $\mathrm{ON}, \mathrm{M}(0+0)=\mathrm{MO}$ " and the comparison result is output to M0 to M2 if V1 is "0".
On the other hand, " $\mathrm{M}(0+10)=\mathrm{M} 10$ " and the comparison result is output to M10 to M12 if V1 is "10".

- The index registers Z0 to $\mathrm{Z7}$ and V0 to V7 can be used for indexing.


## In the case of word devices

1. indexing operands in 16-bit instructions

The indexing operation is explained in an example in which the transfer destination DO in MOV instruction is indexed with the index register V3 (as shown in the figure on the right).
Transfer K0 or K10 to the index register V3 in advance.
When X 001 is set to $\mathrm{ON}, \mathrm{D}(0+0)=\mathrm{DO}$ " if V 3 is " 0 ", and K 500 is transferred to D0.
When X001 is set to ON, "D(0+10) = D10" if V3 is "10", and K500 is transferred to D10.

## 2. indexing operands in 32-bit instructions

In a 32-bit instruction, it is also necessary to specify a 32-bit index register in the instruction.
When an index register $Z(Z 0$ to $Z 7)$ is specified in a 32-bit instruction, the specified Z and its counterpart V (V0 to V7) work together as 32-bit registers.
The indexing operation is explained in an example in which the transfer destinations [D1, D0] in DMOV instruction are indexed with the index registers [V4, Z4] (as shown in the figure on the right).
Transfer K0 or K10 to the index registers [V4, Z4] in advance.
When X003 is set to $O N$, " $[D(1+0), D(0+0)]=[D 1, D 0] "$ if $[V 4, Z 4]$ is " 0 ", and K69000 is transferred to [D1, D0].
When X003 is set to ON, "[D(1+10), $D(0+10)]=[D 11, D 10] "$ if $[V 4, Z 4]$ is "10", and K69000 is transferred to [D11, D10].


V4,Z4=0 : K69000 $\rightarrow$ D1 ,D0 (D0+0)
$\mathrm{V} 4, \mathrm{Z4}=10: \mathrm{K} 69000 \rightarrow \mathrm{D} 11, \mathrm{D} 10(\mathrm{D} 0+10)$

## Cautions

1) When even if a numeric value written to index registers does not exceed the 16 -bit numeric value range ( 0 to 32767), make sure to overwrite both $V$ and $Z$ using a 32-bit instruction. If only $Z$ is overwritten and another numeric value remains in $V$, the numeric value will be extremely large. Thus an operation error occurs.
2) It is not permitted to use 16 -bit counters as 32 -bit counters by executing indexing. When 32-bit counters are required, add Z0 to Z7 to counters C200 and later.
3) It is not permitted to index $V$ and $Z$ themselves.
4) Direct specification of buffer memory in special function units/blocks In the direct specification of buffer memory "U $\square \backslash G \square$ ", the buffer memory number can be indexed with index registers.
The unit number cannot be indexed with index registers.
("U0\GOZO" is valid, but "UOZO\GO" is invalid.)
5) Indexing in bit digit specification It is not permitted to index " n " in "Kn" used for digit specification. ("K4MOZO" is valid, but "K0ZOMO" is invalid.)
6) Indexing of I/O relays (octal device numbers) When octal device numbers of $\mathrm{X}, \mathrm{Y}, \mathrm{KnX}$, and KnY are indexed with index register, the contents of an index register are converted into octal, and then added to the device number.
In the example shown in the figure on the right, Y007 to Y000 are output by MOV instruction, and inputs are switched by indexing X007 to X000, X017 to X010, and X027 to X020.
When rewriting the index value as "K0", "K8", "K16", the device number converted into octal is added "X000 + 0 = X000", "X000 + 8 = X10", "X000 + $16=\times 20$ ", and the input terminal working as the source is changed accordingly.


## Display example of timer present value

A sequence to display the present value of the timers T0 to T9 can be programmed index registers.

(TOZO)BIN $\rightarrow(\mathrm{Y} 017$ to Y 000$) \mathrm{BCD}$
"TOZO = T0 to T9" according to "Z0 = 0 to 9"


## In the case of constants

The indexing operation is explained in an example in which the transfer destination in MOV instruction is indexed with the index register V6 (as shown in the figure on the right).
Transfer K0 or K20 to the index register V6 in advance.
When X 005 is set to $\mathrm{ON}, \mathrm{"K}(6+0)=\mathrm{K} 6$ " if V 6 is " 0 ", and K 6 is transferred to D10.
When X005 is set to ON, "K(6+20) = K26" if V6 is " 20 ", and K26 is transferred to D10.


### 5.7.3 Indexing example for instruction with limited number of use.

By modifying the target device numbers using index registers V and Z , the target device numbers can be changed using the program. In this way, an instruction with a limited number of uses per program can be used with multiple devices.

## Example using the TKY instruction (FNC 70)

Two groups of key entries (numeric keypad from 0 to 9 ) store the input data to D0 and D2. Although the TKY instruction (FNC 70) can only be programmed once, modifying the head device number of the input data, storage destination and pressed key information, the information can be input from the two groups of keys (numeric keypad from 0 to 9 ). Furthermore, even if V is changed while this instruction is being executed, this change is invalid.
The change is invalid until the instruction is no longer being driven.

## 6. What to Understand before Programming

This chapter explains the I/O processing, relationship among instructions and programming method which should be understood before creating sequence programs.

### 6.1 How to Read Explanation of Instructions

In this manual, applied instructions are explained in the following form.
For the expression methods and basic rules for applied instructions, read in advance "6.5 General rules for applied instructions" described later.


The above is different from the actual page, as it is provided for explanation only.

## Outline

## 1. Instruction format

1) The applied instruction number (FNC No.) and instruction mnemonic are indicated. The table below shows the meaning of simplified expression.

Mark	Description	Applicable instruction (example)
FNC No.	Dotted lines on the upper left and lower left sides indicate an independent instruction not associated with the 16-bit or 32-bit type.	WDT (FNC 07)
FNCNo.            Instruction name	Continuous lines on the upper left side indicates that 16-bit type is available. "D" on the lower left side indicates that the 32-bit type is available.	MOV (FNC 12)
$\begin{array}{l\|} \hline \text { FNC } \\ \hline \text { No. } \\ \hline \text { Instruction name } \end{array}$	Dotted lines on the lower left side indicate that the 32-bit type does not exist. Continuous lines on the upper left side indicate that only the 16-bit type is available.	CJ (FNC 00)
FNC    No.    Instruction name  	Dotted lines on the upper left side indicate that the 16-bit type does not exist. "D" on the lower left side indicates that only the 32-bit type is available.	HSCS (FNC 53)
FNC No.   Instruction name   P	Continuous lines on the upper right side indicate that the continuous operation type is available. " P " on the lower right side indicates that the pulse operation type is available.	CMP (FNC 10)
FNC No.   Instruction name	Dotted lines on the lower right side indicate that the pulse operation type does not exist. Continuous line on the upper right side indicate that only the continuous operation type is available.	MTR (FNC 52)
FNC No.   Instruction name P	"on the upper right side indicates that the contents of the destination change in every operation cycle when the continuous operation type is used.   When operation should be executed only during the driving of an instruction, use the pulse operation type indicated by "P" on the lower right side.	INC (FNC 24)

2) Indexing of the source and destination

In operands to which $" \cdot "$ is added such as $S \cdot$ and $\mathrm{S}_{1} \cdot$, indexing is available.
Operands not allowing indexing are expressed as S and S1.
3) Data types

- Bit
: Bit device
- 16-bit BIN
: 16-bit binary code
- 32-bit BIN
: 32-bit binary code
- 64-bit BIN
: 64-bit binary code
- 16/32-bit BIN
: 16-bit or 32-bit binary code
- 32/64-bit BIN
: 32-bit or 64-bit binary code
- 4-digit BCD
: 4-digit (16-bit) BCD code
- 8-digit BCD
: 8-digit (32-bit) BCD code
- 4/8-digit BCD
: 4-digit (16-bit) or 8-digit (32-bit) BCD code
- Character string
: Character code such as ASCII code and shift JIS code
- Character string (only ASCII)
: ASCII code
- Real number (binary)

Binary floating point
: Scientific notation

- Real number (decimal)


## Applicable devices

Devices which can be specified in operands of instructions are shown. When a device supports an instruction, " $\checkmark$ " is added to the device.

1) Bit devices
-X : Input relay (X)

- Y : Output relay ( Y )
- M : Auxiliary relay (M)
-S : State relay (S)
etc.

2) Word devices
$\bullet$ K : Decimal integer
-H : Hexadecimal integer
$\cdot \mathrm{KnX}$ : Input relay (X) with digit specification ${ }^{* 1}$
$\cdot \mathrm{KnY}$ : Output relay ( Y ) with digit specification ${ }^{* 1}$ $\cdot \mathrm{KnM}$ : Auxiliary relay (M) with digit specification ${ }^{* 1}$ $\cdot \mathrm{KnS}$ : State relay (S) with digit specification ${ }^{* 1}$ - $T$ : Timer ( T ) current value -C : Counter (C) current value -D : Data register (file register)
$\cdot \mathrm{V}$, Z : Index register
-Modify: Availability of indexing using index register
etc.
*1. Kn without specification indicates K 1 to K 4 for 16 bits, and K 1 to K 8 for 32 bits.

## Explanation of function and operation

The function of each instruction is explained.

## Cautions

Cautions on using each instruction are described.

## Errors

Major errors that are possible to occur in each instruction are described.
For details on errors, refer to "Chapter 38. Error Check Method and Error Code List".

## Program examples

Concrete program examples using each instruction are described.

### 6.2 Cautions on Creation of Fundamental Programs

This section explains cautions on programming.

### 6.2.1 Programming procedure and execution order

1. Contact configuration and steps

Even for a sequence circuit offering the same operation, the program can be simplified and the number of steps can be saved depending on the contact configuration method.

1) It is recommended to write a circuit with many serial contacts in an upper position.

2) It is recommended to write a circuit with many parallel contacts in a left position.

2. Program execution and programming order

A sequence program is executed "from top to bottom" and "from left to right".
Code the sequence instruction list according to this rule.


### 6.2.2 Double output (double coil) operation and countermeasures

1. Operation of double outputs

When a coil gives double outputs (double coils) in a sequence program, the priority is given to the latter one.
Suppose that the same coil Y003 is used in two positions as shown in the figure on the right.
For example, suppose the X001 is ON and X002 is OFF.
In the first coil Y003, the image memory turns ON and the output Y004 turns ON also because the input X001 is ON.
In the second coil Y003, however, the image memory is set to OFF because the input X002 is OFF.
Accordingly, the actual output to the outside is "Y003 = OFF, Y004 = ON".


## 2. Countermeasures against double outputs

Double outputs (double coils) do not cause illegal input (program error), but the operation is disrupted as described above.
Change the program as shown in the example below.


SET, RST or jump instruction can be used instead, or the same output coil can be programmed at each state by step ladder instructions.
When step ladder instructions are used, if an output coil located in the main routine is also used in a state, it is handled as a double coil. It is better to avoid such programming.

### 6.2.3 Circuits which cannot be programmed and countermeasures

## 1. Bridge circuit

A circuit in which the current flows in both directions should be changed as shown in the figure on the right (so that a circuit without $D$ and a circuit without $B$ are connected in parallel).



## 2. Coil connection position

- Do not write a contact on the right side of a coil.
- It is recommended to program a coil between contacts first. The number of steps can be saved when a coil $(E)$ between the contacts $A$ and $B$ is programmed first.



### 6.3 I/O Processing and Response Delay

1. Operation timing of I/O relays and response delay

FX PLCs execute the I/O processing by repeating the process (1) to process (3).
Accordingly, the control executed by PLCs contains not only the drive time of input filters and output devices but also the response delay caused by the operation cycle.

## Acquiring the latest I/O information

For acquiring the latest input information or immediately outputting the operation result in the middle of the operation cycle shown above, the I/O refresh instruction is available.

2. Short pulses cannot be received.

The ON duration and OFF duration of inputs in PLCs require longer time than "PLC scan time + Input filter response delay".
When the response delay of the input filter " 10 ms " is considered and the scan time is supposed as " 10 ms ", the ON duration and OFF duration should be at least 20 ms respectively.
Accordingly, PLCs cannot handle input pulses at $25 \mathrm{~Hz}(1000 /(20+20)=25)$ or more. However, the situation can be improved by PLC special functions and applied instructions.

## Convenient functions for improvement

By using the following functions, PLCs can receive pulses shorter than the operation cycle:

- High-speed counter function
- Input interrupt function
- Pulse catch function
- Input filter value adjustment function



### 6.4 Mutual Relationship Among Program Flow Control Instructions

The table below shows the mutual relationship among various program flow control instructions.
In the table below, " " indicates containment relationship, and " $\bigcirc$ " indicates that zones are partially overlapped.



Top line   Left line	MC-MCR	CJ-P	EI-DI	FOR-NEXT	STL-RET
MC-MCR	( $\checkmark$ octet	$\bigcirc \checkmark^{\text {Example }}$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	$\infty \times$	$\infty \triangle$ Example	Or	$\infty \times$	$\infty \times$
CJ-P	(1) $\checkmark$				
	$\infty \triangle$	$\infty \triangle$	$\infty$	$\infty \triangle$	$\infty \triangle$
EI-DI	(1) $\checkmark$	(1) $\checkmark$	© $\checkmark$	$\bigcirc$	© $\checkmark$
	$\infty$	Q	Q	Q	Qr
FOR-NEXT	( $\times$	© $\checkmark$	© $\checkmark$	(1) $\checkmark$ quintet	(1) $\times$
	$\infty \times$	$\infty \triangle$	$\infty$	$\infty^{*}$	$\infty \times$
STL-RET	( $\times$	(1) $\triangle$	(1) $\checkmark$	$\bigcirc$ O) $\checkmark\left(\begin{array}{c}\text { inside } \\ \text { ste } \\ \text { sTL }\end{array}\right)$	(1) $\times$
	$\infty \times$	$\infty \triangle$	Q	$\infty \times$	$\infty \times$
P-SRET	( $\times$	(1) $\checkmark$	(1) $\checkmark$	(1) $\checkmark$	(1) $\times$
	$\infty \times$	$\infty \triangle$	$\infty$	$\infty \times$	$\infty \times$
I-IRET	(1) $\times$	(1) $\checkmark$	(1) $\checkmark$	(1) $\checkmark$	(1) $\times$
	$\infty \times$	$\infty \times$	$\infty$	$\infty \times$	$\infty \times$
FEND-END	$\bigcirc$	(1) $\checkmark$	( $\checkmark$	(1) $\checkmark$	( $\triangle$
	$\infty \times$	$\infty \times$	( ${ }^{*}$	$\infty \times$	$\infty \times$
O-FEND	( $\checkmark$	(1) $\checkmark$	(1) $\checkmark$	(1) $\checkmark$	(1) $\checkmark$
	$\infty \times$	Or	$\infty$	$\infty \times$	$\infty \times$
O-END   (no FEND)	© $\checkmark$	© $\checkmark$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	$\infty \times$	$\infty \times$	( * ${ }^{1}$	$\infty \times$	$\infty \times$

$\checkmark$ :This combination can be used without any problem.
$x$ :This combination is not allowed; Operation error may be occurs.
$\triangle$ :This combination is allowed, but is better not to be used because the operation will be complicated.

P-SRET	I-IRET	FEND-END	Remarks
© $\times$	(1) $X$	$\bigcirc \times$	The DI skip status occurs, but this is not an error.
$0 \times$	$\infty \times$	$0 \times$	
(1) $\triangle$	(-)	(3) $X$	*2 FOR FOR NEXT NEXT
O) $\triangle$	$\bigcirc \triangle$	Q	-
(1) $\checkmark$	© $\checkmark$	(11	The operation indicated by continuous lines is described.
Q $\checkmark$	Q $V$	Q $\sqrt{ }$	The first FEND or END is valid, but the intended processes will not occur. But this is not an error.
(3) $X$	(1) $X$	OX	
$0 \times$	$0 \times$	$0 \times$	
(1) $X$	$\bigcirc \times$	OX	
$0 \times$	$\infty \times$	$0 \times$	
( $\times$	© $\times$	© $\times$	Instructions having containment relationship can be combined except some combinations as follows:
$0 \times$	$0 \times$	$\infty \times$	
(1) $X$	(1) $X$	( $x$	1) MC-MCR cannot be used in FOR-NEXT, STL-RET, P-SRET and I-RET.
(0) $\times$	()X	(D) $X$	2) STL-RET cannot be used in FOR-NEXT, P-SRET and I-IRET.   3) MC-MCR, FOR-NEXT, P-SRET and I-IRET cannot be interrupted by I, IRET, SRET, FEND, END, etc.
(1) $\checkmark$	O $\checkmark$	( ${ }^{*}$	3) MC-MCR, FOR-NEXT, P-SRET and I-IRET cannot be interrupted by I, IRET, SRET, FEND, END, etc.
$0 \times$	$0 \times$	Q *3	
(3) $X$	(1) $X$	(3) ${ }^{\text {a }}$	
$0 \times$	$0 \times$	0 *3	
(1) $x$	OX	(3	
(0) $x$	()X	(D) *3	

### 6.5 General Rules for Applied Instructions

### 6.5.1 Expression and operation type of applied instructions

## Instructions and operands

- Both a function number FNC 00 to FNC $\square \square \square$ and a symbol (mnemonic) indicating the contents are given to each applied instruction.
For example, a mnemonic "SMOV (shift move)" is assigned to FNC 13 instruction.
- Some applied instructions function only with their instruction part, but many instructions consist of the instruction part and following operands.
Command

input					
in	FNC 13   SMOV	S.	m 1	m 2	D :

(S) : An operand whose contents do not change by execution of the instruction is called "source", and is indicated by this symbol.
When a device number can be indexed with index registers, the source is expressed as $S^{\circ}$ with addition of " • ".
When there are two or more sources, they are expressed as $\mathrm{S}_{1 \cdot}, \mathrm{~S}_{2} \cdot$, etc.
(D) : An operand whose contents change by execution of the instruction is called "destination", and indicated by this symbol.
When indexing is allowed and there are two or more destinations, they are expressed as (D1••, (D2- , etc. in the same way as sources.
$\mathrm{m}, \mathrm{n} \quad$ : Operands not falling under source or destination are expressed as m and n .
When indexing is allowed and there are two or more such operands, they are expressed as $\mathrm{m} 1 \cdot$, $\mathrm{m} 2 \cdot, \mathrm{n} 1 \cdot, \mathrm{n} 2 \cdot$,etc. in the same way as sources and destinations.

- In applied instructions, the program step of the instruction part always occupies 1 step, but each operand occupies 2 or 4 steps depending on whether the instruction is 16-bit type or 32-bit type.


## Devices handled as operands

- Bit devices themselves such as X, Y, M and S may be handled.
- Combined bit devices, $\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}$, etc, may be handled as numeric value data.
$\rightarrow$ Refer to Section 5.4.
- Data registers (D) and current value registers for timers (T) and counters (C) may be handled.
- Though data registers (D) are the 16-bit type, two serial data registers are combined when 32-bit data is handled.
For example, when a data register D0 is specified as an operand in a 32-bit instruction, D1 and D0 are combined to handle 32-bit data. (D1 handles high-order 16 bits, and D0 handles low-order 16 bits.)
When current value registers for $T$ and $C$ are used as general data registers, they are handled in the same way. However, each of 32 -bit counters C200 to C255 can handle 32-bit data, and cannot be specified as an operand in a 16-bit instruction.


## Instruction form and operation type

Applied instructions are classified into "16-bit type" or "32-bit type" by the size of handled numeric values. And by the operation type, applied instructions are classified into "continuous operation type" or "pulse operation type".
Some applied instructions have every combination of this form and type, and others do not.

1. 16-bit type and 32-bit type

- Applied instructions handling numeric values are classified into the 16 -bit type or the 32 -bit type by the bit length of the numeric value data.


This instruction transfers the contents of D10 to D12.

This instruction transfers the contents of D21 and D20 to D23 and D22.

- In a 32-bit type instruction, the symbol "D" is added (example: DMOV).
- Either an odd or even device number can be specified, and a specified device is combined with a device having the subsequent larger number (in the case of word devices such as $\mathrm{T}, \mathrm{C}$ and D ).
For avoiding confusion, it is recommended to specify an even device number (which will be the low-order side) for an operand in a 32-bit instruction.
- 32-bit counter (C200 to C255) is regarded as 32 bits, and cannot be used as an operand in a 16-bit instruction.

2. Pulse operation type and continuous operation type

## Pulse operation type

In the example shown in the figure on the right, when X000 turns from OFF to ON , the instruction is executed only once, and is not executed in any other case.


When it is not necessary to continually execute an instruction, use the pulse operation type.
The symbol " P " indicates the pulse operation type.
"DMOVP" indicates also the pulse operation type.

## Continuous operation type

The figure on the right shows a continuous operation type instruction. While X001 is ON, the instruction is executed in every operation cycle.


In the continuous operation type of some instructions such as INC (FNC 24) and DEC (FNC 25), the contents of the destination change in every operation cycle.

For applied instructions requiring attention in using the continuous operation type, the symbol " " is added to the title of the explanation of such instructions as shown in the figure below.


In any case, instructions are not executed while the drive input X000 or X001 is OFF. And the destinations do not change except when instructions specify otherwise.

### 6.5.2 Handling of general flags

In some types of applied instructions, the following flags operate:
Examples: M8020: Zero flag M8022: Carry flag
M8090: Block comparison signal
M8021: Borrow flag
M8029: Instruction execution complete flag
M8328: Instruction non-execution flag M8329: Instruction execution abnormal complete flag M8304: Zero Flag M8306:Carry Flag
These flags turn ON or OFF every time various instructions turn ON, but do not change when various instructions turn OFF not driven or when errors have occurred.
Because these flags turn ON or OFF in many instructions, the ON/OFF status of flags change every time such instructions are executed.
Program flag contacts directly under each instruction while referring to the examples below.

1. Program containing many flags (example of instruction execution complete flag M8029)

When two or more instruction execution complete flags M8029 are programmed together for applied instructions, it is difficult to determine which instruction executes which flag.
For using flags in any positions other than directly under applied instructions, refer to the next page.


Bad example

2. Introduction of method for using flags in any positions other than directly under applied instructions
When two or more applied instructions are programmed, general flags turn ON or OFF when each applied instruction turns ON.
Accordingly, when using a flag in any position other than directly under an applied instruction, set to ON or OFF another device just under the applied instruction, and then use the contact of the device as the command contact.


### 6.5.3 Handling of operation error flag

When there is an error in the applied instruction configuration, target device or target device number range and an error occurs while operation is executed, the following flag turns ON and the error information is stored.

## 1. Operation error

Error flag	Error code storage device	Error detected step number storage device	
		FX3S/FX3G/FX3GC PLCs	FX3U/FX3UC PLCs
M 8067	D 8067	D8069	D8315, D8314
		D8069	

- When an operation error has occurred, M8067 turns ON and D8067 stores the operation error code number.
- In the FX3U/FX3Uc PLCs, D8315 and D8314 (32 bits in total) store the step number in which the error has occurred. When the error occurrence step number is up to 32767, the error occurrence step can be checked also in D8069 (16 bits).
- In the $\mathrm{FX} 3 \mathrm{~S} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs, D8069 stores the error occurrence step number.
- If another error occurs in another step, the stored data is updated in turn to the error code and step number of the new error. (These devices are set to OFF when errors are cleared.)
- When the PLC mode switches from STOP to RUN, these devices are cleared instantaneously, and then set to ON again if errors have not been cleared.


## 2. Operation error latch

Error flag	Error code storage device	Error detected step number storage device	
		FX3S/FX3G/FX3GC PLCs	FX3U/FX3UC PLCs
M8068	-	D8068	D8313, D8312
			D8068

- When an operation error has occurred, M8068 turns ON.
- In the $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3$ UC PLCs, D8313 and D8312 (32 bits in total) store the step number in which the error has occurred. When the error occurrence step number is up to 32767, the error occurrence step can be checked also in D8068 (16 bits).
- In the $\mathrm{FX}_{3} /$ /FX3G/FX3GC PLCs, D8068 stores the error occurrence step number.
- Even if another error has occurred in another step, the stored data is not updated, and remains held until these devices are forcibly reset or until the power turns OFF.
- When the error occurrence step is up to the 32767th step, the error occurrence step can be checked in D8068 (16 bits).


### 6.5.4 Handling functions of extension flag

In some applied instructions, the function can be extended by combining a specific special auxiliary relay determined for each applied instruction. An example is explained below.

- When X000 turns ON, this instruction exchanges the contents of D10 and D11 with each other.

- If M8160 has been driven before the XCH instruction and the source and destination of the XCH instruction are specified to the same device, high-order 8 bits and loworder 8 bits are exchanged with each other inside the device.
- For returning this XCH instruction to the normal XCH instruction, it is necessary to set M8160 to OFF.


When using an instruction requiring the function extension flag in an interrupt program, program DI instruction (for disabling interrupt) before driving the function extension flag, and program El instruction (for enabling interrupt) after turning OFF the function extension flag.

### 6.5.5 Limitation in the number of instructions and limitation in simultaneous instruction instances

## Limitation in the number of instructions

Some applied instructions can only be used up to the specified number of times.

Instruction name	Allowable number of times of   use	Remarks
FNC 52 (MTR)	1	MTR instruction can only be used once in program.
FNC 56 (SPD)	8 (1 instruction/1 input or less)	Pay attention so that this instruction does not overlap the input numbers of in DVIT   instruction, DOG inputs in ZRN instruction, zero point signal in DSZR instruction,   input interrupt numbers and high-speed counter input numbers.
FNC 60 (IST)	1	-
FNC 69 (SORT)	1	-
FNC 70 (TKY)	1	-
FNC 71 (HKY)	1	-
FNC 75 (ARWS)	2	-
FNC 77 (PR)	2	-
FNC149 (SORT2)	5	-
FNC186 (DUTY)	5 (1 instruction/1 input or less)	-
FNC280 (HSCT)	1	-

When using above instructions beyond the allowable number of times of use
For instructions whose operands allow indexing, device numbers and numeric values in such instructions can be changed by index registers.
By indexing, when driving multiple instances simultaneously is not required, such instruction can be used as if they were used beyond the allowable number of times.
$\rightarrow$ Refer to "Subsection 5.7.3. Indexing example for instruction with limited number of use.".

## Limitation in simultaneous instances of instructions

Some applied instructions can be programmed two or more times, but the number of simultaneous instances is limited.
Even in instructions not shown below, if two or more instructions are driven at the same time for the same I/O number, it is regarded as double outputs. In some combinations of instructions, the operation may be disrupted, or the instructions cannot be executed.
For details, refer to the caution described in each instruction page.
For combinations of instructions, refer to "6.4 Mutual Relationship Among Program Flow Control Instructions".

## 1. Positioning instructions

Do not drive FNC 57 (PLSY), FNC 58 (PWM), FNC 59 (PLSR), FNC150 (DSZR), FNC151 (DVIT), FNC156 (ZRN), FNC157 (PLSV), FNC158 (DRVI) and FNC159 (DRVA) instructions at the same time for the same output number.
2. High-speed processing instructions

- FX3S/FX3G/FX3GC PLCs

The FNC 53 (HSCS), FNC 54 (HSCR) and FNC 55 (HSZ) instructions can be driven up to 6 times in total at the same time.

- FX3u/FX3uc PLCs

In FNC 53 (HSCS), FNC 54 (HSCR) and FNC 55 (HSZ) instructions (including FNC280 (HSCT) instruction), make sure that up to 32 instructions are driven at the same time. [FNC280 (HSCT) instruction can only be used once.] Note that "FNC280 (HSCT) instruction", "table high-speed comparison mode of FNC 55 (HSZ) instruction)" and "frequency control mode of FNC 55 (HSZ) instruction" can each only be used once.
3. External device communication instructions

- In FNC 80 (RS) and FNC 87 (RS2) instructions, do not drive two or more instructions at the same time for the same port.
- It is impossible to combine and use "FNC 80 (RS), FNC 87 (RS2)", "FNC270 (IVCK) to FNC275 (IVMC)", "FNC276 (ADPRW)", "FNC300 (FLCRT) to FNC305 (FLSTRD)" instructions for the same port.
- In FNC270 (IVCK) to FNC275 (IVMC) instructions, two or more instructions can be driven at the same time for the same port.


### 6.6 Symbolic information storage and block password

### 6.6.1 Storage of symbolic information

The FX3U/FX3UC PLC Ver. 3.00 or later can store symbolic information (data indicating the program configuration such as structure and labels).
By using this function, you can read symbolic information from the PLC, and edit labels, function blocks, etc. GX Works2 Ver. 1.62Q or later is required to store symbolic information.
$\rightarrow$ Refer to the GX Works2 Version 1 Operating Manual (Common) for the details on symbolic information.

## Cautions

- When symbolic information is stored, it is deleted if the memory capacity set by parameters is changed. After changing the memory capacity, write the symbolic information again.
- Memory cassettes (except for the FX3U-FLROM-1M) which save symbolic information are also supported by $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs whose version is earlier than Ver. 3.00. In that case, the $\mathrm{FX}_{3} \mathrm{U} / \mathrm{F} X_{3} \cup \mathrm{C}$ PLC operates, but the written symbolic information is invalid.
- For writing symbolic information and changing the set values of timers and counters using a peripheral device, it is recommended to create programs with set values specified indirectly. If the set values are specified directly, programs cannot be restored from symbolic information after the set values are changed.


### 6.6.2 Block password

In GX Works2, program parts can be protected by setting the block password.
In the $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLC Ver. 3.00 or later, the setting "Read-protect the execution program" is available for the block password.
$\rightarrow$ Refer to the GX Works2 Version 1 Operating Manual (Common) for the details on the block password. Cautions

- In the PLC written by the computer using a project including a block password for which the setting "Readprotect the execution program" is valid, restoration of programs is enabled only when the PLC stores the symbolic information.
For editing programs using a peripheral device which cannot read symbolic information (only supported by GX Works2 Ver. 1.62Q or later), do not use a block password for which the setting "Read-protect the execution program" is valid.
- When a peripheral device tries to read an execution program from the PLC that has been written to by a computer using a project including a block password for which the setting "Read-protect the execution program" is valid, a communication error occurs and reading is disabled.
- For writing a program using a peripheral device other than GX Works2 (Ver. 1.62Q or later) to a PLC that has been written to by a computer using a project including a block password for which the setting "Readprotect the execution program" is valid, execute "Clear PLC memory" to clear programs before writing. If a program is written without executing "Clear PLC memory" in advance, the written program cannot be read.
- It is not possible to write programs including the block password for which the setting "Read-protect the execution program" is valid to the $F X_{3} / F X_{3} 4$ PLC whose version is earlier than 3.00 .
- If a memory cassette which saves programs including a block password for which the setting "Readprotect the execution program" is valid is used for the FX3U/FX3uc PLC whose version is earlier than 3.00 , the $\mathrm{FX}_{3} \mathrm{/} / \mathrm{FX}_{3}$ ис PLC does not run normally.


## 7. Basic Instruction

This chapter explains types and functions of basic sequence instructions.
For beginners to sequence control, we offer "Introduction Course" and "Relay Ladder Course" learning texts for reference.
We can also offer the PLC learning software "Beginner Course".

Mnemonic	Name	Symbol	Function	Applicable devices	Reference
Contact Instruction					
LD	Load	Applicable devices	Initial logical operation contact type NO (normally open)	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.1
LDI	Load Inverse		Initial logical operation contact type NC (normally closed)	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.1
LDP	Load Pulse		Initial logical operation of rising edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
LDF	Load Falling Pulse		Initial logical operation of falling/trailing edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
AND	AND		Serial connection of NO (normally open) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.3
ANI	AND Inverse		Serial connection of NC (normally closed) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.3
ANDP	AND Pulse		Serial connection of rising edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
ANDF	AND Falling Pulse		Serial connection of falling/ trailing edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
OR	OR		Parallel connection of NO (normally open) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.4
ORI	OR Inverse		Parallel connection of NC (normally closed) contacts	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.4
ORP	OR Pulse		Parallel connection of rising edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5
ORF	OR Falling Pulse		Parallel connection of falling/ trailing edge pulse	X,Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.5


Mnemonic	Name	Symbol	Function	Applicable devices	Reference
Connection Instruction					
ANB	AND Block		Serial connection of multiple parallel circuits	-	Section 7.7
ORB	OR Block		Parallel connection of multiple contact circuits	-	Section 7.6
MPS	Memory Point Store	MPS	Stores the current result of the internal PLC operations		Section 7.8
MRD	Memory Read		Reads the current result of the initial PLC operations	-	Section 7.8
MPP	Memory POP	MPP - 1	Pops (recalls and removes) the currently stored result		Section 7.8
INV	Inverse		Invert the current result of the internal PLC operations	-	Section 7.10
MEP	MEP	+ $\uparrow$	Conversion of operation result to leading edge pulse	-	Section 7.11
MEF	MEF	+ $\downarrow$	Conversion of operation result to trailing edge pulse	-	Section 7.11
Out Instruction					
OUT	OUT	Applicable devices	Final logical operation type coil drive	Y,M,S,D $\square . \mathrm{b}, \mathrm{T}, \mathrm{C}$	Section 7.2
SET	SET	$\mid \longmapsto$ SET Applicable devices	Set bit device latch ON	Y,M,S,D $\square . \mathrm{b}$	Section 7.13
RST	Reset		Reset bit device OFF	$\begin{aligned} & \mathrm{Y}, \mathrm{M}, \mathrm{~S}, \mathrm{D} \square . \mathrm{b}, \mathrm{~T}, \mathrm{C}, \\ & \mathrm{D}, \mathrm{R}, \mathrm{~V}, \mathrm{Z} \end{aligned}$	Section 7.13
PLS	Pulse	$\|\vdash\|$	Rising edge pulse	Y,M	Section 7.12
PLF	Pulse Falling	$\|\vdash\|$	Falling/trailing edge pulse	Y,M	Section 7.12
Master Control Instruction					
MC	Master Control	$\|$MC N Applicable devices	Denotes the start of a master control block	Y,M	Section 7.9
MCR	Master Control Reset	$\mid \longmapsto \mathrm{MCR} \mathrm{N}$	Denotes the end of a master control block	-	Section 7.9
Other Instruction					
NOP	No Operation	-	No operation or null step	-	Section 7.14
End Instruction					
END	END	- END	Program end, I/O refresh and return to step 0	-	Section 7.15

## 7．1 LD，LDI

## Outline



LD and LDI instructions are contacts connected to bus lines When combined with ANB instruction described later，LD and LDI instructions can be used for the start of branches．

1．Instruction format

$\rightarrow$ For the number of instruction steps，refer to Section 7．16．
2．Applicable devices

Instruc－ tion	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con－   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	Uप\G口	V	Z	Modify	K	H			
LD	$\checkmark$	$\checkmark$	$\begin{array}{\|c\|} \hline \mathbf{A} \\ 1 \end{array}$	$\checkmark$	A	－	－3												－4					
LDI	$\checkmark$	$\checkmark$	－ 1	$\checkmark$	$\stackrel{4}{1}$	－	－3												④					

41：Special auxiliary relays（ M ）and 32－bit counters（ C ）cannot be indexed with index registers（ V and Z ）．
42：State relays（ S ）cannot be indexed with index registers（ V and Z ）．
43：＂Dロ．b＂is available only in FX3U and FX3uc PLCs．However，index modifiers（V and Z）are not available．
44：This function is supported only in $F X_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs．

## Explanation of function and operation

1．LD instruction（initial logical operation，NO contact type）

Circuit program


List program

0000 LD X000 $\longleftarrow$ Connection to bus line 0001 OUT Y000
2. LDI instruction (initial logical operation, NC contact type)

Circuit program


Timing chart


## 3. Indexing ${ }^{* 1}$

Devices used in LD and LDI instructions allow indexing with index registers (V and Z ).
(State relays (S), special auxiliary relays (M), 32-bit counters (C), and "D■.b" cannot be indexed.)

Circuit program	List program	V0 to $\mathrm{V7}$ and ZO to $\mathrm{Z7}$ are available in indexing.   When used devices are inputs ( X ) and outputs   (Y), values of index registers (V and Z) are
converted into octal numbers, and then added.		

*1. This function is supported only in FX3U/FX3UC PLCs.

## 4. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in LD and LDI instructions.

| Circuit program | List program |
| :--- | :--- | :--- |
|  |  |

When specifying a bit in data register, input "." after a data register (D) number, and then input a bit number ( 0 to F ) consecutively.
Only 16-bit data registers are available.
Specify a bit number as " $0,1,2, \ldots 9, \mathrm{~A}, \mathrm{~B}, \ldots \mathrm{~F}$ " from the least significant bit.
Example: In the example shown on the left, LD contact is set to ON (becomes conductive) or OFF (becomes nonconductive) by bit 3 of DO.
*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Errors

- When an I/O number used in LD or LDI instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON.
- When the device number of a device ( $\mathrm{M}, \mathrm{T}$ or C ) other than I/O used in LD or LDI instruction does not exist due to indexing, an operation error (error code: 6706) occurs.


### 7.2 OUT

## Outline

## FX3S <br> Ver. $1.00 \mathrm{~m} \Rightarrow$ $F X_{3 G}$ <br> Ver. $1.00 \leadsto$ <br> $F X_{3 G C}$ <br>  <br> FX3u <br> F×3UC

OUT instruction drives coils of output relays $(\mathrm{Y})$, auxiliary relays $(\mathrm{M})$, state relays ( S ), timers $(\mathrm{T}$ ) and counters (C).

1. Instruction format

$\rightarrow$ For the number of instruction steps, refer to Section 7.16.
2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
OUT		$\checkmark$	1   1	$\checkmark$	$\underset{1}{4}$	4	-3												-5					
Set value														$\checkmark$	-				- 5	$\checkmark$				

41: Special auxiliary relays ( M ) and 32-bit counters ( C ) cannot be indexed with index registers ( V and Z ).
42: State relays ( S ) cannot be indexed with index registers ( $V$ and Z ).
A3: "Dロ.b" is available only in FX3U and FX3uc PLCs. However, index modifiers (V and Z) are not available.
44: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX}}^{3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}}$ PLCs.
©5: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{U}$ PLCs.

## Explanation of function and operation

## 1. When a bit device is used

A device described in OUT instruction turns ON or OFF according to the driven contact status.
Parallel OUT instructions can be used consecutively as many times as necessary.
In the program example shown below, OUT M100 and OUT M101 are parallel.
If two or more OUT instructions are executed for the same device number, however, it results in a double output (double coil) operation.


List program


Timing chart


## 2. When a timer or counter is used

The set value is required after OUT instruction for the counting coil of a timer or counter.
The set value can be specified directly by a decimal number (K) or indirectly using a data register (D) or extension register (R).

1) Direct specification

Circuit program

2) Indirect specification

Circuit program


List program
0000 LD X000
0001 OUT T0
(SP) K30
0004 LDI X001
0005 OUT T1
(SP) K30
0008 OUT C0
(SP) K50

List program
0000 LD X000
0001 OUT T10
(SP) D10
0004 LDI X001
0005 OUT T11
(SP) R15
0008 OUT C10
(SP) D20

The set value of a timer or counter can be specified directly by a decimal number (K).
3) Setting range of timers and counters

The table below shows the set value range of timers and counters, the actual timer constants and the number of program steps (including the set value) for OUT instruction.

Timer/counter	Setting range   (Value of K or current value of D or R)	Actual set value	Number of steps
1 ms timer	1 to 32767	0.001 to 32.767 sec	3
10 ms timer	1 to 32767	0.01 to 327.67 sec	3
100 ms timer	1 to 32767	0.1 to 3276.7 sec	
16 -bit counter	$-2,147,483,648$ to $+2,147,483,647$	Same as left	3
32 -bit counter	Same as left	5	

## 3．Indexing ${ }^{* 1}$

Devices used in OUT instruction can be indexed with index registers（ $V$ and $Z$ ）．
（State relays（S），special auxiliary relays（M），32－bit counters（C），and＂D $\square . b$＂cannot be indexed．）

Circuit program List program The index registers V0 to V7 and Z0 to $\mathrm{Z7}$ are available for indexing．
When a used device is an input（ X ）or output（ Y ），


0000 LD X000
0001 OUT Y000Z0
＊1．This function is supported only in $F^{2} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs． the value of an index register（ V or Z ）is converted into an octal number，and then added．
Example：When the value of ZO is＂ 20 ＂，Y024 turns ON or OFF． When specifying a bit in data register，input＂．＂
after a data register（D）number，and then input a bit number（ 0 to F ）consecutively．
Only 16－bit data registers are available．


0000 LD X000
0001 OUT D0．3

## from the least significant bit．

Example：In the example shown on the left，the bit 3 of DO turns ON or OFF when X000 turns ON or OFF．
＊1．This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs．

## Caution

－When a special internal relay $(M)$ ，timer or counter is used，program steps increase as described in＂Setting range of timers and counters＂on the previous page．
－Do not use the last bit number of a data register（ $D$ ）or extension register（ $R$ ）as the set value of a 32－bit counter．

## Errors

－When an I／O number used in OUT instruction does not exist due to indexing，M8316（Non－existing I／O specification error）turns ON．
－When the device number of a device（ $\mathrm{M}, \mathrm{T}$ or C ）other than I／O used in OUT instruction does not exist due to indexing，an operation error（error code：6706）occurs．

### 7.3 AND, ANI

## Outline

## FX3S <br> Ver. 1.00 "

## $F X_{3 G}$ <br> Ver. 1.00 н $\Rightarrow$

F×
Ver.1.40

FX 30
Ver. $2.20 \mathrm{~m} \Rightarrow$
F×3UC
Ver. 1.00 m
AND and ANI instructions connect one contact in series.
The number of contacts connected in series is not limited, so AND and ANI instructions can be used consecutively as many times as necessary.
Output to another coil by way of a contact after the OUT instruction is called cascade output.
Such a cascade output can be repeated as many times as necessary as long as the order is correct.

1. Instruction format

$\rightarrow$ For the number of instruction steps, refer to Section 7.16.
2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real   Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
AND	$\checkmark$	$\checkmark$	$\begin{array}{\|c\|} \hline \mathbf{\Lambda} \\ 1 \end{array}$	$\checkmark$	-	-	-3												-4					
ANI	$\checkmark$	$\checkmark$	$\underset{1}{\mathbf{A}}$	$\checkmark$	$\pm$	-	-3												-4					

11: Special auxiliary relays ( M ) and 32-bit counters ( C ) cannot be indexed with index registers ( V and Z ).
42: State relays ( S ) cannot be indexed with index registers ( V and Z ).
©3: "D $\square . b$ " is available only in $F X_{3} \mathrm{U}$ and $\mathrm{FX} 30 c$ PLCs. However, index modifiers ( V and Z ) are not available.
44: This function is supported only in $F X_{3} / / F X_{3} \cup C$ PLCs.

## Explanation of function and operation

1. AND instruction (serial connection of NO (normally open) contacts)

Circuit program


List program
0000 LD X002 $\quad$ Contact connected

0002 OUT Y003 in series

Timing chart

2. ANI instruction (serial connection of NC (normally closed) contacts)

Circuit program


List program


0002 OUT Y003 in series

Timing chart


## Program examples

Circuit program


List program

0000	LD	X000	
0001	AND	$\times 001 \leftarrow$	conne
0002	OUT	Y003	in series
0003	LD	X002	
0004	ANI	$\times 003 \leftarrow$	Contact conne
0005	OUT	Y004	s
0006	AND	X004	Contact co
0007	OUT	T0	eries
	(SP)	K30	
10	LD	X005	
0011	ANI	T0 $\leftarrow$	Contact connected
0012	OUT	Y005	in series

### 7.4 OR, ORI

## Outline

## $F X_{3 S} \quad F X_{3 G}$ <br> Ver. $1.00 \mathrm{\prime} \mathrm{\prime} \Rightarrow$ <br> Ver.1.00 ॥



OR and ORI instructions are used to connect one contact in parallel.
If two or more contacts are connected in series, use ORB instruction described later to connect such a serial circuit block to another circuit in parallel.
A step containing OR or ORI instruction is connected in parallel to a preceding step containing LD or LDI instruction. There is no limitation in the number of times of parallel connection.

1. Instruction format

$\rightarrow$ For the number of instruction steps, refer to Section 7.16.
2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	Character String	$\frac{\text { Pointer }}{}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
OR	$\checkmark$	$\checkmark$	A 1	$\checkmark$	-	-	A3												-4					
ORI	$\checkmark$	$\checkmark$	$\underset{1}{4}$	$\checkmark$	A	A	-3												-4					

41: Special auxiliary relays ( M ) and 32-bit counters ( C ) cannot be indexed with index registers ( V and Z ).
42: State relays ( S ) cannot be indexed with index registers ( V and Z ).
©3: "D $\square . b$ " is available only in $F X_{3} \mathrm{U}$ and $F X_{3} 0 c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
44: This function is supported only in $F X_{3} U / F X_{3} \cup C$ PLCs.

## Explanation of function and operation

1. OR instruction (parallel connection of NO (normally open) contacts)
Circuit program
List program

2. ORI instruction (parallel connection of NC (normally closed) contacts)

Circuit program
List program


0000 LD X000
0001 ORI X002
0002 OUT Y001

Timing chart

3. Relationship with ANB instruction


The parallel connection by OR or ORI instruction is connected to the preceding LD or LD instruction in principle. After ANB instruction, however, the parallel connection by OR or ORI instruction is connected to the second preceding LD or LDI instruction.

## 4. Indexing ${ }^{* 1}$

Devices used in OR and ORI instruction can be indexed with index registers (V and Z).
(State relays (S), special auxiliary relays (M), 32-bit counters, and "D口.b" cannot be indexed.)

Circuit program
List program


0000 LD X000
0001 OR X001V0
0004 OUT Y000

The index registers V0 to V7 and Z0 to $\mathrm{Z7}$ are available for indexing.
When the used device is an input ( X ) or output $(\mathrm{Y})$, the value of an index register ( V or Z ) is converted into an octal number, and then added. Example: When the value of V0 is "10", OR contact is set to ON (becomes conductive) or OFF (becomes nonconductive) by X013.

## 5. Bit specification of data register (D) ${ }^{* 1}$

A bit in data register (D) can be specified as a device used in OR and ORI instructions.

Circuit program


List program

0000 LD X000
0001 OR D0.3
0004 OUT Y000
*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{X}$ UC PLCs.

## Errors

- When an I/O number used in OR or ORI instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON.
- When the device number of a device ( $M, T$ or $C$ ) other than I/O used in OR or ORI instruction does not exist due to indexing, an operation error (error code: 6706) occurs.

When specifying a bit in data register, input "." after a data register ( D ) number, and then input a bit number ( 0 to F ) consecutively.
Only 16-bit data registers are available.
Specify a bit number as " $0,1,2, \ldots 9, \mathrm{~A}, \mathrm{~B}, \ldots$ F" from the least significant bit.
Example: In the example shown on the left, OR contact is set to ON (becomes conductive) or OFF (becomes nonconductive) by bit 3 of DO.

### 7.5 LDP, LDF, ANDP, ANDF, ORP, ORF

## Outline



LDP, ANDP, and ORP instructions for contacts detect the rising edge, and become active during one operation cycle only at the rising edge of a specified bit device (that is, when the bit device turns from OFF to ON).
Contact instructions LDF, ANDF and ORF detect the falling edge, and become active during one operation cycle only at the falling edge of a specified bit device (that is, when the bit device turns from ON to OFF).

1. Instruction format


Load Pulse


Load Falling Pulse


AND Pulse


OR Pulse


$\rightarrow$ For the number of instruction steps, refer to Section 7.16.
2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
LDP	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-																	
LDF	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-																	
ANDP	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A																	
ANDF	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-																	
ORP	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-																	
ORF	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A																	

©: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. LDP, ANDP, and ORP instructions (initial logical operation of rising edge pulse, serial connection of rising edge pulse, and parallel connection of rising edge pulse)

Circuit program


List program

0000 LDP X000
0002 ORP X001
0004 OUT MO
0005 LD M8000
0006 ANDP X002
0008 OUT M1

In the example shown above, M0 or M1 is ON during only one operation cycle when X000 to X002 turn from OFF to ON.
2. LDF, ANDF, and ORF instructions (initial logical operation of falling/trailing edge pulse, serial connection of falling/trailing edge pulse, and parallel connection of falling/trailing edge pulse)

Circuit program


List program

0000 LDF	X000
0002 ORF	X001
0004 OUT	M0
0005 LD	M8000
0006 ANDF	X002
0008 OUT	M1

Timing chart


In the example shown above, M0 or M1 is ON during only one operation cycle when X000 to X002 turn OFF from ON.
3. Bit specification of a data register (D)*1

A bit in data register (D) can be specified as a device used in LDP, LDF, ANDP, ANDF, ORP and ORF instructions.

Circuit program List program


When specifying a bit in a data register, input "." after a data register (D) number, and then input a bit number ( 0 to F ) consecutively.
Only 16-bit data registers are available.
Specify a bit number as " $0,1,2, \ldots 9, \mathrm{~A}, \mathrm{~B}, \ldots$ F" from the least significant bit.
Example: In the example shown on the left, LDP contact turns ON (becomes conductive) or OFF (becomes nonconductive) when bit 3 of DO turns ON or OFF.
*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## 4. Output drive side

The following two circuits offer the same operation:
<OUT instruction>


In each circuit, M6 is ON during only one operation cycle when X010 turns from OFF to ON.
<Rising edge detection>
<Pulse instruction (applied instruction)>

$\begin{gathered} \text { X020 } \\ -1 \uparrow \vdash \end{gathered}$	FNC 12 MOV	K10	D0	$=$	$\mathrm{X020}$	FNC 12 MOVP	K10	D0

In each circuit, MOV instruction is executed only once when X020 turns from OFF to ON.

## 5. Differences in the operation caused by auxiliary relay (M) numbers

When an auxiliary relay ( M ) is specified as a device in LDP, LDF, ANDP, ANDF, ORP and ORF instructions, the operation varies depending on the device number range as shown in the figure below.
<M0 to M2799, M3072 to M7679>

<M2800 to M3071>


After M0 is driven by X000, all contacts [1] to [4] corresponding to M0 are activated.
-The contacts [1] to [3] detect the rising edge of M0.
-Because of LD instruction, the contact [4] is conductive while MO is ON.

From M2800 driven by X000, the program is divided into the upper block (block A) and the lower block (block B). In each of the blocks A and B, only the first contact which detects the rising or falling edge is activated
Because of LD instruction, the contact in the block $C$ is conductive while M2800 is ON.
By utilizing these characteristics, "transition of state by same signal" in a step ladder circuit can be efficiently programmed.

## Cautions

1. Cautions when the LDP, LDF, ANDP, ANDF, ORP, or ORF instruction programmed in the same step is executed two or more times within one operation cycle
When LDP, LDF, ANDP, ANDF, ORP or ORF instruction programmed in the same step is executed two or more times within one operation cycle, the following operation results:

Programs executed two or more times

- Program between FOR and NEXT instructions
- Program which executes the same subroutine program from two or more CALL instructions during one operation cycle
- Program which jumps to a label (P) in a smaller step number by $C J$ instruction


## Operation



1) When a device turns from OFF to ON

1st time: LDP, ANDP or ORP instruction turns ON.
2nd time and later: When the device status is the same as the time when the instruction was executed last, the instruction turns OFF.
2) When a device turns OFF from ON

1st time: LDF, ANDF or ORF instruction turns ON.
2nd time and later: When the device status is the same as the time when the instruction was executed last, the instruction turns OFF.

## 2. Cautions on writing during RUN

1) Instructions for falling edge pulse

When writing is completed during RUN for a circuit including an instruction for falling edge pulse (LDF, ANDF, or ORF instruction), the instruction for falling edge pulse is not executed regardless of the ON/OFF status of the target device of the instruction for falling edge pulse.
When writing is completed during RUN for a circuit including an instruction for falling edge pulse (PLF instruction), the instruction for falling edge pulse is not executed regardless of the ON/OFF status of the operation condition device.
It is necessary to set to ON the target device or operation condition device once and then set it to OFF for executing the instruction for falling edge pulse.
2) Instructions for rising edge pulse When writing is completed during RUN for a circuit including an instruction for rising edge pulse, the instruction for rising edge pulse is executed if a target device of the instruction for rising edge pulse or the operation condition device is ON.
Target instructions for rising edge pulse: LDP, ANDP, ORP, and pulse operation type applied instructions (such as MOVP)

Contact ON/OFF status   (while writing is executed during RUN)	Instruction for rising edge pulse	Instruction for falling edge pulse
OFF	Not executed	Not executed
ON	Executed $^{* 1}$	Not executed

*1. PLS instruction is not executed.

### 7.6 ORB

## Outline



A circuit in which two or more contacts are connected in series is called serial circuit block.

1. Instruction format

2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number$\qquad$	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
ORB	There are no applicable devices.																							

## Explanation of function and operation

1. ORB instruction (parallel connection of multiple contact circuits)

When connecting serial circuit blocks in parallel, use LD or LDI instruction at the start of branch, and use ORB instruction at the end of branch.
ORB instruction is an independent instruction not associated with any device number in the same way as ANB instruction described later.
When there are many parallel circuits, ORB instruction can be used for each circuit block to connect them.

Circuit program


List program


## Caution

There is no limitation in the number of parallel circuits which can be connected by ORB instructions (in the case of appropriate program shown above).
Though ORB instructions can be used at one time, note that the repeated use of LD or LDI instruction is limited to 8 or less (in the case of inappropriate program shown above).

### 7.7 ANB

## Outline

##  <br> 

Use ANB instruction to connect a branch circuit (parallel circuit block) to the preceding circuit in series.
Use LD or LDI instruction at the start of branch. After completing a parallel circuit block, connect the parallel circuit block to the preceding circuit in series by ANB instruction.
When there are many parallel circuits, ANB instruction can be used in each circuit block to connect them.

1. Instruction format

2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D口.b	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
ANB	There are no applicable devices.																							

## Explanation of function and operation

1. ANB instruction (serial connection of multiple parallel circuits)

Circuit program


OR instruction after ANB instruction

List program

0000	LD	X000	
0001	OR	X001	
0002	LD	X002	$\leftarrow$ - Branch start point
0003	AND	X003	
0004	LDI	X004	$<$
0005	AND	X005	
0006	ORB		$\leftarrow$ Parallel block is completed.
0007	OR	X006	$\leftarrow$
0008	ANB		$\leftharpoonup$ It is connected to the
0009	OR	X003	preceding circuit in series.
0010	OUT	Y007	

There is no limitation in the number of ANB instruction.
Though ANB instructions can be used at one time, note that the repeated use of LD or LDI instruction is limited to 8 or less in the same way as ORB instruction.

## Caution

### 7.8 MPS, MRD, MPP

## Outline



FX3G, FX3U FX3GC and FX3UC PLCs have 11 memories called "Stack" which store the intermediate result (ON or OFF) of operations.

1. Instruction format


Memory Read

2. Applicable devices


## Explanation of function and operation

These instructions are convenient in programming branched multi-output circuits.

1. MPS, MRD, and MPP instructions (stores the current result of the internal PLC operations, reads the current result of the internal PLC operations, and pops (recalls and removes) the currently stored result)


- Use MPS instruction to store the intermediate result of operation, and then drive the output Y002.
- Use MRD instruction to read the stored data, and then drive the output Y003.

MRD instruction can be programmed as many times as necessary.

- In the final output circuit, use MPP instruction instead of MRD instruction. MPP instruction reads the stored data described above, and then resets it.


## Error

MPS instruction can be used two or more times.
However, the difference between number of MPS instructions and the number of MPP instructions should be 11 or less, and should be 0 at the end.

## Program examples

1) Program example 1: One stack Only one stack is used in this example.

Circuit program
MPS


List program


0001 MPS
0002 LD X001
0003 OR X002
0004 ANB
0005 OUT Y000
0006 MRD
0007 LD X003
0008 AND X004
0009 LD X005
0010 AND X006
0011 ORB
0012 ANB
0013 OUT Y001
0014 MPP
0015 AND X007
0016 OUT Y002
0017 LD X010
0018 OR X011
0019 ANB
0020 OUT Y003
3) Program example 3: Two stacks
Circuit program

List program

0000	LD	X000
0001 MPS		
0002 AND	X001	
0003 MPS		
0004 AND	X002	
0005 OUT	Y000	
0006	MPP	
0007 AND	X003	
0008 OUT	Y001	
0009 MPP		
0010 AND	X004	
0011 MPS		
0012 AND	X005	
0013 OUT	Y002	
0014 MPP		
0015 AND	X006	
0016 OUT	Y003	

4) Program example 4: Four stacks

Circuit program


List program

0000 LD X000
0001 MPS
0002 AND X001
0003 MPS
0004 AND X002
0005 MPS
0006 AND X003
0007 MPS
0008 AND X004


$\vee$		
0009	OUT	Y000
0010 MPP		
0011 OUT	Y001	
0012 MPP		
0013 OUT	Y002	
0014 MPP		
0015 OUT	Y003	
0016 MPP		
0017	OUT	Y004



0000	LD
0001	XU00
0002	AND
Y004	
0003	OUT
Y001	
0004	AND
X002	
0005	OUT
Y002	
0006	AND
X003	
0007	OUT
O001	
0008	AND

In programming a circuit on the upper side, it is necessary to MPS instruction three times.
By changing the circuit on the upper side into the circuit on the lower side, the same contents can be programmed easily without MPS instruction.

### 7.9 MC, MCR

## Outline

## FX3S

FX ${ }_{3 G}$
FX3GC
$F X_{3} u$
Ver.1.00 $\quad \Rightarrow$
Ver. 1.40 I $\Rightarrow$
$\xrightarrow{\text { Ver. } 2.20 ı}$

When MC instruction is executed, the bus line (LD or LDI point) is moved to a position after MC contact.
The bus line can be returned to the original position by MCR instruction.
By changing a device ( Y or M ) number, MC instruction can be used as many times as necessary.
If the same device number is used twice, however, it results in the double coil operation in the same way as OUT instruction.

1. Instruction format


Master Control


Master Control Reset

$\rightarrow$ For the number of steps of MC instruction, refer to Section 7.16.
2. Applicable devices

Instruction	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { Uप\G■ } \end{gathered}$	Index			Constant			Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S		$\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
MC		$\checkmark$	-																						
MCR	There are no applicable devices.																								

A: Except special auxiliary relays (M)

## Explanation of function and operation

## 1. MC and MCR instructions (denotes the start of a master control block and denotes the end of a

 master control block)When MC instruction is executed, the bus line is moved to a position after MC contact.
Drive instructions connected to the bus line after the MC contact execute each operation only when the MC instruction is executed, and execute each operation in the contact OFF status regardless of the contact status before drive instructions when a MC instruction is not executed. If an instruction (such as FOR/NEXT, EI and DI instruction) not requiring a contact instruction exists in a circuit using master control, such an instruction is executed regardless of the MC instruction execution command.
In the program example below, the instructions from MC to MCR are executed as they are while the input X000 is ON. However, while the input X000 is OFF, each driven device offers the following operation:

Timers (except retentive type timers) and devices driven by OUT instruction: Turn OFF.
Retentive type timers, counters and devices driven by SET/RST instruction: Hold the current status.
The expressions of circuit programs used to explain operations are circuits (for reading or monitoring) of GX Works2 and GX Developer.

Circuit program


List program
$\left.\begin{array}{lll}0000 & \text { LD } & \text { X000 } \\ 0001 & \text { MC } & \text { N } \quad 0 \\ & \text { SP } & \text { M100 }\end{array}\right)$ Three-step instruction
$\leftarrow$ Write MCR N0 instruction.

## Caution

1. A circuit error (Error code: 6611) occurs when an instruction connected the bus line (such as LD and LDI) is not present just after the MC instruction.

## 2. Cautions on writing during RUN

The PLC cannot detect errors if an instruction is added between the MC instruction and the Nロ instruction by write during RUN.
The PLC can detect errors after it is set to the STOP mode once and then to the RUN mode again.

## Program examples

1) When the nesting structure is not adopted

## Circuit program



List program
$\left.\begin{array}{lll}0000 & \text { LD } & \text { X000 } \\ 0001 & \text { MC } & \text { N 0 } \\ & \text { SP } & \text { M100 }\end{array}\right)$ Three-step instruction
$\leftarrow$ Return to the bus line ("N0" shows the nest level.)
$\leftarrow$ When not adopting the nesting structure, use "N0" again. There is no limitation in the number of "N0".
Only in the nesting structure, increase the nest level " N " in the way " $\mathrm{NO} \rightarrow$ N1 ... N6 $\rightarrow$ N7" as shown in the example 2 on the next page.
2) When the nesting structure is adopted

When using MC instructions inside MC instruction, increase the nest level "N" in turn in the way "N0 $\rightarrow$ N1 $\rightarrow$ N2 $\rightarrow \mathrm{N} 3 \rightarrow \mathrm{~N} 4 \rightarrow \mathrm{~N} 5 \rightarrow \mathrm{~N} 6 \rightarrow \mathrm{~N} 7$ ".
For returning from the nesting structure, reset the nest levels from the highest one in turn using MCR instruction in the way "N7 $\rightarrow \mathrm{N} 6 \rightarrow \mathrm{~N} 5 \rightarrow \mathrm{~N} 4 \rightarrow \mathrm{~N} 3 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} 1 \rightarrow \mathrm{~N} 0$ ".
For example, if "MCR N5" is programmed without programming "MCR N6" and "MCR N7", the nest level is returned to 5 immediately.
Available nest levels are from N0 to N7 (eight layers)
Circuit program
While X000


The bus line B is active while X 000 is ON .

Level N1
The bus line C is active while both X000 and X002 are ON.

Level N2
The bus line D is active while all of X000, X002 and X004 are ON.

Level N1
The bus line returns to the status of the bus line C by "MCR N2".

Level N0
The bus line returns to the status of the bus line B by "MCR N1".

## Initial status

The bus line returns to the initial status of the bus line A by "MCR N0". Accordingly, Y005 turns ON or OFF by turning ON or OFF of X010 regardless of X000, X002 and X004.

### 7.10 INV

## Outline



Ver. 2.20 m

## 1. Instruction Format

INV instruction inverts the operation result up to just before INV instruction, and does not require device number specification.


Inverse

Basic Instruction	Mnemonic	Operation Condition
	INV	Continuous Operation
		Pulse (Single) Operation

2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number$\qquad$	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
INV	There are no applicable devices.																							

## Explanation of function and operation

1. INV instruction (inverts the result of operations)


Timing chart


In the figure above, Y000 turns ON when X000 is OFF, and Y000 turns OFF when X000 is ON.
INV instruction can be used in the same position as serial contact instructions (AND, ANI, ANDP and ANDF).
Different from LD, LDI, LDP and LDF instructions shown in the list, INV instruction cannot execute connection to bus lines. Different from OR, ORI, ORP and ORF instructions, INV instruction cannot be used independently in parallel to a contact instruction.
2. Operation range of INV instruction

When INV instruction is used in a complicated circuit containing ORB and ANB instructions, the operation range of INV instruction is as shown in the figure below:


INV instruction inverts the operation result after LD, LDI, LDP or LDF instruction located before INV instruction. Accordingly, if INV instructions are used inside ORB and ANB instructions, blocks after LD, LDI, LDP or LDF instruction seen from each INV instruction are regarded as the target of INV operation.

### 7.11 MEP, MEF

## Outline

##  <br> Ver. $1.00 \leadsto \Rightarrow$ Ver. $1.00 \leadsto \Rightarrow$ Ver. $\Rightarrow 40 \mu \Rightarrow$ Ver. $2.30 \mathrm{~m} \Rightarrow$

MEP and MEF commands are instructions that change the operation results to pulses so that device numbers do not have to be specified.

1) $M E P$

The operation results up to the MEP instruction become conductive when the driving contacts turn from OFF to ON.
The use of MEP instructions simplifies the process of changing driving contacts to pulses when multiple contact points connect in a series.
2) MEF

The operation results up to the MEF instruction become conductive when the driving contacts turn from ON to OFF.
The use of MEF instructions simplifies the process of changing driving contacts to pulses when multiple contact points connect in a series.

1. Instruction format

2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real Number$\qquad$	Charac-ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
MEP	There are no applicable devices.																							
MEF	There are no applicable devices.																							

## Explanation of function and operation

1. MEP instruction (ON during rising edge of driving contacts results)

Circuit Program


List program

0	LD	X000
1	AND	X001
2	MEP	
3	SET	M0

Timing chart

2. MEF instruction (ON during falling edge of driving contacts results)

Circuit program List program


0	LD	X000
1	AND	X001
2	MEP	
3	SET	M0

Timing chart


## Caution

1. MEP and MEF instructions may not operate normally if the indexed contact is modified and changed to pulses by sub-routine programs, the FOR and NEXT instructions, etc.
2. As the MEP and MEF instructions operate using the operation results immediately before them, use at the list program as the AND instruction.
The MEP and MEF instructions cannot be used at the list program as LD or OR.
3. When programmed in a branch, the MEP/MEF instruction judges the rising/falling edge based on the rung status up to just before the MEP/MEF instruction in the branch.

Circuit program List program


## 4. Caution on writing during RUN

1) Pulse command during rising edge of operation (MEP instruction) results

After writing to the circuit with MEP instructions during RUN, the MEP instruction result turns ON (conductive) while the operation results up to the MEP instruction are ON.
2) Pulse instruction during falling edge of operation (MEF command) results After writing to the circuit with MEF instructions during RUN, the MEF instruction result turns OFF (nonconductive), regardless of the operation results up to the MEF instruction. The operation results of MEF instruction turns ON (conductive) when the operation results up to the MEF instruction turn OFF.

Operation Results up to MEP/MEF Instruction   (while writing is executed during RUN)	MEP Instruction	MEF Instruction
OFF	OFF (non-conductive)	OFF (non-conductive)
ON	ON (conductive)	OFF (non-conductive)

## Error

- There are no calculation errors in the MEP and MEF instructions.


## 7．12 PLS，PLF

## Outline



When PLS instruction is executed，an applicable device is activated during only one operation cycle after a drive input turns ON．
When PLF instruction is executed，an applicable device is activated during only one operation cycle after a drive input turns OFF．

1．Instruction format


Pulse


Pulse Falling

$\rightarrow$ For the number of instruction steps，refer to Section 7．16．
2．Applicable devices

Instruc－ tion	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con－   stant		Real Number	Charac－ ter String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H	E	＂$\square$＂	P
PLS		$\checkmark$	$\mathbf{A}$   1																42					
PLF		$\checkmark$	$\mathbf{A}$   1																－2					

A1：Except special auxiliary relays（M）
42：This function is supported only in $F X_{3} U / F X_{3} \cup c$ PLCs．

## Explanation of function and operation

1．PLS instruction（rising edge pulse）

Circuit program


List program
0000 LD X000
0001 PLS M 0

Timing chart


In the figure above，MO is ON during only one operation cycle when X000 changes from OFF to ON．

## 2．PLF instruction（falling／trailing edge pulse）



In the figure above，M1 is ON during only one operation cycle when X000 changes from ON to OFF．

## 3. Output drive side

The following two circuits result the same operation.


In each case, M0 is ON during only one operation cycle when X000 changes from OFF to ON.
<PLS instruction>

<Pulse operation type applied instruction>


In each case, MOV instruction is executed only once when X000 changes from OFF to ON.

## Caution

## 1. Cautions on writing during RUN

1) Instructions for falling edge pulse

When writing is completed during RUN for a circuit including an instruction for falling edge pulse (LDF, ANDF, or ORF instruction), the instruction for falling edge pulse is not executed regardless of the ON/OFF status of the target device of the instruction for falling edge pulse.
When writing is completed during RUN for a circuit including an instruction for falling edge pulse (PLF instruction), the instruction for falling edge pulse is not executed regardless of the ON/OFF status of the operation condition device.
It is necessary to set to ON the target device or operation condition device once and then set it to OFF for executing the instruction for falling edge pulse.
2) Instructions for rising edge pulse

When writing is completed during RUN for a circuit including an instruction for rising edge pulse, the instruction for rising edge pulse is executed if a target device of the instruction for rising edge pulse or the operation condition device is ON.
Target instructions for rising edge pulse: LDP, ANDP, ORP, and pulse operation type applied instructions (such as MOVP)

Contact ON/OFF status   (while writing is executed during RUN)	Instruction for rising edge pulse	Instruction for falling edge pulse
OFF	Not executed	Not executed
ON	Executed $^{* 1}$	Not executed

*1. PLS instruction is not executed.

## 2. Cautions on using latched (battery or EEPROM backed) type devices

When PLC mode is changed in the way "RUN $\rightarrow$ STOP $\rightarrow$ RUN" while a drive input remains ON, "PLS M0" operates, but "PLS M600 (latched device)" does not operate (when the PLC mode switches from STOP to RUN) because the status of M600 is latched even while the PLC is in the STOP mode.
3. Caution for simultaneous instances of the ZRST instruction and the PLS instruction

The ZRST instruction resets the last stage for the PLS instruction and PLF instruction of the applicable device. In addition, the reset state of T and C is also reset.

Circuit program


### 7.13 SET, RST

## Outline



FX
Ver.1.40

F×
Ver.2.20 $\mathrm{m} \Rightarrow$

1) Setting a bit device (SET instruction (set bit device latch ON))

When the command input turns ON, SET instruction sets to ON an output relay (Y), auxiliary relay (M), state relay (S) and bit specification (D $\square . \mathrm{b}$ ) of word device.

Even if the command input turns OFF after that, the device which was set to ON by SET instruction remains ON.
2) Resetting a bit device (RST instruction (reset bit device OFF))

RST instruction resets an output relay (Y), auxiliary relay (M), state relay (S), Timer (T), counter (C) or bit specification (D $\square . b$ ) of a word device.
Use the RST instruction to reset (set to OFF) a device which was set to ON by SET instruction.
3) Clearing the present value of a word device (RST instruction reset bit device OFF))

RST instruction clears the current value of a timer (T), counter (C), data register (D), extension register (R) or index register (V)(Z).
RST instruction can be used to clear to " 0 " the contents of a data register ( D ) or index register (V)(Z). (The same result can be obtained by MOV instruction which transfers the constant KO.)
RST instruction can be used also to reset the current value and return the contact of retentive type timers T246 to T255.
SET and RST instructions can be used for the same device as many times as necessary in an arbitrary order.

1. Instruction format

$\rightarrow$ For the number of instruction steps, refer to Section 7.16.
2. Applicable devices

Instruction	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number	Character String	Pointer
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
SET		$\checkmark$	$\begin{array}{\|c\|} \hline \mathbf{\Delta} \\ 1 \end{array}$					- 4 4												-4					
RST		$\checkmark$	$\pm 1$	$\checkmark$	$\stackrel{\text { A }}{1}$			$\mathbf{\Delta} 2$   $\mathbf{4} 4$					-	$\stackrel{4}{1}$	-	-2 - 3		A	A	-4					

41: Special auxiliary relays ( M ) and 32-bit counters ( C ) cannot be indexed with index registers ( V and Z ).
2: Index modifiers ( V and Z ) are not available.
©3: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
44: This function is supported only in $F X_{3} / / F X_{3} \cup C$ PLCs.

## Explanation of function and operation

SET instruction drives the coil for an output relay (Y), auxiliary relay (M), state relay (S) and bit specification of data register (D).

## 1. When using a bit device

SET instructions located in parallel can be used consecutively as many times as necessary.
In the program example shown below, "RST Y000" after "SET Y000" corresponds to this usage.

Circuit program


List program
0 LD X000
1 SET Y000
LD X001
RST Y000

2. When using a word device (timer or counter)

Use RST instruction to reset a counter or retentive type timer.

1) Program example of an internal counter


C0 up-counts the number of times X011 turns from OFF to ON. When the counting result reaches the set value K10, the output contact C0 is activated. Even if X011 changes from OFF to ON after that, the current value of the counter remains unchanged and the output contact remains activated.
For clearing the counter and returning the output contact, X010 is set to ON.
It is necessary to specify a constant K or data register number for indirect specification after OUT C instruction.
In the case of latched (battery backed) type counters, the current value and the operation status/reset status of the output contact are latched even after power failure.

For 1-phase 1-input counters C235 to C245, use special auxiliary relays M8235 to M8245 for specifying the counting direction.
X010 in ON status: Specifies down counting.
X010 in OFF status: Specifies up counting.
When X011 turns ON , the output contact of the counter $\mathrm{C} \triangle \Delta \Delta$ is returned and the current value of the counter $\mathrm{C} \triangle \triangle \Delta$ is reset to " 0 ". In counters with reset input (C241, C242 ...), the same situation is achieved by interrupt operation when the corresponding reset input turns ON , but any program is not required for this operation.
When X012 turns ON, turning ON/OFF of a counting input X000 to X005 determined according to the counter number is counted.
In counters having start input (C244, C245 ...), counting is started only after the corresponding input turns ON.
When the current value of a counter increases and reaches the set value ( $K$ or contents of $D$ ), the output contact is set. When the current value decreases and reaches the set value, the output contact is reset.

As a contact driving the counting coil of a high-speed counter, program a contact which is normally ON when highspeed counting is executed.
If an input relay (X000 to X005) assigned for high-speed counters is used for driving the counting coil, accurate counting cannot be achieved.

## Cautions on using RST instruction for a jumped program, subroutine program or interrupt program

When RST instruction for a timer or counter is executed in a jumped program, subroutine program or interrupt program, the timer or counter may be kept in the reset status and the timer or counter may be disabled. For details, refer to the following sections:
$\rightarrow$ For a jumped program, refer to Subsection 8.1.1. $\rightarrow$ For a subroutine program, refer to Subsection 8.2.1. $\rightarrow$ For an interrupt program, refer to Subsection 36.2.3.

## 3. Indexing ${ }^{* 1}$

Devices used in SET and RST instructions can be indexed with index registers (V)(Z).
(State relays (S), special auxiliary relays (M), 32-bit counters, "D $\square . b$ ", and word devices cannot be indexed.)


List program
0000 LD X000
0001 SET Y000ZO
0004 LD X001
0005 RST YOOOZO

V0 to V 7 and Z 0 to $\mathrm{Z7}$ are available for indexing. When a used device is an input ( X ) or output ( Y ), the value of an index register $(V$ or $Z)$ is converted into octal, and then added.
Example: When Z0 is " 20 ", Y024 turns ON or OFF.
*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## 4. Bit specification of a data register (D) ${ }^{* 1}$

A bit in data register (D) can be specified as a device used in SET or RST instruction.


## List program

0000 LD X000
0001 SET D0.3
0004 LD X001 0005 RST D0.3

When specifying a bit in data register, input "." after a data register ( D ) number, and then input a bit number ( 0 to F ) consecutively.
Only 16-bit data registers are available.
Specify a bit number as " $0,1,2, \ldots 9, A, B, \ldots$ F" from the least significant bit.
Example: In the example shown on the left, when X000 turns ON once, the bit 3 of DO turns ON. When X001 turns ON, the bit 3 of DO turns OFF.
*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Caution

When SET and RST instructions are executed for an output relay $(\mathrm{Y})$ in the same operation, the result of the instruction located nearest the END instruction (which specifies the end of program) is output.

## Errors

- When an I/O number used in SET or RST instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON.
- When the device number of a device ( $M, T$ or $C$ ) other than I/O used in SET or RST instruction does not exist due to indexing, an operation error (error code: 6706) occurs.


### 7.14 NOP

## Outline

## FX3S <br> Ver. 1.00 " $\quad$



Ver.2.20 $\mathrm{\prime} \mathrm{\prime} \Rightarrow$

NOP instruction specifies no operation.
When a program is erased completely, all steps are replaced with NOP instructions.
When NOP instruction is located between general instructions, PLCs ignore NOP instruction.
If NOP instructions are put in the middle of a program, fluctuation of step numbers is minimized when the program is changed or added. But excessive program steps are required.
Note that circuits are considerably changed if already written instructions are replaced with NOP instructions.

1. Instruction format

2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\G■	Index			Constant			Charac-   ter String   $" \square "$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
NOP	There are no applicable devices.																							

### 7.15 END

## Outline

END instruction specifies the end of a program.
(Do not write the END instruction in the middle of a program.)

1. Instruction format

2. Applicable devices

Instruction	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
END	There are no applicable devices.																							

## Explanation of function and operation

1. END instruction (program end, $I / O$ refresh and return to step 0 )

PLCs repeat "input processing $\rightarrow$ program execution $\rightarrow$ output processing". When END instruction is written at the end of a program, PLCs immediately execute the output processing without executing steps after END instruction. If END instruction is not written at the end of a program, PLCs execute the program until the END step, and then execute the output processing.
At the first execution after the PLC mode is changed from STOP to RUN, PLCs start from END instruction. When END instruction is executed, the watchdog timer (which checks the operation cycle) is refreshed.


## Caution

Do not write END instruction in the middle of a program.
When a program is transferred from a programming tool, all steps after END instruction are replaced with NOP (no operation) instructions.

### 7.16 Number of Instruction Steps and Specified Devices

The table below shows the number of steps of basic instructions. Available devices and device ranges vary depending on the PLC. For details on devices, refer to Chapter 4.
For ORB, ANB, MPS, MRD, MPP, MCR, INV, MEP, MEF, NOP and END instructions, refer to pages explaining these instructions.

	Device	Instruction						
		$\begin{gathered} \text { LD, LDI, } \\ \text { AND, ANI, } \\ \text { OR, ORI } \end{gathered}$	OUT	SET	RST	PLS, PLF	LDP, LDF, ANDP, ANDF, ORP, ORF	MC
Bit devices	X000 to X357	1	-	-	-	-	2	-
	Y000 to Y357	1	1	1	1	2	2	3
	M0 to M1535	1	1	1	1	2	2	3
	M1536 to M3583	2	2	2	2	2	2	3
	M3584 to M7679	3	3	3	3	3	3	4
	S0 to S1023	1	2	2	2	-	2	-
	S1024 to S4095	2	2	2	2	-	2	-
	$\begin{aligned} & \hline \text { T0 to T191, } \\ & \text { T200 to T245 } \end{aligned}$	1	3	-	2	-	2	-
	$\begin{array}{\|l\|} \hline \text { T192 to T199, } \\ \text { T246 to T511 } \end{array}$	1	3	-	2	-	2	-
	C0 to C199	1	3	-	2	-	2	-
	C200 to C255	1	5	-	2	-	2	-
	Special auxiliary relays M8000 to M8255	1	2	2	2	-	2	-
	Special auxiliary relays M8256 to M8511	2	2	2	2	-	2	-
Bit devices with index	X000 to X357	3	-	-	-	-	-	-
	Y000 to Y357	3	3	3	3	3	-	-
	M0 to M7679	3	3	3	3	3	-	-
	T0 to T511	3	4	-	-	-	-	-
	S0 to S4095	-	-	-	-	-	-	-
	C0 to C199	3	4	-	3	-	-	-
	C200 to C255	-	-	-	-	-	-	-
	Special auxiliary relays M8000 to M8511	3	3	3	3	-	-	-
Word devices	D0 to D7999, Special data registers D8000 to D8511	-	-	-	3	-	-	-
	R0 to R32767	-	-	-	3	-	-	-
Word devices with index	D0 to D7999,   Special data registers D8000 to D8511, R0 to R32767	-	-	-	-	-	-	-
Bit specification in word device	D $\square . b$,   Special auxiliary relays D $\square . \mathrm{b}$	3	3	3	3	-	3	-

## 8. Program Flow - FNC 00 to FNC 09

FNC 00 to FNC 09 provide instructions mainly related to control flow of sequence programs such as conditional program execution and priority processing.

FNC No.	Mnemonic	Symbol	Function	Reference
00	CJ	$\|\vdash\|$CJ Pn	Conditional Jump	Section 8.1
01	CALL		Call Subroutine	Section 8.2
02	SRET		Subroutine Return	Section 8.3
03	IRET		Interrupt Return	Section 8.4
04	El	$\mid \text { El }$	Enable Interrupt	Section 8.5
05	DI		Disable Interrupt	Section 8.6
06	FEND		Main Routine Program End	Section 8.7
07	WDT	- $\longmapsto$ WDT	Watchdog Timer Refresh	Section 8.8
08	FOR	FOR	Start a FOR/NEXT Loop	Section 8.9
09	NEXT	$\bigcirc$ NEXT	End a FOR/NEXT Loop	Section 8.10

### 8.1 FNC 00 - CJ / Conditional Jump

## Outline

CJ or CJP instruction jumps to a pointer (P); The sequence program steps between CJ or CJP instruction and the pointer are not executed.
CJ and CJP instructions reduce the scan time, and allow programs with double coils.

1. Instruction format

2. Set data

Operand type	Description	Data type
Pn•	Pointer number (P) indicating the label number for the jump destination   (FX3S: $n=0$ to 255, FX3G/FX3GC: $n=0$ to 2047, FX3U/FX3UC: $n=0$ to 4095)   (P63 jumps to END instruction.)	Pointer number

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant		Real Number E	Character String   " $\square$ "	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
Pn.																			$\checkmark$					$\checkmark$

## Explanation of function and operation

1. 16-bit operation (CJ and CJP)

While the command input is ON, CJ or CJP instruction executes a program with a specified label (pointer number).

1) In the case of $C J$ instruction

2) In the case of CJP instruction


## Cautions

1. Relationship between the label input position and the list program

The figure below shows programming of a label.
When creating a circuit program, move the cursor to the left side of the bus line in the ladder diagram, and input a label $(P)$ at the head of the circuit block.

2. Programming a label in a smaller number step than $C J$ instruction

A label can be programmed in a smaller number step than CJ instruction. However, note that a watchdog timer error occurs when the scan time exceeds 200 ms (default setting).
Label
P 10

3. Jumping to one label from two or more CJ instructions

When the pointer number in operands is same and there is one label, the following operation is caused:
When X020 turns ON, the program execution jumps from CJ instruction corresponding to X020 to the label P9. When X020 turns OFF and X021 turns ON, the program execution jumps from CJ instruction corresponding to X021 to the label P9.

4. Using a label $(P)$ two or more times

When a label number (including labels for CALL instructions described later) is used two or more times, an error is caused.


## 5. Label unnecessary for the pointer P63

The pointer P63 specifies jump to END step. Do not program P63.
If P63 is programmed, PLCs will display the error code 6507 (defective label definition) and stop.


Program a label ( P ) after FEND instruction.
7. Unconditional jump if the command contact is normally ON

Because M8000 is normally ON while a PLC is operating, unconditional jump is specified when M8000 is used in the following example:


## Program example

## 1. When a jump is necessary after OFF processing

In one operation cycle after X023 changes from OFF to ON, the CJ P7 instruction becomes valid.
By using this method, jump can be executed after all outputs between the CJ P7 instruction and the label P7 turn OFF.


### 8.1.1 CJ instruction and operations of contact and coil

In the program example shown below, when X000 turns ON, the program execution jumps from CJ instruction in the first circuit to the label P8.
While X000 is OFF, jump is not executed; The program is executed from the 1st step in turn, and then the program execution jumps from CJ instruction in the 11th circuit to the label P9.
Instructions skipped by jump are not executed.

1. Circuit example 1 for explaining operations


- Double coil operation of output Y001

While X000 is OFF, output Y001 is activated by X001. While X000 is ON, output Y001 is activated by X012. Even in a program divided by conditional jumps, if the same coil (Y000 in this case) is programmed two or more times within the jump area or outside the jump area, such a coil is handled as double coil.

- When the reset (RST) instruction for the retentive type timer T246 is located outside the jump area
Even if the counting coil (OUT T246) is jumped, reset (return of the contact and clearing of the current value) is valid.
- When the reset (RST) instruction for the counter CO is located outside the jump area
Even if the counting coil is jumped, reset (return of the contact and clearing of the current value) is valid.
- Operation of the routine timers T192 to T199

A routine timer continues its operation even if it is jumped after the coil is driven, and the output contact is activated.

- Operation of the high-speed counters C235 to C255

A high-speed counter continues its operation even if it is jumped after the coil is driven, and the output contact is activated.

When each input changes during jump in the above program, each coil executes the following operation:

Classification	Contact status before jump	Coil operation during jump
$\begin{aligned} & \hline \mathrm{Y}, \mathrm{M}, \mathrm{~S} \\ & \text { (Y001, M1, S1) } \end{aligned}$	X001, X002, X003 OFF	Y001, M1 and S1 turn OFF.
	X001, X002, X003 ON	Y001, M1 and S1 turn ON
10 ms timer and 100 ms timer (TO)	X004 OFF	Timer is not activated.
	X004 ON	Counting is paused (, and is restarted after X000 turns OFF).
$\begin{aligned} & 1 \mathrm{~ms} \text { timer } \\ & \text { (T246) } \end{aligned}$	$\begin{aligned} & \text { X005 OFF } \\ & \text { X006 OFF } \end{aligned}$	Timer is not activated.   The deactivation status is reset when X013 turns ON.
	$\begin{aligned} & \text { X005 OFF } \\ & \text { X006 ON } \end{aligned}$	Counting is continued (, and the contact is activated after X000 turns OFF).
Counter(C0)	$\begin{aligned} & \text { X007 OFF } \\ & \text { X010 OFF } \end{aligned}$	Counting is not activated. The deactivation status is reset when X013 turns ON.
	$\begin{aligned} & \text { X007 OFF } \\ & \text { X010 ON } \end{aligned}$	Counting is paused (, and is restarted after X000 turns OFF).
Applied instruction (MOV)	X011 OFF	FNC instruction is not executed during jump.   But instructions FNC 52 to FNC 58 continue their operations.

2. Circuit example 2 for explaining operations (when only an RST instruction for a timer or counter is jumped)


When X011 turns ON while the RST instruction for the counter C0 is operating (X010 is ON), the program execution jumps past the RST instruction due to the CJ (FNC 00) instruction.
In this jump status, the counter CO remains reset. Accordingly, the current value of C 0 remains " 0 " even if X012 turns ON.
To clear this reset status, it is necessary to turn OFF the RST instruction for counter C0. (Refer to the program shown below.)

## Timing chart



Program example for activating a timer and counter even during a jump


## Timing chart


*1 In the same operation cycle as the reset, the reset status of counter C0 is cleared.

### 8.1.2 Relationship between master control instruction and jump instruction

The figure below shows the contents of operation and the relationship between the master control instruction. Avoid using [2], [4] and [5] because the operation will be complicated.



Jump is enabled while M1 is ON. In circuits after jump, M2 is regarded as ON regardless of the actual ON/OFF status of M2. And the first MCR NO is ignored.

### 8.2 FNC 01 - CALL / Call Subroutine

## Outline

This instruction calls and executes a program which should be processed commonly in a sequence program.
This instruction reduces the number of program steps, and achieves efficient program design.
For creating a subroutine program, FEND (FNC 06) and SRET (FNC 02) instructions are required.

1. Instruction format

2. Set data

Operand type	Description	Data type
Pn ${ }^{\text {P }}$	Pointer number ( P ) indicating the label number for the jump destination (FX3S: P0 to P62 and P64 to P255, FX3G/FX3GC: P0 to P62 and P64 to P2047, FX3U/FX3UC: P0 to P62 and P64 to P4095)	Pointer number

P63 is dedicated to CJ (FNC 00) instruction (for jump to END step), it cannot be used as a pointer for CALL (FNC 01) instruction.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ \G $\square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
Pn.)																			$\checkmark$					$\checkmark$

## Explanation of function and operation

1. 16-bit operation

While the command input is ON, CALL instruction is executed and the program execution jumps to a step with a label Pn-
Then, a subroutine program with the label $P^{\circ} \cdot$ is executed.
When SRET (FNC 02) instruction is executed, the program execution returns to the step after CALL instruction.

- At the end of the main program, put FEND instruction.
- Put a label ( P ) for CALL instruction after FEND instruction.



## Caution

1. Using a label ( $P$ ) number two or more times

In CALL instructions, the same number can be used two or more times in operands (P).
However, do not use a label ( P ) and number used in another instruction (CJ instruction).


Main program
While X000 is ON, the program execution jumps to a step with the label P10.

## Subroutine program

When SRET instruction is executed after the subroutine program has executed, the program execution returns to the original step +1 .

## Program examples

1. Example of fundamental use (no nesting)

2. Example of multiple CALL instructions in subroutines (multiple nesting)

CALL instruction can be used up to 4 times in subroutine programs. Nesting of up to five layers is allowed.


### 8.2.1 Cautions on subroutines and interrupt routines

This section explains cautions on creating programs in subroutines and interrupt routines.
The explanation below is given for subroutines, but the situation also applies to interrupt routines.

1. When using timers in subroutines (or interrupt routines)

Use retentive type timers T192 to T199 in subroutines.
(FX3s PLCs are not equipped with timers for subroutine program.)
These timers execute counting when the coil instruction or END instruction is executed.
After a timer reaches the set value, the output contact is activated when the coil instruction or END instruction is executed.
Because general timers execute counting only when the coil instruction is executed, they do not execute counting if they are used in subroutines in which the coil instruction is executed only under some conditions.
2. When using retentive type 1 ms timers in subroutines (or interrupt routines)

If a retentive type 1 ms timer is used in a subroutine, note that the output contact is activated when the first coil instruction (or subroutine) is executed after the timer reaches its set value.
3. Countermeasures against latches of devices used in subroutines (or interrupt routines)

Devices which were set to ON in a subroutine are latched in the ON status even after the subroutine is finished. (Refer to the program example shown below.)
When RST instruction for a timer or counter is executed, the reset status of the timer or counter is latched also.
For turning OFF such a device latched in the ON status or for canceling such a timer or counter latched in the reset status, reset such a device in the main program after the subroutine is finished, or program a sequence for resetting such a device or for deactivating RST instruction in the subroutine.
(Refer to the program example shown on the next page.)

## Example in which outputs are latched

In the following program example, the counter C0 is provided to count X001. When X000 is input, the subroutine P0 is executed only in one scan, and then the counter is reset and Y007 is output.

1) Program example

2) Timing chart


## Example for resetting held outputs (countermeasures)

1) Program example

2) Timing chart


### 8.3 FNC 02 - SRET / Subroutine Return

Outline
This instruction returns the program execution from a subroutine to the main program.

1. Instruction format


## 2. Set data

Operand type	Description	Data type
-	There is no set data.	-

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
-	There are no applicable devices.																							

## Explanation of function and operation

When CALL instruction in the main program is executed, the program execution jumps to a subroutine. SRET instruction returns the program execution to the main routine.

### 8.4 FNC 03 - IRET / Interrupt Return

## Outline

This instruction returns the program execution from an interrupt routine to the main program.

1. Instruction format

FNC 03	Independent Inst. Mnemonic   1 step IRET		Operation Condition	
IRE			Continuous Operation	This instruction is the independent type, and does not require drive contact.

## 2. Set data

Operand type	Description	Data type
-	There is no set data.	-

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant		Real Number   E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
-	There are no applicable devices.																							

## Explanation of function and operation

When an interrupt (input, timer or counter) is generated while the main program is executed, the program execution jumps to an interrupt (I) routine.
IRET instruction returns the program execution to the main routine.
The table below shows three types of jump to an interrupt routine.

1. Types of interrupt function

Function	Interrupt No.	Description	Reference
Input interrupt	$100^{*}$ to $150^{*}$	Executes the interrupt processing when an input (X) signal turns ON or   OFF.	Section 36.3 and   Section 36.4
Timer interrupt	$16^{* *}$ to $18^{* *}$	Executes the interrupt processing at a specified time interval (constant   cycle).	Section 36.5
Counter interrupt $^{* 1}$	1010 to 1060	Executes the interrupt processing when a high-speed counter reaches   it's set value.	Section 36.6

*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Program example



Interrupts are usually disabled in PLCs.
Use El instruction to enable interrupts.
When X000 turns ON while the main program is executed, instructions after the interrupt routine pointer 1001 are executed, and the program execution returns to the original main program by IRET instruction.

The timer interrupt of the pointer 1620 is executed every timer time of 20 ms , and the program execution is returned to the original main program by IRET instruction each time.

The high-speed counter interrupt of the pointer 1010 is executed when the current value of a high-speed counter becomes equivalent to a value specified by DHSCS (FNC 53) instruction.
The program execution returns to the original main program by IRET instruction.

Make sure to program an interrupt pointer $\left(l^{* * *}\right)$ as a label after FEND instruction.

### 8.5 FNC 04 - EI / Enable Interrupt

## Outline

Interrupts are usually disabled in PLCs.
This instruction enables interrupts in PLCs.
Use this instruction for using the input interrupt, timer interrupt and counter interrupt functions.

1. Instruction format

FNC 04	Independent Inst. Mnemonic   1 step El		Operation Condition	
El			L Continuous	This instruction is the independent type, and does not require drive contact.

2. Set data

Operand type	Description	Data type
-	There is no set data.	-

## 3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S		$\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
-	There are no applicable devices.																								

## Explanation of function and operation

El instruction is the independent type, and does not require command (drive) contact.
$\rightarrow$ For the interrupt function, refer to Chapter 36.

### 8.6 FNC 05 - DI / Disable Interrupt

## Outline

This instruction disables interrupts after interrupts were enabled by EI (FNC 04) instruction.

1. Instruction format


## 2. Set data

Operand type	Description	Data type
-	There is no set data.	-

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
-	There are no applicable devices.																							

## Explanation of function and operation

DI instruction is the independent type, and does not require command (drive) contact.
$\rightarrow$ For the interrupt function, refer to Chapter 36.

## Cautions

Interrupts (requests) generated after DI instruction are processed after EI (FNC 04) instruction is executed

### 8.7 FNC 06 - FEND / Main Routine Program End



Outline
This instruction indicates the end of the main program.

1. Instruction format

2. Set data

Operand type	Description	Data type
-	There is no set data.	-

3. Applicable devices


## Explanation of function and operation

FEND instruction works in the same way as END instruction.
When FEND instruction is executed, output processing, input processing and watchdog timer refresh are executed, and then the program execution returns to the step 0 .
FEND instruction is required in creating subroutine programs and interrupt programs.

1. In the case of CJ instruction

2. In the case of CALL instruction


## Cautions

1. When FEND instruction is programmed two or more times

Put a subroutine program or interrupt routine program between last FEND instruction and END instruction.
2. When CALL or CALLP instruction is used

Put a label after FEND instruction. And the SRET instruction is required in every case.
3. When CALL or CALLP instruction is used

If FEND instruction is executed after CALL or CALLP instruction was executed and before SRET instruction is executed, an error is caused.
4. When FOR instruction is used

If FEND instruction is executed after FOR instruction was executed and before NEXT instruction is executed, an error is caused.
5. When the interrupt function (I) is used

Make sure to program an interrupt label (pointer) after FEND instruction. And IRET instruction is required in every case.

### 8.8 FNC 07 - WDT / Watchdog Timer Refresh

## Outline

Ver.1.00 $\Rightarrow$ Ver.1.40 $\Rightarrow$
This instruction refreshes the watchdog timer in a sequence program.

1. Instruction format

FNC 07   WDT				
	P			

2. Set data

Operand type	Description	Data type
-	There is no set data.	-

3. Applicable devices

	Bit Devices							Word Devices												Others				
Operand	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
-	There are no applicable devices.																							

## Explanation of function and operation

When the operation cycle (time until END or FEND instruction is executed after the step 0) of a PLC exceeds 200 ms , a watchdog timer error (indicating abnormal operation) occurs; The ERROR (ERR) LED lights, and the PLC stops. When the operation cycle is long, insert WDT instruction in the middle of the program to avoid the watchdog timer error.


## Related device

Device	Name	Description
D8000	Watchdog timer time	Up to 32767 ms can be set in units of ms (initial value: 200 ms ).

## Cautions

1. When a watchdog timer error occurs

A watchdog timer error may occur in the following cases. To avoid the error, input a program shown below near the head step to extend the watchdog timer time, or shift FROM/TO instruction execution timing.

1) Caution when many special extension devices are connected

In such configuration that many special extension devices (such as positioning units, cam switches, analog units and link units) are connected, the buffer memory initialization time may become longer, thus the operation time may become longer, and a watchdog timer error may occur.
2) Caution when many $\operatorname{FROM} / \mathrm{TO}$ instructions are driven at one time When many FROM/TO instructions are executed or when many buffer memories are transferred, the scan time may become longer, and a watchdog timer error may occur.
3) Caution when there are many high-speed counters (software counters)

When many high-speed counters are provided and high frequency are counted at one time, the operation time may become longer, and a watchdog timer error may occur.
2. The watchdog timer time can be changed.
$\rightarrow$ For details on changing watchdog timer time, refer to Subsection 37.2.2.
By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time (initial value: 200 ms ) can be changed.
By inputting the program shown below, the sequence program after this insertion is monitored by a new watchdog timer time.


## Program examples

1. When the operation cycle is long and causes an error

For example, by dividing a program whose operation cycle is 240 ms into two portions and inserting WDT instruction between them, the operation cycle becomes less than 200 ms in both the former half portion and the latter half portion.

2. When a label $(P)$ of $C J$ instruction is located in a step number smaller than the step number of $C J$ instruction
Put WDT instruction after the label (P).

3. When FOR/NEXT instruction is repeated many times

Put WDT instruction between FOR and NEXT instructions.


If an input relay $(X)$ is used as the command contact, input refresh is disabled, so the program execution cannot be returned from the area between P and CJ .
As the command contact, use such device that can be set to OFF in a program being jumped.

### 8.9 FNC 08 - FOR / Start a FOR/NEXT Loop

## Outline

FOR instruction specifies the number of repetition of the loop between FOR and NEXT (FNC 09) instructions.

1. Instruction format

2. Set data

Operand type	Description	Data type
$S \cdot$	Number of repetition of the loop between FOR and NEXT instructions   $[S \cdot)=K 1$ to $K 32767]$   $(A$ value from -32768 to 0 is handled as "1".)	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { Uप\G } \end{array}$	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S-								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									

^1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / F X_{3} \mathrm{~J} / \mathrm{FX} 3 \mathrm{C}}$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{PLCs}$.

## Explanation of function and operation

$\rightarrow$ For details, refer to NEXT (FNC 09) instruction.

## Related instruction

FOR instruction and NEXT (FNC 09) instruction are set as a pair in programming.

### 8.10 FNC 09 - NEXT / End a FOR/NEXT Loop

## Outline

NEXT instruction specifies the end position of the loop.

1. Instruction format

2. Set data

Operand type	Description	Data type
-	There is no set data.	-

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
-	There are no applicable devices.																							

## Explanation of function and operation

The loop between FOR and NEXT instructions is repeated " $n$ " times (which is specified by the source data). After the loop is repeated by the specified number of times, steps after NEXT instruction are executed.


## Related instruction

NEXT instruction and FOR (FNC 08) instruction are set as a pair in programming.

## Caution

1. Limitation in the number of nesting

FOR-NEXT loop can be nested up to 5 levels.


## Errors

## 1. Watchdog timer error

When FOR-NEXT loop is repeated many times, the operation cycle (D8010) is too long, and a watchdog timer error may occur. In such a case, change the watchdog timer time or reset the watchdog timer.
$\rightarrow$ For details on changing the watchdog timer time, refer to Subsection 37.2.2. $\rightarrow$ For resetting the watchdog timer, refer to WDT (FNC 07) instruction.
2. Examples of wrong programs

The following programs are regarded as errors.


Program example

## 1. Program with three FOR-NEXT loops

When K1X000 is " 7 ", the loop [1] is repeated 7 times.

- When X010 is ON
The program execution jumps to the pointer P22, and the loop [1] is skipped.
Number of times of repeating the loops [1],
[2] and [3]

	X010 $=$ OFF	X010 $=$ ON
[1]	$7 \times 6 \times 4=168$ times	0 time
$[2]$	$6 \times 4=24$ times	24 times
$[3]$	4 times	4 times

## 9. Move and Compare - FNC 10 to FNC 19

FNC 10 to FNC 19 provide fundamental data processing instructions such as data transfer and data comparison which are regarded as most important in applied instructions.

FNC No.	Mnemonic	Symbol	Function	Reference
10	CMP	$\begin{array}{\|} \hline & \\ \hline \text { CMP } & \mathrm{s} 1 & \mathrm{~S} 2 & \mathrm{D} \\ \hline \end{array}$	Compare	Section 9.1
11	ZCP		Zone Compare	Section 9.2
12	MOV	MOV S D	Move	Section 9.3
13	SMOV	SMOV S m 1 m 2 D n	Shift Move	Section 9.4
14	CML		Complement	Section 9.5
15	BMOV	HЮ BMOV S D n	Block Move	Section 9.6
16	FMOV	FMOV S D n	Fill Move	Section 9.7
17	XCH	$\begin{array}{\|l\|l\|l\|l\|} \hline \mathrm{XCH} & \mathrm{D} 1 & \mathrm{D} 2 \\ \hline \end{array}$	Exchange	Section 9.8
18	BCD	Hャ$B C D$ $S$ $D$	Conversion to Binary Coded Decimal	Section 9.9
19	BIN	BIN s D	Conversion to Binary	Section 9.10

### 9.1 FNC 10 - CMP / Compare

## Outline

Ver.1.00 ॥ $\Rightarrow$ $F X_{3 G}$
Ver. $1.00 \prime \Rightarrow$ $\qquad$ $F X_{3} U$
Ver.2.20 " $\Rightarrow$

This instruction compares two values, and outputs the result (smaller, equal or larger) to bit devices (3 points).
$\rightarrow$ For the contact comparison instruction, refer to Chapter 28. $\rightarrow$ For floating point comparison, refer to Section 18.1.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Data or device number handled as comparison value	16- or 32-bit binary
S2•	Data or device number handled as comparison source	16- or 32-bit binary
D•	Head bit device number to which comparison result is output	Bit

3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   UnitU $\square \backslash \mathrm{G} \square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1									$\checkmark$	-2	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.									$\checkmark$	-2	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)		$\checkmark$	$\checkmark$			$\checkmark$		A1												$\checkmark$					

©1: "D $\square . b$ " is available only in $F X_{3}$ and $F X_{3} \cup c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.

©3: This function is supported only in $F X_{3} / / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (CMP and CMPP)

The comparison value $\mathrm{S}_{1-}$ and the comparison source $\mathrm{S}_{2-}$ are compared with each other. According to the result (smaller, equal or larger), either one among $\mathrm{D}^{\circ}, \mathrm{D} \cdot+1$ or $\mathrm{D}^{\cdot}+2$ turns ON.

- The source data S1• S2• are handled as binary values.
- Comparison is executed algebraically. Example: $-10<2$


Even if the command input turns OFF and CMP instruction is not executed, D. D. D+1 and (D. +2 latch the status just before the command input turns OFF from ON.

## 2. 32-bit operation (DCMP and DCMPP)

The comparison value [ $\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot$ ] and the comparison source $\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot \cdot\right.$ ] are compared with each other. According to the result (smaller, equal or larger), either $\mathrm{D}^{\cdot}, \mathrm{D}^{\cdot}+1$ or $\mathrm{D}^{\cdot}+2$ turns ON.

- The source data $[\mathrm{S} 1 \cdot \cdot+1, \mathrm{~S} 1 \cdot][\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$ are handled as binary values.
- Comparison is executed algebraically. Example: $-125400<22466$



## Caution

## 1. Number of occupied devices

From the device specified as $\mathrm{D}^{-}$, three devices are occupied. Make sure not to use those devices in another control.

## Program examples

1. When comparing the current value of a counter

|  |  |
| :--- | :--- | :--- | :--- | :--- |



If it is necessary to clear the comparison result when the instruction is not executed, add the following contents under the above program.

1) RST instruction

2) ZRST instruction

X000			
	FNC 40   ZRST	M0	M2

### 9.2 FNC 11 - ZCP / Zone Compare

## Outline



This instruction compares two values (zone) with the comparison source, and outputs the result (smaller, equal or larger) to bit devices (3 points).
$\rightarrow$ For the contact comparison instruction, refer to Chapter 28.
$\rightarrow$ For floating point comparison, refer to Section 18.2.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition
17 steps	DZCP	Continuous
	CP	Pulse (Single) Operation

## 2. Set data

Operand Type	Description	Data Type
S1•	Data or device number handled as lower comparison value	16- or 32-bit binary
S2•	Data or device number handled as upper comparison value	16 - or 32-bit binary
S•	Data or device number handled as comparison source	16 - or 32-bit binary
D•	Head bit device number to which comparison result is output	Bit

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant			Charac-ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	42	-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	-2	-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S.								$\checkmark$	-2	$\triangle 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					

A1: "D口.b" is available only in FX3U and FX3UC PLCs. However, index modifiers ( V and Z ) are not available.

43: This function is supported only in FX3u/FX3uc PLCs.

## Explanation of function and operation

## 1. 16-bit operation (ZCP and ZCPP)

The lower comparison value $\mathrm{S}_{1-}$ ) and upper comparison value $\mathrm{S} 2^{\bullet}$ are compared with the comparison source (S.). According to the result (smaller, within zone or larger), either $D^{\cdot}, D^{\cdot}+1$ or $D^{\cdot}+2$ turns ON.

- Comparison is executed algebraically. Example: $-10<2<10$


Even if the command input turns OFF and ZCP instruction is not executed, D. , D : +1 and (D. +2 latch the status just before the command input turns OFF from ON.

## 2. 32-bit operation (DZCP and DZCPP)

The lower comparison value [ $\mathrm{S}_{1} \cdot$ +1, $\mathrm{S}_{1} \cdot$ ] and upper comparison value [ $\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2 \cdot}$ ] are compared with the comparison source [ $S^{\cdot}+1, S^{\cdot}$ ]. According to the result (smaller, within zone or larger), either $D^{\cdot}, D^{-}+1$ or D• +2 turns ON.

- Comparison is executed algebraically. Example: $-125400<22466<1015444$

Command


Even if the command input turns OFF and DZCP instruction is not executed, D : D D +1 and (D.)+2 latch the status just before the command input turns OFF from ON.

## Cautions

## 1. Number of occupied devices

From the device specified as D. , three devices are occupied. Make sure not to use devices used in another control.
2. Upper comparison value and lower comparison value

The lower comparison value $\mathrm{S} 1-^{-}$should be smaller than the upper comparison value $\mathrm{S}_{2} \cdot$.

1) When the lower comparison value $\mathrm{S}_{1 \cdot}$ is smaller than the upper comparison value $\mathrm{S}_{2} \cdot$

2) When the lower comparison value $\mathrm{S}_{1 \cdot}$. is larger than the upper comparison value $\mathrm{S}_{2 \cdot}$



### 9.3 FNC 12 - MOV / Move

## Outline




This instruction transfers (copies) the contents of a device to another device.

1. Instruction format

	FNC 12	
D	MOV	P


16-bit Instruction	Mnemonic	Operation Condition
5 steps	MOV MOVP	


32-bit Instruction	Mnemonic	Operation Condition
9 steps		Continuous   - Operation
	DMOVP	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
S•	Transfer source data or device number storing data	16- or 32-bit binary
D.	Transfer destination device number	16 - or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \mathrm{U} \square \mathrm{G} \square \end{gathered}$	Index			Constant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline \text { " } \square \text { " } \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S-								$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

41: This function is supported only in FX3G/FX3GC/FX3U/FX3UC PLCs.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{H} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (MOV and MOVP)

The contents of the transfer source $\mathrm{S}^{\cdot}$ are transferred to the transfer destination $\mathrm{D}^{\circ}$.

- While the command input is OFF, the transfer destination (D• does not change.
- When a constant $(\mathrm{K})$ is specified as the transfer source $\mathrm{S}^{\text {• }}$, it is automatically converted into binary.

Command


When specifying digits of a bit device (K1X000 $\rightarrow$ K1Y000)
The bit device transfers a maximum of 16 points(multiple of 4).
Command


$\begin{gathered} \text { Before } \\ \text { execution } \end{gathered}$	(S.) : K1 $\times 0$	
	$\times 3 \times 2 \times 1$	Y3
	On OfFoforfon	On on on ${ }^{\text {afar }}$
$\begin{array}{\|c} \text { After } \\ \text { execution } \end{array}$		



When a word device is specified
The word device transfers 1 point.

Command
input      FNC 12   MOV D10 D50



## 2. 32-bit operation (DMOV and DMOVP)

The contents of the transfer source [ $S^{\bullet}+1, S^{\cdot}$ ] are transferred to the transfer destination [ $D^{\cdot}+1, D^{\cdot}$ ].

- While the command input is OFF, the transfer destination (D. does not change.
- When a constant $(K)$ is specified as the transfer source [ $S \cdot+1$, $S \cdot$ ], it is automatically converted into binary.


When specifying digits of a bit device (K8X000 $\rightarrow$ K8Y000)
The bit device transfers a maximum of 32 points (multiple of 4).
Command




When a word device is specified
The word device transfers 1 point.

Command
input           FNC 12   DMOV D10



## Program examples

## 1. When reading the current value of a timer and counter

| X001 |
| :---: | :---: | :---: | :---: | | FNC 12 <br> MOV | T 0 | D 20 |
| :---: | :---: | :---: |

(Current value of T0) $\rightarrow(\mathrm{D} 20)$
The operation is the same as a counter.

As the set value of the timer T20, two values can be specified by turning ON or OFF the switch X002.
For specifying more than two set values, more than one switch is required.


$$
\begin{aligned}
& (\mathrm{K} 100) \rightarrow(\mathrm{D} 10) \\
& (\mathrm{K} 50) \rightarrow(\mathrm{D} 10)
\end{aligned}
$$

When X002 is ON, D10 = K100 (10-second timer)
When X002 is OFF, D10 = K50 (5-second timer).

## 3. When transferring a bit device

The program written by basic instructions shown on the right can be expressed using MOV instruction as shown below.


## 4. When transferring 32-bit data

Make sure to use DMOV instruction for transferring the operation result of an applied instruction (such as MUL) whose operation result is output in 32 bits, and for transferring a 32-bit numeric value or transferring the current value of a high-speed counter (C235 to C255) which is a 32-bit device.


$$
(\text { D 1,D 0) } \rightarrow(\mathrm{D} 11, \mathrm{D} 10)
$$

(Current value of C235) $\rightarrow$ (D21, D20)

### 9.4 FNC 13 - SMOV / Shift Move

## Outline

This instruction distributes and composes data in units of digit (4 bits).

1. Instruction format

	FNC 13	
	SMOV	P


16-bit Instruction	Mnemonic	Operation Condition
11 steps	SMOV	Continuous   Operation
	SMOVP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
-		
-		

2. Set data

Operand Type	Description	Data Type
$\mathrm{S} \cdot$	Word device number storing data whose digits will be moved	16 -bit binary
m 1	Head digit position to be moved	16 -bit binary
m 2	Number of digits to be moved	16 -bit binary
$\mathrm{D} \cdot$	Word device number storing data whose digits are moved	16 -bit binary
n	Head digit position of movement destination	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S-								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$											
m1																				$\checkmark$	$\checkmark$			
m2																				$\checkmark$	$\checkmark$			
D•									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					
n																				$\checkmark$	$\checkmark$			

A1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{C} / F X_{3} \mathrm{C}$ PLCs.
©2: This function is supported only in $F X_{3} U / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (SMOV and SMOVP)

The contents of the transfer source $\mathrm{S}^{\cdot}$ ) and transfer destination (D. are converted into 4-digit BCD (0000 to 9999) respectively. "m2" digits starting from the "m1"th digit are transferred to the transfer destination $D \cdot$ starting from the "n"th digit, converted into binary, and then stored to the transfer destination D. .

- While the command input is OFF, the transfer destination D• does not change.
- When the command input turns ON, only the specified digits in the transfer destination $\mathrm{D}^{\cdot}$ are changed. The transfer source S• and unspecified digits in the transfer destination D. do not change.
Command


In the case of "m1 = 4,

S. (16-bit binary data)
$\downarrow$ Data is automatically converted. [1] ' (4-digit BCD data)
$\downarrow$ Digits are moved. [2]
D. ' (4-digit BCD data)
$\downarrow$ Data is automatically
converted. [3]
(16-bit binary data)
[1] S. is converted from binary into BCD.
[2] "m2" digits starting from the "m1"th digit are transferred to D. starting from the "n"th digit.
The digits of $10^{3}$ and $10^{\circ}$ of D. ' are not affected even if data is transferred from (s.).
[3] The composed data (BCD) is converted into binary, and stored to $D \cdot$.

## 2. Extension function

When M8168 is set to ON first and then SMOV instruction is executed, conversion from binary to BCD is not executed. Data is moved in units of 4 bits.


## Program example

The data on three-digit digital switches are composed, and stored as binary data to D2.


Data on three digital switches connected to non-consecutive input terminals are composed.


1-digit BCD data of D1 is transferred to the 3rd digit (BCD data) of D2, and automatically converted into binary data.

### 9.5 FNC 14 - CML / Complement

## Outline

This instruction inverts data in units of bit, and then transfers (copies) the inverted data.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Data to be inverted or word device number storing data	16- or 32-bit binary
D•	Word device number storing inverted data	16- or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant		Real Number E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S-								$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}}$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{CLCs}$.

## Explanation of function and operation

1. 16-bit operation (CML and CMLP)

Each bit of a device specified as $\mathrm{S}^{\cdot}$ is inverted (from 0 to 1 or from 1 to 0 ), and then transferred to $\mathrm{D}^{\cdot}$.

- When a constant $(K)$ is specified as $S^{-}$, it is automatically converted into binary.
- This operation is useful when a logically inverted output is required as an output from a PLC.

Command

(D.)

2. 32-bit operation (DCML and DCMLP)

Each bit of devices specified as [S•+1, S•] is inverted (from 0 to 1 or from 1 to 0 ), and then transferred to [D• +1, D• ].

- When a constant $(K)$ is specified as [ $S \cdot+1, S^{\cdot}$ ], it is automatically converted into binary.
- This operation is useful when a logically inverted output is required as an output from a PLC.



(D.) $\underbrace{$| 0 | 1 | 0 | 1 | 0 | 1 | 0 |  | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Inverted data is transferred.

## Program examples

1. When receiving an inverted input

The sequence program shown below can be written by CML instruction.

2. When four bits are specified for a device with digit specification


### 9.6 FNC 15 - BMOV / Block Move

## Outline



F× 3
Ver. $2.20 \mathrm{\prime} \mathrm{\prime} \Rightarrow$
This instruction transfers (copies) a specified number of data all at once.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\left(S_{\cdot}\right.$	Transfer source data or device number storing data	16 -bit binary
$\mathrm{D} \cdot$	Transfer destination device number	16 -bit binary
n	Number of transferred points $[\mathrm{n} \leq 512]$	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant			Character String	$\begin{gathered} \text { Pointer } \\ P \end{gathered}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
S-								$\checkmark$	A1	-2			$\checkmark$											
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2			$\checkmark$					
n														$\checkmark$						$\checkmark$	$\checkmark$			

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
©2: This function is supported only in $F X_{3} \mathrm{H} / \mathrm{FX}_{3} \mathrm{C}$ PLCs.

## Explanation of function and operation

BMOV instruction transfers "n" points of data from (S. to D. all at once.

- If the device number range is exceeded, data is transferred within the possible range.


Transfer is enabled even if the transfer number range is overlapped.
To prevent overwriting before transfer of source data, data is automatically transferred in the order "[1] $\rightarrow$ [2] $\rightarrow[3]$ " according to the number overlap status.



| D 10 |  |
| :---: | :---: | :---: |
| D 11 |  |
| D 12 | $\xrightarrow{[3]}$ |

## Extension function（bi－directional transfer function）

By controlling the direction inverse flag M8024 ${ }^{* 1}$ for BMOV（FNC 15）instruction，data can be transferred in two directions in one program．


BMOV direction inverse   flag	Transfer   direction	S•, D•
		D5 $\rightarrow$ D10
M8024＊1 ：OFF	S• $\rightarrow$ D•	D6 $\rightarrow$ D11
D7 $\rightarrow$ D12		

＊1．M8024 is cleared when the PLC mode is changed from RUN to STOP．

## Caution

When specifying digits of bit devices，specify the same number of digits for $S^{\cdot}$ and $D^{\cdot}$ ．


Specify the same number of digits．
（Example：K1）


### 9.6.1 Function of transfer between file registers and data registers

BMOV (FNC 15) instruction has a special function for file registers (D1000 and later).

## 1. What are file registers

In the parameters, D1000 to D7999 can be set as file registers, and written to and read from the program memory area. D1000 to D2999 in the FX3s PLC.

1) Outline of setting

File registers (D1000 to D7999) do not exist in the initial status. They are valid only when some number of file registers are secured by parameter setting in a programming tool.
2) Number of file registers

In parameter setting, set 500 file registers as 1 block.
1 to 14 blocks $^{* 1}$ (each of which has 500 file registers) can be set.
1 block occupies 500 steps in the program memory area.
*1. 1 to 4 blocks in the FX3s PLC.
3) Difference between BMOV (FNC 15) instruction and other instructions

The table below shows the difference between BMOV (FNC 15) instruction and other instructions with regard to file registers (D1000 and later).

Instruction	Contents of transfer	Remarks
BMOV instruction	Can read from and write to the file register area $[\mathrm{A}]$   inside the program memory.	-
Other applied   instructions	Can read from and write to the data register area   $[\mathrm{B}]$ inside the program memory in the same way as   general data registers.	Because the data register area [B] is provided inside the   system RAM in PLCs, its contents can be arbitrarily   changed regardless of the memory cassette format

When restoring the power, data registers set as file registers are automatically copied from the file register area [A] to the data register area [B].


## 2. Cautions on use

1) When updating the contents of a file register with the same number (same-number register update mode), make sure that the file register number is equivalent between $\mathrm{S}^{\cdot}$ and $\mathrm{D}^{\cdot}$.
2) When using file registers in the same-number register update mode, make sure that the number of transfer points specified by " n " does not exceed the file register area.
3) If the file register area is exceeded while file registers are used in the same-number register update mode, an operation error (M8067) is caused and the instruction is not executed.
4) In the case of indexing (in the same-number register update mode) When (S. and (D. are indexing with index, the instruction is executed if the actual device number is within the file register area and the number of transfer points does not exceed the file register area.
5) Handling of the memory cassette

When changing the contents of file registers secured inside the memory cassette, confirm the following conditions:

- Set the protect switch of the memory cassette to OFF.
- Do not turn OFF the power while the contents of file registers are changed.

If the power is turned OFF during the change, the data stored in file registers may be filled with unexpected values, or a parameter error may occur.
6) Execution time for writing data to file registers

- In FX3U/FX3uc PLCs

It takes 66 to 132 ms to write data in one continuous block ( 500 points) to the memory cassette (flash memory). Execution of the program is paused during this period. Because the watchdog timer is not refreshed during this period, it is necessary to take proper countermeasures such as inserting the WDT instruction into the sequence program.
It takes longer time to write data to file registers stored in a memory cassette (flash memory) compared to writing data to file registers stored in the built-in memory.

- In FX3s/FX3G/FX3GC PLCs

It takes 80 ms to write data in one continuous block ( 500 points) to file registers.
Note that execution of the program is paused during this period, but the watchdog timer is automatically refreshed.
The time for writing data is same between file registers stored in the built-in memory and file registers stored in a memory cassette (EEPROM).
7) Allowable number of times of writing to the memory

Data can be written to the memory cassette up to 10,000 times, and to the memory (EEPROM) built in FX3s/ FX3G/FX3Gc PLCs up to 20,000 times.
When a continuous operation type instruction is used for data writing in a program, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction (BMOVP).
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).
8) File register operation

File registers are secured inside the built-in memory or memory cassette.
Different from general data registers, file registers can be read and written only by peripheral equipment or BMOV (FNC 15) instruction.
9) If a file register is not specified as the destination in BMOV (FNC 15) instruction, the file register is not accessed.
a) Outline of memory operation

b) Program example

When X000 is set to ON, the data register area $[\mathrm{B}]$ is read.

	S.			
X000	D.	$n$		
$1 \longmapsto$	FNC 15   BMOVP	D1100	D200	K400

A file register can be specified as $D^{\cdot}$. But if the same number with $S^{\cdot}$ is specified, the same-number register update mode is selected.
However, even if a file register having different number is specified for $S^{\cdot}$ and $D^{\cdot}$ respectively, data cannot be transferred from the file register area to another file register area. In such a case, read the contents of a file register specified as $S^{\cdot}$ in the same-number register update mode to the data register area $[B]$ once, and then write the data.
$\rightarrow$ For the same-number register update mode of file registers, refer to Subsection 4.9.4.

### 9.7 FNC 16 - FMOV / Fill Move

## Outline

 Ver. $1.00 \mathrm{~m} \Rightarrow$$F X_{3}$
Ver. $2.20 \mathrm{\prime} \mathrm{\prime} \Rightarrow$
FX3UC
Ver. 1.00 ı민
This instruction transfers same data to specified number of devices.

1. Instruction format

|  | FNC 16 |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | FMOV | P |


32-bit Instruction	Mnemonic	Operation Condition
13 steps	DFMOV	Continuous   - Operation
	DFMOVP	$\longleftarrow \begin{aligned} & \text { Operation } \\ & \text { Pulse (Single) } \\ & \text { Operation } \end{aligned}$

2. Set data

Operand Type	Description	Data Type
$S^{\bullet}$	Transfer source data or device number storing data	16- or 32-bit binary
$\left(D^{\cdot}\right.$	Head word device number of transfer destination (Same data is transferred from the   transfer source at one time.)	16- or 32-bit binary
n	Number of transfer points $[\mathrm{K} 1 \leq \mathrm{n} \leq \mathrm{K} 512, \mathrm{H} 1 \leq \mathrm{n} \leq \mathrm{H} 1 \mathrm{FF}]$	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	Character String   " $\square$ "	$\begin{array}{\|c} \hline \text { Pointer } \\ \hline P \\ \hline \end{array}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
(S.)								$\checkmark$	-1	$\Delta 2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©1: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} / F X_{3} \cup C$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (FMOV and FMOVP)

The contents of $\mathrm{S}^{\cdot}$ are transferred to " n " devices starting from $\mathrm{D}^{\circ}$.

- The contents will be same among all of " n " devices.
- If the number of points specified by " n " exceeds the device number range, data is transferred within the possible range.
- While the command input is OFF, the transfer destination (D• does not change.
- While the command input is ON, the data of the transfer source $S \cdot$ does not change.
- When a constant $(\mathrm{K})$ is specified as the transfer source $\mathrm{S} \cdot$, it is automatically converted into binary.



## 2．32－bit operation（DFMOV and DFMOVP）

The contents of［S•＋1，$S^{\cdot}$ ］are transferred to＂n＂32－bit devices starting from［ $\left.D^{\cdot}+1, D^{\bullet}\right]$ ．
－The contents will be the same among all of＂n＂ 32 －bit devices．
－If the number of points specified by＂ n ＂exceeds the device number range，data is transferred within the possible range
－While the command input is OFF，the transfer destination［D•＋1，D• ］does not change．
－While the command input is ON，the data of the transfer source $[S \cdot+1, S \cdot]$ does not change．
－When a constant $(\mathrm{K})$ is specified as the transfer source［S•＋1，S•］，it is automatically converted into binary．

X000			
	FNC 16   DFMOV	S•	D•



## Program example

1．When writing specified data to two or more devices



### 9.8 FNC 17 - XCH / Exchange

Outline
This instruction exchanges data between two devices.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
5 steps	XCH	L Continuous
	XCHP	Pulse (Single)   Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DXCH	$\square \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DXCHP	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
(D1•	Device number storing data to be exchanged.	16 - or 32-bit binary
(D2•	Device number storing data to be exchanged.	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con-   stant		Real   Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D1-)									$\checkmark$															
(D2.)									$\checkmark$															

## Explanation of function and operation

1. 16-bit operation (XCH and XCHP)

Data is exchanged between (D1• and (D2•).
Command


2. 32-bit operation (DXCH and DXCHP)

Data is exchanged between [ $\mathrm{D} 1 \cdot \cdot+1$, $\mathrm{D} 1 \cdot$ ] and $[\mathrm{D} 2 \cdot+1$, $\mathrm{D} 2 \cdot]$ ].
Command



## Extension function (function compatible between the FX2 Series and the FX2C Series)

When the instruction is executed while M8160 is ON, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are exchanged with each other.
Because this instruction works in the same way as SWAP (FNC147) instruction, use SWAP instruction when programming a new exchange.
In a 32-bit operation, high-order 8 bits (byte) and low-order 8 bits (byte) of each word device are exchanged for each other.


## Error

An operation error occurs in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.

- When M8160 is ON, and the device number is different between (D1- and D2•


### 9.9 FNC 18 - BCD / Conversion to Binary Coded Decimal

Outline
This instruction converts binary (BIN) data into binary-coded decimal (BCD) data.
Binary data is used in operations in PLCs. Use this instruction to display numeric values on the seven-segment display unit equipped with BCD decoder.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
5 steps	BCD	Continuous
	BCDP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DBCD	Continuous   L Operation
	DBCDP	Pulse (Single) Operation

## 2. Set data

Operand Type	Description	Data Type
S•	Word device number storing the conversion source (binary) data	16 - or 32-bit binary
$(D \cdot$	Word device number of the conversion destination (binary-coded decimal) data	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$											
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	A2	$\checkmark$	$\checkmark$	$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} X_{3} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (BCD and BCDP)

This instruction converts the binary (BIN) data of (S•) into binary-coded decimal (BCD) data, and transfers the converted BCD data to D•

- The data of $\mathrm{S} \cdot$ can be converted if it is ranging from K0 to K9999 (BCD).
- The table below shows digit specification for $\mathrm{S}^{\bullet}$ and $\mathrm{D} \cdot$.


When "K4Y000" is specified


D.	Number of digits	Data range
K1Y000	1	0 to 9
K2Y000	2	00 to 99
K3Y000	3	000 to 999
K4Y000	4	0000 to 9999

## 2．32－bit operation（DBCD and DBCDP）

This instruction converts the binary（BIN）data of $[S \cdot+1, S \cdot]$ into binary－coded decimal（BCD）data，and transfers the converted BCD data to［D•＋1，D•］．
－The data of［S•＋1，S•］can be converted if it is ranging from K0 to K99999999（BCD）．
－The table below shows digit specification for［S•＋1，S• ］and［D•＋1，D• ］．
Command


［D•＋1，D• ］	Number of digits	Data range
K1Y000	1	0 to 9
K2Y000	2	00 to 99
K3Y000	3	000 to 999
K4Y000	4	0000 to 9999
K5Y000	5	00000 to 99999
K6Y000	6	000000 to 999999
K7Y000	7	0000000 to 9999999
K8Y000	8	00000000 to 99999999

## Related instruction

Instruction	Function
BIN（FNC 19）	Converts binary－coded decimal（BCD）data into binary（BIN）data．

## Cautions

1．When using SEGL（FNC 74）or ARWS（FNC 75）instruction
Because conversion between binary－coded decimal data and binary data is automatically executed in SEGL（FNC 74） and ARWS（FNC 75）instructions，BCD instruction is not required．

2．Handling of BCD inputs and outputs
Binary data is used in all operations in PLCs including arithmetic operations（,,$+- \times$ and $\div$ ），increment and decrement instructions．
－When receiving the digital switch information in the binary－coded decimal（BCD）format into a PLC，use BIN（FNC 19）instruction for converting BCD data into binary data．
－When outputting data to the seven－segment display unit handling binary－coded decimal（BCD）data，use BCD（FNC 18）instruction for converting binary data into BCD data．

## Errors

In BCD or BCDP（16－bit type）instructions，an operation error occurs when the $S \cdot$ value is outside the range from 0 to 9999 ．
In DBCD or DBCDP（32－bit type）instructions，an operation error occurs when the $S$ ．value is outside the range from 0 to 99，999，999．

## Program examples

## 1. When the seven-segment display unit has 1 digit

X000		
	FNC 18   BCD	D0


2. When the seven-segment display unit has $\mathbf{2}$ to $\mathbf{4}$ digits

3. When the seven-segment display unit has 5 to 8 digits


### 9.10 FNC 19 - BIN / Conversion to Binary

## Outline

This instruction converts binary-coded decimal (BCD) data into binary (BIN) data.
Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN) data and to receive the converted binary data so that the data can be handled in operations in PLCs.

1. Instruction format


16-bit Instruction		Mnemonic
	Operation Condition	
5 steps	BIN	$\boxed{L}$
	BINP	Continuous   Operation   Pulse $($ Single $)$   Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DBIN	Continuous
	DBINP	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
S•	Word device number storing the conversion source (binary-coded decimal) data	16 - or 32-bit binary
$\mathrm{D}^{\cdot}$	Word device number of the conversion destination (binary)	16 - or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash G \square$	Index			Constant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S•								$\checkmark$	-1	42	$\checkmark$	$\checkmark$	$\checkmark$											
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

A1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
A2: This function is supported only in $F^{2} 3 \mathrm{~J} / \mathrm{FX}_{3} \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (BIN and BINP)

This instruction converts the binary-coded decimal (BCD) data of $S^{\circ}$ into binary (BIN) data, and transfers the converted binary data to D• .

- The data of $S \cdot$ can be converted if it is ranging from K0 to K9999 (BCD).
- The table below shows digit specification for (S• and D•).


S.	Number of digits	Data range
K1X000	1	0 to 9
K2X000	2	00 to 99
K3X000	3	000 to 999
K4X000	4	0000 to 9999

## 2. 32-bit operation (DBIN and DBINP)

This instruction converts the binary-coded decimal (BCD) data of [S•+1, S•] into binary (BIN) data, and transfers the converted binary data to [ $\left.D^{\cdot}+1, D^{\cdot}\right]$.

- The data of [S•+1, S•] can be converted if it is ranging from 0 to 99,999,999 (BCD).
- The table below shows digit specification for $[S \cdot+1, S \cdot]$ and $[D \cdot+1, D \cdot]$.

Command


$[\mathrm{S} \cdot \mathrm{+1}, \mathrm{~S} \cdot \mathrm{]}$	Number of digits	Data range
K1X000	1	0 to 9
K2X000	2	00 to 99
K3X000	3	000 to 999
K4X000	4	0000 to 9999
K5X000	5	00000 to 99999
K6X000	6	000000 to 999999
K7X000	7	0000000 to 9999999
K8X000	8	00000000 to 99999999

## Related instruction

Instruction	
BCD (FNC 18)	Converts binary (BIN) data into binary-coded decimal (BCD) data.

## Cautions

1. When using DSW (FNC 72) instruction

Because conversion between binary-coded decimal data and binary data is automatically executed in DSW (FNC 72) instruction, BIN instruction is not required.
2. Handling of BCD inputs and outputs

Binary data is used in all operations in PLCs including arithmetic operations $(+,-, \times$ and $\div)$, increment and decrement instructions.

- When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use BIN (FNC 19) instruction for converting BCD data into binary data.
- When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use BCD (FNC 18) instruction for converting binary data into BCD data.


## Error

When the data of $S \cdot$ is not binary-coded decimal (BCD), M8067 (operation error) turns ON. But M8068 (operation error latch) does not turn ON.

## Program examples

## 1. When the digital switch has 1 digit

| X000 |
| :---: | :---: | :---: | :---: | | FNC 19 <br> BIN |
| :---: |

MOV instruction can be used instead.

X000		
	FNC 12   MOV	K1X000


3. When the digital switch has 5 to 8 digits


## 10．Arithmetic and Logical Operation（,,$+- \times, \div$ ）－ FNC 20 to FNC 29

FNC 20 to FNC 29 provide instructions for arithmetic operations and logical operations of numeric data．

FNC No．	Mnemonic	Symbol	Function	Reference
20	ADD	ADD S1 S2 D	Addition	Section 10.1
21	SUB	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { SUB } & \mathrm{S} 1 & \mathrm{~S} 2 & \mathrm{D} \\ \hline \end{array}$	Subtraction	Section 10.2
22	MUL	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { MUL } & \text { S1 } & \text { S2 } & \mathrm{D} \\ \hline \end{array}$	Multiplication	Section 10.3
23	DIV	$\|$DIV S1 S2 D	Division	Section 10.4
24	INC	Н⺊ INC ${ }^{\text {D }}$－	Increment	Section 10.5
25	DEC	Нト DEC $\mathrm{D}^{\text {D }}$	Decrement	Section 10.6
26	WAND		Logical Word AND	Section 10.7
27	WOR	Hト WOR $\operatorname{si} 1 \mathrm{~S}_{2}\|\mathrm{D}\|$	Logical Word OR	Section 10.8
28	WXOR	$\left\lvert\, \begin{array}{\|l\|l\|l\|l\|} \hline \text { WXOR } & \mathrm{S} 1 & \mathrm{~S} 2 & \mathrm{D} \\ \hline \end{array}\right.$	Logical Exclusive OR	Section 10.9
29	NEG	HЮ NEG	Negation	$\begin{gathered} \text { Section } \\ 10.10 \end{gathered}$

Floating point operation instructions
FX3S，FX3G，FX3Gc，FX3U and FX3Uc PLCs offer not only arithmetic operation instructions in binary format but also arithmetic operation instructions in the floating point format．

FNC No．	Instruction mnemonic	Contents of processing
120	［D］EADD	Addition of binary floating point
121	［D］ESUB	Subtraction of binary floating point
122	［D］EMUL	Multiplication of binary floating point
123	［D］EDIV	Division of binary floating point

For details，refer to the explanation of each instruction．
$\rightarrow$ For the floating point operation，refer to Chapter 18.

### 10.1 FNC 20 - ADD / Addition

## Outline

This instruction executes addition by two values to obtain the result $(A+B=C)$.
$\rightarrow$ For the floating point addition instruction EADD (FNC120), refer to Section 18.8.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
7 steps	ADD	Continuous   - Operation
	ADDP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
13 steps	DADD	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DADDP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
S1•	Data for addition or word device number storing data	16- or 32-bit binary
S2•	Data for addition or word device number storing data	$16-$ or 32-bit binary
D•	Word device number storing the addition result	$16-$ or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	$\begin{gathered} \text { Pointer } \\ \hline P \end{gathered}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	UपIG $\square$	V	Z	Modify	K	H			
S1-								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2•								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{C} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{uc}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (ADD and ADDP)

The contents of $\mathrm{S}_{2 \cdot}$ are added to $\mathrm{S}_{1 \cdot}$ in binary format, and the addition result is transferred to $\mathrm{D}^{\cdot}$.


- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is added algebraically. $5+(-8)=-3$
- When a constant $(\mathrm{K})$ is specified in $\mathrm{S} 1 \cdot$ or $\mathrm{S} 2 \cdot$, it is automatically converted into binary format.


## 2. 32-bit operation (DADD and DADDP)

The contents of $\left[S_{2 \cdot}+1, S_{2} \cdot\right]$ are added to $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]$ in binary format, and the addition result is transferred to $[\mathrm{D} 1 \cdot \cdot+1, \mathrm{D} 1 \cdot]$.


- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is added algebraically. $5500+(-8540)=-3040$
- When a constant $(\mathrm{K})$ is specified in $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right.$ ] or $\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot\right.$ ], it is automatically converted into binary format.


## Related devices

1. Relationship between the flag operation and the sign (positive or negative) of a numeric value $\rightarrow$ For the flag operations, refer to Subsection 6.5.2.

Device	Name	Description
M8020	Zero	ON : When the operation result is 0   OFF : When the operation result is not 0
M8021	Borrow	ON : When the operation result is less than -32768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation)   OFF : When the operation result is not less than -32768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation)
M8022	Carry	ON : When the operation result is more than 32767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation)   OFF : When the operation result is not more than 32767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation)



## Cautions

1. When using a 32-bit operation instruction (DADD or DADDP)

When specifying word devices, a 16-bit word device on the low-order side is specified first, and a word device with the subsequent device number is automatically set for the high-order 16 bits.
To prevent number overlap, it is recommended to always specify an even number, for example.
2. When specifying the same device in the source and destination

The same device number can be specified for both the source and the destination.
In this case, note that the addition result changes in every operation cycle if a continuous operation type instruction (ADD or DADD) is used.


## Program example

1. Difference between ADD instruction and INC instruction caused by a program for adding "+1"

When ADD[P] is executed, "1" is added to the contents of D0 every time X001 turns from OFF to ON.
ADD[P] instruction is similar to INCP instruction described later except the contents shown in the table below:

			ADD, ADDP, DADD or DADDP instruction	INC, INCP, DINC, DINCP instruction
Flag (zero, borrow or carry)			Operates	Does not operate
	16-bit operation	S• +(+1)= D•	$+32767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	+32767 $\rightarrow$-32768 $\rightarrow$-32767
		(S.)+(-1)= D.	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-32768$	-
	32-bit operation	S• +(+1)= D.	$+2,147,483,647 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	$+2,147,483,647 \rightarrow-2,147,483,648 \rightarrow-2,147,483,647$
		(S•)+(-1)= $\mathrm{D}^{(-)}$	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-2,147,483,648$	-


		S1-	S2•	D.
$1 \longmapsto$	FNC 20   ADDP	D 0	K 1	D 0

$(\mathrm{D} 0)+1 \rightarrow(\mathrm{D} 0)$

$(\mathrm{D} 0)+1 \rightarrow(\mathrm{D} 0)$

### 10.2 FNC 21 - SUB / Subtraction

## Outline



This instruction executes subtraction using two values to obtain the result ( $A-B=C$ ).
$\rightarrow$ For the floating point subtraction instruction ESUB (FNC121), refer to Section 18.9.

1. Instruction format

	FNC 21	
	SUB	P


32-bit Instruction	Mnemonic	Operation Condition	
13 steps	DSUB	$\boxed{ }$	Continuous   Operation  
	DSUBP	$\sim$	Pulse (Single)   Operation

2. Set data

Operand type	Description	Data type
S1•	Data for subtraction or word device number storing data	16 - or 32-bit binary
S2•	Data for subtraction or word device number storing data	$16-$ or 32 -bit binary
D•	Word device number storing the subtraction result	$16-$ or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIG口	Index			Constant		Real Number E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.)								$\checkmark$	41	A2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
D.									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	A2	$\checkmark$	$\checkmark$	$\checkmark$					

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
12: This function is supported only in $F X_{3} U / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (SUB and SUBP)

The contents of $\mathrm{S}_{2} \cdot$ are subtracted from $\mathrm{S}_{1 \cdot}$ in binary format, and the subtraction result is transferred to $\mathrm{D}^{\cdot}$.


- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is subtracted algebraically.
$5-(-8)=13$
- When a constant $(\mathrm{K})$ is specified in $\mathrm{S} 1 \cdot^{-}$or $\mathrm{S}_{2} \cdot$, it is automatically converted into binary format.


## 2. 32-bit operation (DSUB and DSUBP)

The contents of $\left[S 2 \cdot+1, S_{2} \cdot\right]$ are subtracted from $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1 \cdot}\right]$ in binary format, and the subtraction result is transferred to [ $\mathrm{D} 1 \cdot+1, \mathrm{D} 1 \cdot]$.
Command

Command input	FNC 21 DSUB	(S1.)	S2.)	(D.)	

- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is subtracted algebraically.
$5500-(-8540)=14040$
- When a constant $(\mathrm{K})$ is specified in $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1^{\bullet}\right]$ or $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot$ ], it is automatically converted into binary format.


## Related devices

1. Relationship between the flag operation and the sign (positive or negative) of a numeric value $\rightarrow$ For the flag operations, refer to Subsection 6.5.2.

Device	Name	Description
M8020	Zero	ON : When the operation result is 0   OFF : When the operation result is other than 0
M8021	Borrow	ON : When the operation result is less than -32768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation)   OFF : When the operation result is not less than -32768 (in 16-bit operation) or $-2,147,483,648$ (in 32-bit operation)
M8022	Carry	ON : When the operation result is more than 32767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation)   OFF : When the operation result is not more than 32767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation)


Borrow flag





## Cautions

1. When using a 32-bit operation instruction (DSUB or DSUBP)

When specifying word devices, a 16-bit word device on the low-order side is specified first, and then a word device with the subsequent device number is automatically set for the high-order 16 bits.
To prevent number overlap, it is recommended to always specify an even number, for example.
2. When specifying the same device in the source and destination

The same device number can be specified for both the source and the destination.
In this case, note that the addition result changes in every operation cycle if a continuous operation type instruction (SUB or DSUB) is used.

X001	FNC 21   SUB	$D \quad 0$	K 25	$D \quad 0$

## Program example

1. Difference between the SUB instruction and the DEC instruction used by a program for subtracting "1"
When SUB[P] is executed, "1" is subtracted from the contents of D0 every time X001 turns from OFF to ON. SUB $[P]$ instruction is similar to DECP instruction described later except the contents shown in the table below:

			[D] SUB [P] instruction	[D] DEC [P] instruction
Flag (zero, borrow or carry)			Operates	Does not operate
	16-bit operation	S•-(+1)= $\mathrm{D}^{\text {- }}$	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-32768$	$-32,768 \rightarrow+32,767 \rightarrow+32,766$
		S•-(-1)= $\mathrm{D}^{\text {- }}$	$+32767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	-
	32-bit operation	S•-(+1)= D•	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-2,147,483,648$	$-2,147,483,648 \rightarrow+2,147,483,647 \rightarrow+2,147,483,646$
		S•-(-1)= $\mathrm{D}^{\text {- }}$	$+2,147,483,647 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	-


$\times 001$	(S1.)		S2.	(D)	$(\mathrm{D} 0)-1 \rightarrow(\mathrm{D} 0)$
	FNC 21 SUBP	D 0	K 1	D 0	
X001	FNC 25 DECP	D 0			(D 0) - $1 \rightarrow(\mathrm{D} 0)$

### 10.3 FNC 22 - MUL / Multiplication

## Outline



This instruction executes multiplication by two values to obtain the result ( $A \times B=C$ ).
$\rightarrow$ For the floating point multiplication instruction EMUL (FNC122), refer to Section 18.10.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
7 steps	MUL	Continuous   - Operation
	MULP	Pulse (Single)   L Operation


32-bit Instruction	Mnemonic	Operation Condition	
	13 steps	DMUL	
	DMULP	$\boxed{\sim}$	
		Continuous   Operation   Pulse (Single)   Operation	

2. Set data

Operand type	Description	Data type
S1•	Data for multiplication or word device number storing data	16- or 32-bit binary
S2•	Data for multiplication or word device number storing data	16- or 32-bit binary
D.	Head word device number storing the multiplication result	32- or 64-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square$	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	-1	-2		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	-1	A2		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2		-3	$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / F X_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}}$ PLCs.
2: This function is supported only in $F X_{3} / F X_{3} u c$ PLCs.
43: Available only in 16 -bit operations (Not available in 32-bit operations)

## Explanation of function and operation

1. 16-bit operation (MUL and MULP)

The contents of $\mathrm{S}_{1 \cdot}$ are multiplied by $\mathrm{S}_{2 \cdot}$ in binary format, and the multiplication result is transferred to 32-bit [D• +1, D1•].

$\begin{gathered} \text { Command } \\ \text { input } \end{gathered}$	FNC 22 MUL	(S1.)	(52.)		$\binom{\mathrm{BIN}}{(\mathrm{~S} 1 \cdot} \times(\mathrm{SIN}) \rightarrow\left(\mathrm{B}^{\mathrm{BI} \cdot}+1, \text { (D•) }\right)$			
				(D.)				

- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is multiplied algebraically.
$5 \times(-8)=-40$
- When a constant $(\mathrm{K})$ is specified in $\mathrm{S} 1 \cdot^{-}$or $\mathrm{S}_{2} \cdot$, it is automatically converted into binary format.
- When a digit ( K 1 to K 8 ) is specified for [ $\mathrm{D}^{\cdot}+1$, $\mathrm{D}^{\cdot}$ ]

A digit can be specified ranging from K1 to K8.
For example, when K2 is specified, only the low-order 8 bits can be obtained out of the product ( 32 bits).

(S1.)

(52.)


When command contact turns ON

	$K$
$\checkmark$ Sign bit (0: Positive, 1: Negative)	

(D.)


## 2. 32-bit operation (DMUL and DMULP)

The contents of $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]$ are multiplied by $\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot \mathrm{]}\right]$ in binary format, and the multiplication result is transferred to 64-bit [D• +3, (D• +2, (D• +1, D•] (four word devices).



- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is multiplied algebraically. $5500 \times(-8540)=-46,970,000$
- When a constant $(\mathrm{K})$ is specified in $[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$ or $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$, it is automatically converted into binary format.
- When a digit (K1 to K8) is specified for [D• +3 , $D^{\cdot}+2$, $\left.D^{\cdot}+1, D^{\cdot}\right]$

The result is obtained only for low-order 32 bits, and is not obtained for high-order 32 bits.
Transfer the data to word devices once, then execute the operation.


## Related devices

1. Relationship between flag operation and numeric value

Device	Name	Description
M8304	Zero	ON: When the operation result is 0.   OFF: When the operation result is a number other than 0.

## Cautions

1. Devices specified in $D^{-}$

- In a 32-bit operation (by DMUL or DMULP), Z cannot be specified in D. .

2. When monitoring the operation result in a programming tool

Even if word devices are used, the operation result ( 64 bits) cannot be monitored at one time.
In such a case, floating point operation is recommended.
$\rightarrow$ For the floating point operation, refer to Chapter 18.

## Program examples

1. 16-bit operation


$$
(\underset{8}{(\mathrm{D} 0}) \times \underset{9}{(\mathrm{D} 2)} \rightarrow(\mathrm{D} 5, \mathrm{D} 4)
$$

## 2. 32-bit operation

	(51.)		S2.	(D.
$\times$	FNC 22	D 0	D 2	D 4

$$
\underset{1756}{(\mathrm{D} 1, \mathrm{D} 0)} \times \underset{327}{(\mathrm{D} 3, \mathrm{D} 2)} \rightarrow \underset{574,212}{(\mathrm{D} 7, \mathrm{D} 6, \mathrm{D} \mathrm{5,D} 4)}
$$

## Function Changes According to Versions

The function of the FNC 22 instruction varies depending on the PLC version shown in the table below.

Compatible Versions					Item	Function Summary
FX3S	FX3G	FX3GC	FX3U	FX3UC		
Ver. 1.00   or later	Ver. 1.00   or later	Ver. 1.40   or later	Ver. 2.30   or later	Ver. 2.30   or later	Zero Flag	Turns M8304 ON when the operation result of MUL instruc-   tion is 0.

### 10.4 FNC 23 - DIV / Division

Outline
This instruction executes division by two values to obtain the result $(\mathrm{A} \div \mathrm{B}=\mathrm{C} \ldots)$.
$\rightarrow$ For the floating point division instruction EDIV (FNC123), refer to Section 18.11.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
7 steps		Continuous Operation
	DIVP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
13 steps	DDIV	L Continuous   - Operation
	DDIVP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
S1•	Data for division or word device number storing data (dividend)	16- or 32-bit binary
S2•	Data for division or word device number storing data (divisor)	16- or 32-bit binary
D•	Head word device number storing the division result (quotient and remainder)	32- or 64-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square$	Index			Constant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	$\frac{\text { Pointer }}{}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	-1	-2		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2•								$\checkmark$	-1	(2)		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2		-3	$\checkmark$					

$\mathbf{\Delta} 1$ :This function is supported only in $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.
42:This function is supported only in FX3U/FX3uc PLCs.
©3: Available only in 16 -bit operations (Not available in 32 -bit operations)

## Explanation of function and operation

1. 16-bit operation (DIV and DIVP)

S1- indicates the dividend, S2• indicates the divisor, the quotient is transferred to $\mathrm{D}^{-}$, and the remainder is transferred to $\square+1$.


- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is divided algebraically. $36 \div(-5)=-7$ (quotient) ... 1 (remainder)
- Two devices in total starting from (D. are occupied to store the operation result (quotient and remainder). Make sure that these two devices are not used for another control.
- When a constant $(\mathrm{K})$ is specified as $\mathrm{S}_{1 \cdot}$ or $\mathrm{S}_{2} \cdot$, it is automatically converted into binary format.

2. 32-bit operation (DDIV and DDIVP)
[ $\left.\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]$ indicates the dividend, $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$ indicates the divisor, the quotient is transferred to [ $\left.D \cdot+1, D^{\cdot}\right]$ ), and the remainder is transferred to $\left[D^{\cdot}+3, D^{\cdot}+2\right]$.



- Four devices in total starting from (D. are occupied to store the operation result (quotient and remainder). Make sure that these four devices are not used for another control.
- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is divided algebraically. $5500 \div(-540)=-10$ (quotient) ... 100 (remainder)
- When a constant $(K)$ is specified in $\left[S_{1}+1, S_{1}\right]$ or $\left[S 2 \cdot+1, S_{2} \cdot\right]$, it is automatically converted into binary format.


## Related devices

Device	Name	Description
M8304	Zero	ON : When the operation result is 0.   OFF : When the operation result is a number other than 0.
M8306	Carry	ON : Carry flag operates when the operation result is over 32,767 (16-bit operation) or   $2,147,483,647(32-b i t ~ o p e r a t i o n) . ~$   OFF : When the operation result is less than 32,767 (16-bit operation) or 2,147,483,647   (32-bit operation).

## Cautions

## 1. Operation result

- The most significant bit of the quotient and remainder indicates the sign (positive: 0 , negative: 1 ) respectively.
- The quotient is negative when either the dividend or divisor is negative.

The remainder is negative when the dividend is negative.

## 2. Device specified as $D \cdot$

- The remainder is not obtained when a bit device is specified with digit specification.
- In a 32-bit operation (by DDIV or DDIVP), Z cannot be specified as D•


## Error

- When the divisor S2• is " 0 ", an operation error is caused and the instruction is not executed.
- A operation error results when the operation result is over 32,767 (16-bit operation) or 2,147,483,647 (32-bit operation). (Turns the carry flag ON.)


## Program examples

## 1. 16-bit operation



Dividend	Divisor	Quotient	Remainder
(D) 100 )	$\underset{33}{(\mathrm{D} 2)} \rightarrow$	${ }^{(\mathrm{D} 4)}$	$\text { (D } 5$

## 2. 32-bit operation

	S1.		S2.	D •
$H 1$	FNC 23   DDIV	D 0	D 2	D 4



## Function Changes According to Versions

The function of the FNC 23 instruction varies depending on the PLC version shown in the table below.

Compatible Versions					Item	
FX3S	FX3G	FX3GC	FX3U	FX3UC		

### 10.5 FNC 24 - INC / Increment

## Outline



This instruction increments the data of a specified device by "1".

1. Instruction format

	FNC 24	
	INC	P


16-bit Instruction	Mnemonic	Operation Condition
3 steps	INC	Continuous   - Operation
	INCP	Pulse (Single)


32-bit Instruction	Mnemonic	Operation Condition
5 steps	DINC	Continuous   L Operation
	DINCP	$\uparrow \leftarrow \begin{aligned} & \text { Pulse (Single) } \\ & \text { Operation } \end{aligned}$

2. Set data

Operand type	Description	Data type
D•	Word device number storing data to be incremented by "1"	16- or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash \mathrm{G} \square \end{gathered}$	Index			Constant		Real Number E	Character String	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{PLCs}$.

## Explanation of function and operation

1. 16-bit operation (INC and INCP)

The contents of $D \cdot$ are incremented by "1", and the increment result is transferred to $D \cdot$.

2. 32-bit operation (DINC and DINCP)

The contents of $\left[D^{\cdot}+1, D^{\cdot}\right]$ are incremented by "1", and the increment result is transferred to [ $\left.D \cdot+1, D^{\cdot}\right]$.


## Cautions

1. Note that data is incremented in every operation cycle in a continuous operation type instruction.
2. Flag operations
1) 16-bit operation

When " +32767 " is incremented by " 1 ", the result is " -32768 ". Flags (zero, carry and borrow) are not activated at this time.
2) 32-bit operation

When " $+2,147,483,647$ " is incremented by " 1 ", the result is " $-2,147,483,648$ ". Flags (zero, carry and borrow) are not activated at this time.

## Program example


$Z$ is cleared by the reset input X 010 .

The current values of counters C0 to C9 are converted into BCD format, and output to K4Y000.

Every time X011 is set to ON, the current values of C0, C1 ... C9 are output one at a time.

### 10.6 FNC 25 - DEC / Decrement

## Outline



This instruction decrements the data of a specified device by "1".

1. Instruction format

2. Set data

Operand type	Description	Data type
D•	Word device number storing data to be decremented by "1"	16- or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant			$\begin{gathered} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{gathered}$	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
வ2: This function is supported only in $F X_{3} \mathrm{H} / \mathrm{FX} 3 \cup с$ PLCs.

## Explanation of function and operation

1. 16-bit operation (DEC and DECP)

The contents of $D \cdot$ are decremented by "1", and the decremented result is transferred to $D^{\circ}$.


### 10.7 FNC 26 - WAND / Logical Word AND

## Outline

This instruction executes the logical product (AND) operation of two numeric values.

1. Instruction format

W	FNC 26 AND	P	16-bit Instruction   7 steps	Mnemonic	Operation Condition
D				WAND	Continuous   - Operation
				WANDP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
13 steps	DAND	Continuous   L Operation
	DANDP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
S1•	Data used for logical product or word device number storing data	$16-$ or 32-bit binary
S2•	Data used for logical product or word device number storing data	$16-$ or 32-bit binary
D•	Word device number storing the logical product result	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square$ IG $\square$	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S1.)								$\checkmark$	A1	A2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(S2.)								$\checkmark$	(1)	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	42	$\checkmark$	$\checkmark$	$\checkmark$					

©1: This function is supported only in $F X_{3 G} / F X_{3} G C / F X_{3} / F X_{3} \cup C$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (WAND and WANDP)

The logical product (AND) operation is executed to the contents of $\mathrm{S}_{1 \cdot}$ and $\mathrm{S}_{2 \cdot}$ in units of bit, and the result is transferred to $\mathrm{D}^{\text {• }}$.

Command					S1. $\wedge$ S2. $\mathrm{D}^{-}$
input	FNC 26 WAND	S1.	S2.)	(D.)	

- While the command input is OFF, the data of the transfer destination $D^{-}$does not change.
- While the command input is ON, the data of the transfer sources $\mathrm{S}_{1} \cdot$ and $\mathrm{SS}_{2} \cdot$ do not change.
- When a constant $(\mathrm{K})$ is specified in the transfer sources $\mathrm{S}_{1} \cdot$ and $\mathrm{S}_{2} \cdot$, it is automatically converted into binary format.
- The logical product operation is executed in units of bit as shown in the table below $(1 \wedge 1=1,0 \wedge 1=0,1 \wedge 0=0$, $0 \wedge 0=0$ ).

1: ON, 0: OFF

	$\mathrm{S}_{1 \cdot}$		D.
			WAND (FNC 26) instruction
	0	0	0
	1	0	0
	0	1	0
	1	1	1

## 2. 32-bit operation (DAND and DANDP)

The logical product (AND) operation is executed to the contents of $\left[S_{1}+1, S_{1}\right]$ and $[S 2 \cdot+1, S 2 \cdot]$ in units of bit, and the result is transferred to [ $\mathrm{D}^{\cdot}+1, \mathrm{D}^{\cdot}$ ].


- While the command input is OFF, the data of the transfer destination [D• +1, D• ] does not change.
- While the command input is ON, the data of the transfer source $\left[\mathrm{S}_{1}+1, \mathrm{~S}_{1}\right]\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2} \cdot\right]$ do not change.
- When a constant $(\mathrm{K})$ is specified in the transfer source $\left[\mathrm{S}_{1}+1, \mathrm{~S}_{1}\right]\left[\mathrm{S} \cdot \cdot+1, \mathrm{~S}_{2} \cdot\right.$ ], it is automatically converted into binary format.
- The logical product operation is executed in units of bit as shown in the table below $(1 \wedge 1=1,0 \wedge 1=0,1 \wedge 0=0$, $0 \wedge 0=0$ ).

1: ON, 0: OFF

	S1 +1, S1	S2• $+1, \mathrm{~S} 2 \cdot$	(D.) +1, D•
			DAND (FNC 26) instruction
Logical operation (unit: bit)	0	0	0
	1	0	0
	0	1	0
	1	1	1

### 10.8 FNC 27 - WOR / Logical Word OR

## Outline

This instruction executes the logical sum (OR) operation of two numeric values.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1•	Data used for logical sum or word device number storing data	$16-$ or 32-bit binary
S2•	Data used for logical sum or word device number storing data	$16-$ or 32-bit binary
D•	Word device number storing the logical sum result	$16-$ or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1.								$\checkmark$	41	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	-1	42	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

©1: This function is supported only in $F X_{3 G} / F X_{3} G C / F X_{3} / F X_{3} \cup C$ PLCs.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{PLCs}$.

## Explanation of function and operation

## 1. 16-bit operation (WOR and WORP)

The logical sum (OR) operation is executed to the contents of $\mathrm{S}_{1-}$ and $\mathrm{S}_{2} \cdot$ in units of bit, and the result is transferred to $\mathrm{D}^{-}$.


- While the command input is OFF, the data of the transfer destination $D \cdot$ does not change.
- While the command input is ON, the data of the transfer sources S1• and S2• do not change.
- When a constant $(\mathrm{K})$ is specified in the transfer sources $\mathrm{S} 1 \cdot$ and $\mathrm{S}_{2} \cdot$, it is automatically converted into binary format.
- The logical sum operation is executed in units of bit as shown in the table below ( $1 \vee 1=1,0 \vee 1=1$, $0 \vee 0=0,1 \vee 0=1$ ).

1: ON, 0: OFF

	S1•	S2•	D•
			WOR (FNC 27) instruction
	0	0	0
	1	0	1
	0	1	1
	1	1	1

## 2. 32-bit operation (DOR and DORP)

The logical sum (OR) operation is executed to the contents of $\left[S S_{1} \cdot+1, S_{1 \cdot}\right]$ and $\left[S 2 \cdot+1, S_{2 \cdot}\right]$ in units of bit, and the result is transferred to [ $\left.D^{\cdot}+1, D^{\cdot}\right]$.

$\underset{\substack{\text { Command } \\ \text { input }}}{ }$	FNC 27 DOR	S1.)	(S2.)	(D.)	S1- $+1, \mathrm{~S} 1 \cdot \vee$ S2• $+1, \mathrm{~S} 2 \cdot \rightarrow$ (D. +1, (D.	

- While the command input is OFF, the data of the transfer destination $\left[D \cdot+1, D^{\circ}\right]$ does not change.
- While the command input is ON, the data of the transfer source $\left[S 1 \cdot+1, S_{1 \cdot}\right]\left[S_{2 \cdot}+1, S_{2 \cdot}\right]$ do not change.
- When a constant $(\mathrm{K})$ is specified in the transfer source $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot \cdot\right]$, it is automatically converted into binary format.
- The logical sum operation is executed in units of bit as shown in the table below ( $1 \vee 1=1,0 \vee 1=1$, $0 \vee 0=0,1 \vee 0=1$ ).

1: ON, 0: OFF

	S1- $+1, \mathrm{~S} 1 \cdot$	S2• +1, $\mathrm{S} 2 \cdot$	D• +1, D•
			DOR (FNC 27) instruction
Logical operation (unit: bit)	0	0	0
	1	0	1
	0	1	1
	1	1	1

### 10.9 FNC 28 - WXOR / Logical Exclusive OR

## Outline

 Ver. 1.00 "닥 Ver. $1.00 \mathrm{H} \Rightarrow$

This instruction executes the exclusive logical sum (XOR) operation of two numeric values.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1•	Data used for exclusive logical sum or word device number storing data	$16-$ or 32-bit binary
S2•	Data used for exclusive logical sum or word device number storing data	$16-$ or 32-bit binary
D•	Word device number storing the exclusive logical sum result	$16-$ or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1.								$\checkmark$	41	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	-1	42	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

©1: This function is supported only in $F X_{3 G} / F X_{3} G C / F X_{3} / F X_{3} \cup C$ PLCs.
42: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{P}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (WXOR and WXORP)

The exclusive logical sum (XOR) operation is executed to the contents of $\mathrm{S}_{1-}$ and $\mathrm{S}_{2} \cdot$ in units of bit, and the result is transferred to $D^{\text {. }}$.


- While the command input is OFF, the data of the transfer destination $D \cdot$ does not change.
- While the command input is ON, the data of the transfer sources $\mathrm{S}_{1 \cdot}$ and $\mathrm{S} 2 \cdot$ do not change.
- When a constant $(\mathrm{K})$ is specified in the transfer sources $\mathrm{S}_{1} \cdot$ and $\mathrm{S}_{2} \cdot$, it is automatically converted into binary format.
- The logical exclusive sum operation is executed in units of bit as shown in the table below ( $1 \forall 1=0,0 \forall 0=0$, $1 \forall 0=1,0 \forall 1=1$ ).

1: ON, 0: OFF

	S1•	$\mathrm{S} 2 \cdot$	$\mathrm{D} \cdot$
			WXOR (FNC 28) instruction
	0	0	0
	1	0	1
	0	1	1
	1	1	0

## 2. 32-bit operation (DXOR and DXORP)

The exclusive logical sum (XOR) operation is executed to the contents of $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot \cdot\right]$ and $\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot\right]$ in units of bit, and the result is transferred to [ $D \cdot+1, D^{\cdot}$ ].


- While the command input is OFF, the data of the transfer destination $[D \cdot+1, D \cdot]$ does not change.
- While the command input is ON, the data of the transfer source $\left.\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]_{[S 2 \cdot}+1, \mathrm{~S}_{2} \cdot\right]$ do not change.
- When a constant $(\mathrm{K})$ is specified in the transfer source $\left[\mathrm{S}_{1} \cdot \cdot+1, \mathrm{~S}_{1} \cdot \cdot\right]\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2} \cdot \cdot\right]$, it is automatically converted into binary format.
- The exclusive logical sum operation is executed in units of bit as shown in the table below ( $1 \forall 1=0,0 \forall 0=0$, $1 \forall 0=1,0 \forall 1=1$ ).

1: ON, 0: OFF

	S1• +1, $\mathrm{S}_{1} \cdot$	S2• +1, S2•	(D.) +1, D•
			DXOR (FNC 28) instruction
Logical operation (unit: bit)	0	0	0
	1	0	1
	0	1	1
	1	1	0

## Program example

By combining WXOR and CML (FNC 14) instructions, the exclusive logical sum not (XORNOT) operation can be executed.


### 10.10 FNC 29 - NEG / Negation

## Outline

This instruction obtains the complement of a numeric value (by inverting each bit and adding "1").
This instruction can be used to negate the sign of a numeric value.
$\rightarrow$ For the Floating point negation ENEG (FNC128), refer to Section 18.16.

1. Instruction format

	$\begin{gathered} \text { FNC } 29 \\ \text { NEG } \end{gathered}$	P	16-bit Instruction	Mnemonic	Operation Condition
D			3 steps	NEG	Continuous Operation
				NEGP	Pulse (Single)


32-bit Instruction	Mnemonic	Operation Condition
5 steps	DNEG	Continuous   - Operation
	DNEGP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
D•	Word device number which stores data for obtaining complement and will store the   operation result (The operation result will be stored in the same word device number.)	16- or 32-bit binary

3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash G \square$	Index			Con-   stant		Real Number E	Character String	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									$\checkmark$															

## Explanation of function and operation

1. 16-bit operation (NEG and NEGP)

Each bit of $D \cdot$ is inverted $(0 \rightarrow 1,1 \rightarrow 0)$, "1" is added, and then the result is stored in the original device.


## 2. 32-bit operation (DNEG and DNEGP)

Each bit of $\left[D^{\cdot}+1, D^{\cdot}\right]$ is inverted $(0 \rightarrow 1,1 \rightarrow 0)$, "1" is added, and then the result is stored in the original device.


## Caution

Note that the complement is obtained in every operation cycle in a continuous operation type instruction.

## Program examples

The program examples below are provided to obtain the absolute value of a negative binary value.

1. Obtaining the absolute value of a negative value using NEG instruction

M8000	FNC 44   BON	D 10	M 0	K 15
RUN monitor				
M 0	FNC 29   NEGP	D 10	D10 $\rightarrow$ D10	

In BON (ON bit check) instruction, MO turns ON when the bit 15 (b15 among b0 to b15) of D10 is "1".

NEGP instruction is executed for D10 only when M0 turns ON.

## 2. Obtaining the absolute value by SUB (subtraction) instruction

Even if NEG instruction is not used, D30 always stores the absolute value of the difference.



## Negative value expression and absolute value (reference)

In PLCs, a negative value is expressed in 2's complement.
When the most significant bit is "1", it is a negative value, and its absolute value can be obtained by NEG instruction.
(D 10) $=2$ 1 111

0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

$$
\begin{aligned}
& \text { (D 10) = } 1 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

$(\mathrm{D} 10)=0$






## 11. Rotation and Shift Operation - FNC 30 to FNC 39

FNC 30 to FNC 39 provide instructions for rotating and shifting bit data and word data in specified directions.


### 11.1 FNC 30 - ROR / Rotation Right

## Outline



This instruction shifts and rotates the bit information rightward by the specified number of bits without the carry flag.

1. Instruction format

	$\begin{gathered} \text { FNC } 30 \\ \text { ROR } \end{gathered}$	-	16-bit Instruction   5 steps	Mnemonic	Operation Condition
D		P	5 steps	ROR	Continuous Operation
				RORP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DROR	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DRORP	Pulse (Single) Operation

## 2. Set data

Operand Type	Description	Data Type
(D•	Word device number storing data to be rotated rightward	16- or 32-bit binary
n	Number of bits to be rotated   $\left[\mathrm{n} \leq 16\left(16-\right.\right.$-bit instruction), $\mathrm{n} \leq 32(32-\text { bit instruction) }]^{* 1}$	16- or 32-bit binary

*1. Do not set a negative value to the number of bits to be rotated.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \end{gathered}$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
D•									-1	-1	A1	$\checkmark$	$\checkmark$	$\checkmark$	-2	-3	$\checkmark$	$\checkmark$	$\checkmark$					
n														$\checkmark$	42					$\checkmark$	$\checkmark$			

41: In 16-bit operations, $\mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}$ and K 4 SOOO are valid.
In 32-bit operations, $\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}$ and K 8 SOOO are valid.
©2: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.
©3: This function is supported only in FX3U/FX3uc PLCs.

## Explanation of function and operation

1. 16-bit operation (ROR and RORP)
" n " bits out of 16 bits of $\mathrm{D}^{-}$are rotated rightward.

$\substack{\text { Command } \\ \text { input } \\ \hline}$	FNC 30   RORP	D :	n

- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K4 (16-bit instruction) is valid.



## 2. 32-bit operation (DROR and DRORP)

" n " bits out of 32 bits of [D• +1, D•] are rotated rightward.


- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K8 (32-bit instruction) is valid.



## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the lowest position is "1".

## Cautions

- In the case of continuous operation type instructions (ROR and DROR) Note that shift and rotation are executed in every scan time (operation cycle).
- When a device with digit specification is specified as D. Only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).
- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DROR D100 R0", " $n$ " is [R1, R0].


### 11.2 FNC 31 - ROL / Rotation Left

## Outline



This instruction shifts and rotates the bit information leftward by the specified number of bits without the carry flag.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\mathrm{D} \cdot$	Word device number storing data to be rotated leftward	16- or 32-bit binary
n	Number of bits to be rotated   $[\mathrm{n} \leq 16(16-\text {-bit instruction }), \mathrm{n} \leq 32(32-\text {-bit instruction })]^{\star 1}$	16- or 32-bit binary

*1. Do not set a negative value to the number of bits to be rotated.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
(D.)									A1	-1	-1	$\checkmark$	$\checkmark$	$\checkmark$	-2	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$					
n														$\checkmark$	-2					$\checkmark$	$\checkmark$			

©1: In 16-bit operations, $\mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}$ and K 4 SOOO are valid. In 32-bit operations, $\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}$ and K 8 SOOO are valid.
©2: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{Gc}} / \mathrm{F} X_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
43: This function is supported only in $F X_{3} U / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (ROL and ROLP)
"n" bits out of 16 bits of $D \cdot$ are rotated leftward.


- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K4 (16-bit instruction) is valid.



## 2. 32-bit operation (DROL and DROLP)

" n " bits out of 32 bits of [ $\left.D \cdot+1, D^{\circ}\right]$ are rotated leftward.

Command	FNC 31	(D.)	n
input			

- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K8 (32-bit instruction) is valid.



## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the highest position is "1".

## Cautions

- In the case of continuous operation type instructions (ROL and DROL) Note that shift and rotation are executed in every scan time (operation cycle).
- When a device with digit specification is specified as D. Only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).
- Note that the 32 -bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32 -bit instruction. In the case of "DROL D100 R0", "n" is [R1, R0].


### 11.3 FNC 32 - RCR / Rotation Right with Carry

## Outline

This instruction shifts and rotates the bit information rightward by the specified number of bits together with the carry flag.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\mathrm{D} \cdot$	Word device number storing data to be rotated rightward	16 - or 32-bit binary
n	Number of bits to be rotated   $[\mathrm{n} \leq 16(16-\text { bit instruction }), \mathrm{n} \leq 32(32-\text {-bit instruction })]^{* 1}$	16 - or 32-bit binary

*1. Do not set a negative value to the number of bits to be rotated.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit$\text { U } \square \text { IG } \square$	Index			Constant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									-	-	-	$\checkmark$												
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

4: In 16-bit operations, $\mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}$ and K 4 SOOO are valid. In 32-bit operations, $\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}$ and K 8 SOOO are valid.

## Explanation of function and operation

1. 16-bit operation ( RCR and RCRP )
"n" bits out of 16 bits of $D \cdot$ and 1 bit (carry flag M8022) are rotated rightward.


The carry flag is intervened in the rotation loop. If M8022 has been set to ON or OFF before the rotation instruction, the carry flag is transferred to the destination.
2. 32-bit operation (DRCR and DRCRP)
" n " bits out of 32 bits of [ $\mathrm{D}^{\cdot} \cdot+1, \mathrm{D}^{\circ}$ ] and 1 bit (carry flag M8022) are rotated rightward.


Before
execution
High order
Low order
b31b30b29b28b27b26b25b24b23b22b21b20b19b18b17b16b15b14b13b12b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0


## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the lowest position is "1".

## Cautions

- In the case of continuous operation type instructions (RCR and DRCR) Note that shift and rotation are executed every scan time (operation cycle).
- When a device with digit specification is specified as D. Only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).
- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32 -bit instruction. In the case of "DRCR D100 R0", " $n$ " is [R1, R0].


### 11.4 FNC 33 - RCL / Rotation Left with Carry

## Outline



This instruction shifts and rotates the bit information leftward by the specified number of bits together with the carry flag.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\mathrm{D} \cdot$	Word device number storing data to be rotated leftward	16 - or 32-bit binary
n	Number of bits to be rotated   $\left[\mathrm{n} \leq 16(16-\right.$ bit instruction $), \mathrm{n} \leq 32(32 \text {-bit instruction) }]^{* 1}$	16 - or 32-bit binary

*1. Do not set a negative value to the number of bits to be rotated.

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square \square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									-	A	A	$\checkmark$												
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

A: In 16-bit operations, $\mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}$ and K 4 SOOO are valid.

$$
\text { In 32-bit operations, } \mathrm{K} 8 \mathrm{YOOO}, \mathrm{~K} 8 \mathrm{MOOO} \text { and } \mathrm{K} 8 \mathrm{SOOO} \text { are valid. }
$$

## Explanation of function and operation

1. 16-bit operation (RCL and RCLP)
" n " bits out of 16 bits of $\mathrm{D} \cdot$ and 1 bit (carry flag M8022) are rotated leftward.


The carry flag is intervened in the rotation loop. If M8022 has been set to ON or OFF before the rotation instruction, the carry flag is transferred to the destination.
2. 32-bit operation (DRCL and DRCLP)
" n " bits out of 32 bits of $[\mathrm{D} \cdot+1, \mathrm{D} \cdot \mathrm{]}$ and 1 bit (carry flag M8022) are rotated leftward.


## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the highest position is "1".

## Cautions

- In the case of continuous operation type instructions (RCL and DRCL)

Note that shift and rotation are executed every scan time (operation cycle).

- When a device with digit specification is specified as D. Only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).
- Note that the 32 -bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DRCL D100 R0", " n " is [R1, R0].


### 11.5 FNC 34 - SFTR / Bit Shift Right

## Outline



This instruction shifts bit devices of the specified bit length rightward by the specified number of bits. After shift, the bit device $S^{-}$is transferred by " n 2 " bits from the most significant bit.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head bit device number to be stored to the shift data after rightward shift	Bit
D•	Head bit device number to be shifted rightward	Bit
n 1	Bit length of the shift data $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 1024$	$16-$ bit binary
n 2	Number of bits to be shifted rightward $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 1024^{* 1}$	$16-$ bit binary

*1. Do not set a negative value to the number of bits to be shifted rightward.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIG口	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	A1												$\checkmark$					
D.		$\checkmark$	$\checkmark$			$\checkmark$													$\checkmark$					
n1																				$\checkmark$	$\checkmark$			
n2														$\checkmark$	42					$\checkmark$	$\checkmark$			

A1: "D口.b" is available only in FX3U and FX3Uc PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
©2: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (SFTR and SFTRP)

For " n 1 " bits (shift register length) starting from (D•, "n2" bits are shifted rightward ([1] and [2] shown below).
After shift, " n 2 " bits from $\mathrm{S}^{-}$are transferred to " n 2 " bits from $\mathrm{D} \cdot+\mathrm{n} 1-\mathrm{n} 2$ ( $[3]$ shown below).

$\substack{\text { Command } \\ \text { input }}$	FNC 34   SFTRP	S.	D :	n 1



## Caution

Note that " n 2 " bits are shifted every time the command input turns from OFF to ON in the SFTRP instruction, but that " n 2 " bits are shifted in each scan time (operation cycle) in SFTR instruction.

## Error

If the transfer source $S^{\cdot}$. is equivalent to the shifted device $D^{-}$in FX3U/FX3uc PLCs, an operation error occurs (error code: K6710).
An operation error does not occur in $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs.

### 11.6 FNC 35 - SFTL / Bit Shift Left

## Outline



This instruction shifts bit devices of the specified bit length leftward by the specified number of bits.
After shift, the bit device $S^{-}$is transferred by "n2" bits from the least significant bit.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
9 steps	SFTL	$\square \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	SFTLP	Pulse (Single) Operation


2. Set data

Operand Type	Description	Data Type
S•	Head bit device number to be stored to the shift data after leftward shift	Bit
D•	Head bit device number to be shifted leftward	Bit
n 1	Bit length of the shift data $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 1024$	16 -bit binary
n 2	Number of bits to be shifted leftward $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 1024^{* 1}$	$16-$ bit binary

*1. Do not set a negative value to the number of bits to be shifted leftward.

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant			Character String$\square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
(S.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					
(D.)		$\checkmark$	$\checkmark$			$\checkmark$													$\checkmark$					
n1																				$\checkmark$	$\checkmark$			
n2														$\checkmark$	-2					$\checkmark$	$\checkmark$			

41: "D $\square . b$ " is available only in FX3U and FX3uc PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
©2: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{~J} / F X_{3} \cup \mathrm{C}}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (SFTL and SFTLP)

For " n 1 " bits (shift register length) starting from (D. , "n2" bits are shifted leftward ([1] and [2] shown below). After shift, " n 2 " bits from $\mathrm{S} \cdot$ are transferred to "n2" bits from (D• ([3] shown below).


## Caution

Note that "n2" bits are shifted every time the command input turns from OFF to ON in the SFTLP instruction, but that " n 2 " bits are shifted in each operation cycle in the SFTL instruction.

## Error

If the transfer source $S^{\cdot}$ is equivalent to the shifted device $D^{-}$in FX3U/FX3UC PLCs, an operation error occurs (error code: K6710).
An operation error does not occur in FX3s/FX3G/FX3Gc PLCs.

## Program example (conditional stepping of 1-bit data)

By setting X000 to X 007 to ON in turn, Y000 to Y007 are activated in turn.
If the order is wrong, activation is disabled.


Bit 1 of $M 0$ is regarded as the head input, and 8-bit shift register is constructed by S0 to S7.
*1 By using a state relay (S), the state under operation can be monitored by the dynamic monitoring function of the state relay.


### 11.6.1 Replacement of SFT instruction in F1 and F2 Series

SFT instruction in F1/F2 PLCs corresponds to SFTL (FNC 35) instruction in FX3s/FX3G/FX3GC/FX3u/FX3uc PLCs as shown below:

1. $\mathrm{F}_{1} / \mathrm{F}_{2}$ PLCs

M100: Input data
M101 to M117 (octal number): 15-step shift register

## Circuit program

X000 data input	OUT	M100
X001 shift input		
	SFT	(
X002 reset input		)
	RST	M117

List program

0000	LD	X000
0001	OUT	M100
0002	LD	X001
0003	SFT	M100
0004	LD	X002
0005	RST	M100

### 11.7 FNC 36 - WSFR / Word Shift Right

## Outline



This instruction shifts word devices with " n 1 " data length rightward by " n 2 " words.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number to be stored to the shift data after rightward shift	16 -bit binary
D•	Head word device number storing data to be shifted rightward	16 -bit binary
n 1	Word data length of the shift data $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512$	16 -bit binary
n 2	Number of words to be shifted rightward $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512^{* 1}$	16 -bit binary

*1. Do not set a negative value to the number of words to be shifted rightward.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Con-   stant		Real Number$\square$	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S.								$\checkmark$	-1	-2			$\checkmark$											
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
n1																				$\checkmark$	$\checkmark$			
n2														$\checkmark$	41					$\checkmark$	$\checkmark$			

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 30 c}$ PLCs.
©2: This function is supported only in $F X_{3} / / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (WSFR and WSFRP)

For "n1" word devices starting from (D•, "n2" words are shifted rightward ([1] and [2] shown below).
After shift, "n2" words starting from S• are shifted to "n2" words starting from [D•+n1-n2] ([3] shown below).


## Caution

Note that " n 2 " words are shifted when the drive input turns ON in the WSFRP instruction, but that "n2" words are shifted in each operation cycle in the WSFR instruction.

## Error

If the transfer source (S. is equivalent to the shifted device $\mathrm{D}^{-}$, an operation error occurs (error code: K6710).

## Program example

1. Shifting devices with digit specification

[2]
[1]

### 11.8 FNC 37 - WSFL / Word Shift Left

## Outline



This instruction shifts the word data information leftward by the specified number of words

1. Instruction format

	FNC 37	
	WSFL	P


16-bit Instruction	Mnemonic	Operation Condition
9 steps	WSFL	Continuous
	WSFLP	$_\begin{array}{l}\text { Pulse (Single) } \\ \text { Operation }\end{array}$


32 -bit Instruction	
Mnemonic	Operation Condition
-	

2. Set data

Operand Type	Description	Data Type
S•	Head device number to be stored to the shift data after leftward shift	16 -bit binary
D•	Head word device number storing data to be shifted leftward	16 -bit binary
n 1	Word data length of the shift data $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512$	16 -bit binary
n 2	Number of words to be shifted leftward $\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512^{* 1}$	16 -bit binary

*1. Do not set a negative value to the number of words to be shifted leftward.

## 3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Constant		Real   Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.								$\checkmark$	A1	42			$\checkmark$											
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
n1																				$\checkmark$	$\checkmark$			
n2														$\checkmark$	A1					$\checkmark$	$\checkmark$			

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
42: This function is supported only in $F X_{3} / / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (WSFL and WSFLP)

For " n 1 " word devices starting from (D. , "n2" words are shifted leftward ([1] and [2] shown below). After shift, "n2" words starting from S• are shifted to "n2" words starting from D. ([3] shown below).

Command	FNC 37 WSFLP	(5)	(D.)	n1	n2



## Caution

Note that "n2" words are shifted every time the drive input turns from OFF to ON in the WSFLP instruction, but that "n2" words are shifted in each operation cycle in the WSFL instruction.

## Error

If the transfer source $\mathrm{S} \cdot$ is equivalent to the shifted device $\mathrm{D} \cdot$, an operation error occurs (error code: K6710).

## Program example

1. Shifting devices with digit specification


### 11.9 FNC 38 - SFWR / Shift Write [FIFO/FILO Control]

## Outline

This instruction writes data for first-in first-out (FIFO) and last-in first-out (LIFO) control.

1. Instruction format

	FNC 38	
	SFWR	P


16-bit Instruction	Mnemonic	Operation Condition
7 steps	SFWR	Continuous Operation
	SFWRP	$\left\llcorner\begin{array}{l}\text { Pulse (Single) } \\ \text { Operation }\end{array}\right.$


32 -bit Instruction	Mnemonic
-	
-	

## 2. Set data

Operand Type	Description	Data Type
S•	Word device number storing data to be put in first	16-bit binary
(D•	Head word device number storing data (The first word device works as the pointer, and   data is stored in   D• +1 and later)	16-bit binary
n	Number of store points plus "1" ${ }^{* 1} 2 \leqq \mathrm{n} \leqq 512$	16 -bit binary

*1. " +1 " is required for the pointer.

## 3. Applicable devices

Operand   Type	Bit Devices   System User							Word Devices												Others				
								Digit Specification				System User				Special   Unit   UपIG $\square$	Index			Constant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.								$\checkmark$	-1	$\Delta 2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (SFWR and SFWRP)

The contents of $S^{\cdot}$ are written to " $n-1$ " devices from $D^{\cdot}+1$, and "1" is added to the number of data stored in (D.

For example, when $D^{D \cdot}=0$, the contents of $\left(S \cdot\right.$ are written to $D^{D} \cdot+1$. When $D^{\cdot}=1$, the contents of $S^{\circ}$ are written to $\mathrm{D}^{-}+2$.


1) When X000 turns from OFF to ON, the contents of $S \cdot$ are stored to $D^{\cdot}+1$. So the contents of $D \cdot+1$ become equivalent to $S \cdot$.
2) When the contents of $S \cdot$ are changed and then the command input is set from OFF to ON again, the new
 continuous operation type SFWR instruction is used, the contents are stored in each operation cycle. Use the pulse operation type SFWRP instruction in programming.)
3) Data is stored from the right end in the same way, and the number of stored data is specified by the contents of the pointer .

## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry	When the contents of the pointer $D \cdot D$ exceeds " $n-1 "$, no operation is executed (so data is not   written) and the carry flag M8022 turns ON.

## Related instructions

Instruction		Description
SFRD (FNC 39)	Shift read (for FIFO control)	
POP (FNC212)	Shift last data read (for FILO control)	

## Caution

## 1. In the case of continuous operation type (SFWR) instruction <br> Note that data is stored (overwritten) in each scan time (operation cycle). <br> án ana

## Program example

## 1. Example of first-in first-out control

$\rightarrow$ For a program example of FILO, refer to Section 27.3.
In the example below, the shift write (SFWR) and shift read (SFRD) instructions are used.

1) Contents of operation

- In this circuit example, a product number to be taken out now is output according to "first-in first-out" rule while products which were put into a warehouse with their product numbers registered are taken out of the warehouse.
- The product number is hexadecimal, and up to 4 digits. Up to 99 products can be stored in the warehouse.

2) Program

Button for request to put a
product into warehouse


| FNC 12 <br> MOVP | K4X000 | D256 |  |
| :--- | :--- | :--- | :--- | :--- |
| FNC 38 <br> SFWRP | D256 | D257 | K100 |

The product number is input from X000 to X 017 , and transferred to D256.

Pointer
D257: Data register for storing the product number D258 to D356 (99 points)


The product number of a product put into first is output to D357 in response to the request to put a product out of the warehouse.

The product number to be taken out is output to Y000 to Y017 in a four-digit hexadecimal number.

Digital switch 0000 to FFFF


### 11.10 FNC 39 - SFRD / Shift Read [FIFO Control]

## Outline



This instruction reads data for first-in first-out control.

1. Instruction format

	FNC 39	
	SFRD	P


16-bit Instruction	Mnemonic	Operation Condition
7 steps	SFRD	Continuous - Operation
	SFRDP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
	-	

2. Set data

Operand Type	Description	Data Type
S•	Head word device number storing data   (The first word device works as the pointer, and data is stored in $S \cdot(+1$ and later.)	16-bit binary
D•	Word device number storing data taken out first $2 \leq \mathrm{n} \leq 512$	16 -bit binary
n	Number of store points plus " $1 n^{* 1} 2 \leq \mathrm{n} \leq 512$	16 -bit binary

*1. $\quad+1$ " is required for the pointer.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \square \square \backslash G \square \end{gathered}$	Index			Constant			Character String$\square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$					
n																				$\checkmark$	$\checkmark$			

A1: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} U / F X_{3} u c$ PLCs.
A2: This function is supported only in $F X_{3} U / F X_{3} U C$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (SFRD and SFRDP)

(S1•)+1 written in turn by SFWR (FNC 38) instruction is transferred (read) to $\mathrm{D}^{-}$, and "n-1" words from $\mathrm{S} 1 \cdot+1$ are shifted rightward by 1 word. "1" is subtracted from the number of data, stored in S•.



1) When the command input turns $O N$, the contents of $S^{\cdot}+1$ are transferred (read) to $D \cdot$.
2) Accompanied by this transfer, the contents of the pointer $S \cdot$ decrease, and the data on the left side are shifted rightward by 1 word. (When the continuous operation type SFRD instruction is used, the contents are stored in turn in each operation cycle. Use the pulse operation type SFRDP instruction in programming.)

## Related device

$\rightarrow$ For the zero flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8020	Zero	Data is always read from   M8020 turns ON.

## Related instructions

Instruction	
SFWR (FNC 38)	Shift write (for FIFO/FILO control)
POP (FNC212)	Shift last data read (for FILO control)

## Caution

1. Data after reading was executed

The contents of $\mathrm{S} \cdot+\mathrm{n}$ do not change by reading.
2. In the case of continuous operation type (SFRD) instruction

Data is read in turn in each scan time (operation cycle), but the contents of $\mathrm{S}^{\cdot}+\mathrm{n}$ do not change.

## 3. When pointer $S^{(\cdot)}$ is 0

Data is not processed, and the contents of $D \cdot$ do not change.

## Program example

Refer to the program example provided for SFWR (FNC 38) instruction.
$\rightarrow$ For the program example, refer to Section 11.9.

## 12. Data Operation - FNC 40 to FNC 49

FNC 40 to FNC 49 provide instructions for executing complicated processing for fundamental applied instructions FNC 10 to FNC 39 and for executing special processing.

FNC No.	Mnemonic	Symbol	Function	Reference
40	ZRST	H1-	Zone Reset	Section 12.1
41	DECO	DECO S D n	Decode	Section 12.2
42	ENCO	ENCO S D n	Encode	Section 12.3
43	SUM	SUM S D	Sum of Active Bits	Section 12.4
44	BON	BON S D n	Check Specified Bit Status	Section 12.5
45	MEAN	MEAN S D n	Mean	Section 12.6
46	ANS	ANS s m D	Timed Annunciator Set	Section 12.7
47	ANR	-1ゅ ANR	Annunciator Reset	Section 12.8
48	SQR	HЮ SQR	Square Root	Section 12.9
49	FLT	$\begin{array}{\|l\|l\|l\|} \hline \mathrm{FLT} & \mathrm{~S} & \mathrm{D} \\ \hline \end{array}$	Conversion to Floating Point	$\begin{gathered} \text { Section } \\ 12.10 \end{gathered}$

### 12.1 FNC 40 - ZRST / Zone Reset

## Outline



This instruction resets devices located in a zone between two specified devices at one time. Use this instruction for restarting operation from the beginning after pause or after resetting control data.

1. Instruction format

	FNC 40	
	ZRST	P


16-bit Instruction	Mnemonic	Operation Condition
5 steps	ZRST	Continuous   - Operation
	ZRSTP	Pulse (Single) Operation

32-bit Instruction Mnemonic
Operation Condition

Operand type	Description		Data type
(D1-	Head bit or word device number to be reset at one time	$\mathrm{D} 1 \cdot \mathrm{D} \cdot \mathrm{D} \cdot$   Specify same type of devices.	16-bit binary
(D2.)	Last bit or word device number to be reset at one time		16-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash G \end{gathered}$	Index			Con-   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D1-		$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
(D2.)		$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	41	-2			$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup c$ PLCs.
A2: This function is supported only in $F X_{3} / / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (ZRST and ZRSTP)

Same type of devices from (D1• to D2• are reset at one time.
When (D1- and (D2. are bit devices

1) "OFF (reset)" is written to the entire range from D1• to D2• at one time.


When D1• and D2• are word devices
"K0" is written to the entire range from (D1• to D2• at one time.


## Related instructions

1. RST instruction

As an independent reset instruction for devices, RST instruction can be used for bit devices ( $\mathrm{Y}, \mathrm{M}$ and S ) and word devices (T, C, D and R).


## 2. $\operatorname{FMOV}$ (FNC 16) instruction

FMOV (FNC 16) instruction is provided to write a constant (example: K0) at one time. By using this instruction, "0" can be written to word devices ( $\mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}, \mathrm{T}, \mathrm{C}, \mathrm{D}$ and R ) at one time.


## Cautions

1. Caution on specifying devices

Specify same type of devices in $\mathrm{D} 1 \cdot$ and $\mathrm{D} 2 \cdot$. The device number of $\mathrm{D}_{1} \cdot$ should be smaller than or equal to the device number of (D2.).
If the device number of $\mathrm{D}_{1} \cdot$ is larger than the device number of $\mathrm{D}_{2} \cdot \cdot$, only one device specified in $\mathrm{D} 1 \cdot$ is reset.
2. When specifying high-speed counters (C235 to C255)

The ZRST instruction is handled as the 16-bit type, but 32-bit counters can be specified in (D1•) and D2•).
However, it is not possible to specify a 16-bit counter in (D1- and specify a 32-bit counter in (D2•; D1•) and (D2.) should be the same type.

Example

3. Caution for simultaneous instances of the ZRST instruction and the PLS instruction

The ZRST instruction resets the last stage for the PLS instruction and PLF instruction of the applicable device. In addition, the reset state of T and C is also reset.
Circuit program


Please program in the following way to turn on MO only once.
Circuit program


## 4. Caution on simultaneous instances of the ZRST instruction and a counter

The ZRST instruction resets also the last stage and reset state of $T$ and $C$ coils.
Accordingly, if the drive contact of X000 is ON in the following program, the counter executes counting after the ZRST instruction is executed.


Timing chart


Program in the following way to disable counting after execution of the ZRST instruction:
Circuit program


## Program example

## 1. When using devices in the latch area as non-latch type devices

In the program shown below, when the power to the PLC is turned ON or when the PLC mode is changed to RUN, the specified ranges of bit devices and word devices are reset at one time.

	(D1) (D2)			M500 to M599 are reset at one time.
M8002	$\begin{gathered} \text { FNC } 40 \\ \text { ZRST } \end{gathered}$	M500	M599	
Initial pulse				
	(D1) (D2)			
	$\begin{gathered} \text { FNC } 40 \\ \text { ZRST } \\ \hline \end{gathered}$	C235	C255	C235 to C255 are reset at one time.   (" 0 " is written to them, and their contacts are reset.)
	(D1) (D2)			
	$\begin{aligned} & \text { FNC } 40 \\ & \text { ZRST } \end{aligned}$	S500	S599	S500 to S599 are reset at one time.

### 12.2 FNC 41 - DECO / Decode

## Outline



This instruction converts numeric data into ON bit. A bit number which is set to ON by this instruction indicates a numeric value.

1. Instruction format

$\begin{gathered} \text { FNC } 41 \\ \text { DECO } \end{gathered}$		$\begin{array}{\|l} \frac{16 \text {-bit Instruction }}{7 \text { steps }} \end{array}$	Mnemonic	Operation Condition
	P		DECO	Continuous   Operation
			DECOP	Pulse (Single) - Operation


32 -bit Instruction	Mnemonic	Operation Condition
-		
-		

2. Set data

Operand type	Description	Data type
S•	Data to be decoded or word device number storing data	16 -bit binary
$\mathrm{D} \cdot$	Bit or word device number storing the decoding result	16 -bit binary
n	Number of bits of device storing the decoding result $(\mathrm{n}=1$ to 8$)$   (No processing is executed in the case of " $\mathrm{n}=0$ ".)	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real   Number   E	$\begin{gathered} \hline \text { Charac- } \\ \text { ter String } \\ \hline \text { " } \square " \end{gathered}$	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	UपIGロ	V	Z	Modify	K	H			
S•	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	A1	A2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			
D•		$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	A1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3} \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
A2: This function is supported only in FX3U/FX3uc PLCs.

## Explanation of function and operation

1. 16-bit operation (DECO and DECOP)

One bit among $D^{\cdot}$ to $D^{\cdot}+2^{n}-1$ is set to $O N$ according to the $S^{\cdot}$ value.

1) When (D. is a bit device $(1 \leq n \leq 8)$

The numeric value (expressed in $2^{n}, 1 \leq n \leq 8$ ) of a device specified by $S \cdot$ is decoded to $D \cdot$.
-When all bits of $S^{\cdot}$ are " 0 ", the bit device (D. turns ON.
-When " $n$ " is " 8 ", $2^{8}$ points ( $=256$ bits which is the maximum value) are occupied.

2) When $D \cdot$ is a word device $(1 \leq n \leq 4)$

The numeric value (expressed in $2^{n}$ on the low-order side) of $S^{\cdot}$ is decoded to $D^{\cdot}$.
-When all bits of $S^{\bullet}$ are " 0 ", b0 of the word device $D \cdot{ }^{-}$turns ON.
-In the case of " $\mathrm{n} \leq 3$ ", all of high-order bits of $\mathrm{D} \cdot$ become " 0 " (turn OFF).


## Caution

- While the command input is OFF, the instruction is not executed. The activated decode output is held in the previous ON/OFF status.
- When " n " is " 0 ", the instruction executes no processing.


## Program example

## 1. When setting bit devices to ON according to the value of a data register

The value of D0 (whose current value is " 14 " in this example) is decoded to M0 to M15.


- When the value of b0 to b3 of D0 is "14 (= $0+2+4+8)$ ", M14 (which is the 15 th from M0) becomes "1" (turn ON).
- When the value of D0 is "0", M0 becomes "1" (turns ON).
- When " n " is set to "K4", either one point among M0 to M15 turns ON according to the value of D0 (0 to 15).
- By changing " n " from K1 to K8, D0 can correspond to numeric values from 0 to 255.

However, because the device range of $D \cdot$ is occupied for decoding accordingly, such device range should not be used for another control.
2. Turning ON the bit out of word devices according to the contents of bit devices

The value expressed by X000 to X002 is decoded to D0 (X000 and X001 are ON, and X002 is OFF in this example.).


- When the values expressed by X000 to X002 are " $3(=1+2+0$ )", b3 (which is the 4 th from b0) becomes 1 (turns ON).
- When all of X000 to X002 are "0" (OFF), b0 becomes "1" (turns ON).


### 12.3 FNC 42 - ENCO / Encode

## Outline



This instruction obtains positions in which bits are ON in data.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Data to be encoded or word device number storing data	16 -bit binary
$(\mathrm{D} \cdot$	Word device number storing the encoding result	16 -bit binary
n	Number of bits of device storing the encoding result ( $\mathrm{n}=1$ to 8 )   (When " n " is "0", no processing is executed.)	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User					Index			Constant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	$\begin{gathered} \text { Pointer } \\ \hline P \end{gathered}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	A1	42	$\checkmark$	$\checkmark$	$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					
n																				$\checkmark$	$\checkmark$			

A1: This function is supported only in $F^{2} X_{3} / F X_{3 G C} / F X_{3} U / F X_{3} \cup c$ PLCs.
(2: This function is supported only in $F X_{3} U / F X_{3} \cup C$ PLCs.

## Explanation of function and operation

1. 16-bit operation (ENCO and ENCOP)

The $2^{n}$ bit of $S^{\cdot}$ is encoded, and the result value is stored to $D^{\cdot}$.
This instruction converts data into binary data according to a bit position in the ON status.

1) When $S \cdot$ is a bit device $(1 \leq n \leq 8)$

ON bit positions among " 2 " bits ( $1 \leq n \leq 8$ ) from $S \cdot$ are encoded to $D \cdot$.

- When " n " is " 8 ", $2^{8}=256$ bits (which is the maximum value) are occupied.
-The encoding result of $D \cdot$ is "0" (OFF) from the most significant bit to the low-order bit " $n$ ".


All of them are " 0 ".
2) When $S \cdot$ is a word device $(1 \leq n \leq 4)$

ON bit positions among " 2 " bits $(1 \leq n \leq 4)$ from a device specified in $S \cdot$ are encoded to $D^{\circ}$. -The encoding result of $D \cdot$ is " 0 " (OFF) from the most significant bit to the low-order bit " $n$ ".


## Cautions

1. When two or more bits are $O N$ in the $S \cdot$ data

The low-order side is ignored, and only the ON position on the high-order side is encoded.
2. While the command input is OFF

The instruction is not executed. Activated encode outputs are latched in the previous ON/OFF status.

### 12.4 FNC 43 - SUM / Sum of Active Bits

## Outline

This instruction counts the number of "1" (ON) bits in the data of a specified device.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Word device number storing the source data	16 - or 32-bit binary
D•	Word device number storing the result data	$16-$ or 32-bit binary

3. Applicable devices

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}}$ PLCs.
A2: This function is supported only in $F X_{3} / / F X_{3} \cup с$ PLCs.
Explanation of function and operation
4. 16-bit operation (SUM and SUMP)

The number of bits in the ON status in $S^{\cdot}$ is counted, and stored to $D \cdot$.

- When all bits are OFF in $S^{-}$, the zero flag M8020 turns ON.


Number of bits in the ON status in $\mathrm{S}^{-} \rightarrow \mathrm{D}^{-}$


## 2. 32-bit operation (DSUM and DSUMP)

The number of bits in the ON status in [S•+1, S•] is counted, and stored to $D \cdot$.

- The number of bits in the ON status are stored in $\mathrm{D}^{\cdot}$, and K0 is stored in $\mathrm{D}^{\cdot}+1$.
- When all bits are OFF in [S•+1, S•], the zero flag M8020 turns ON.


3. Operation result $D \cdot$ according to the $S \cdot$ value (in 16-bit operation)

S•																		D.	M8020 (zero flag)
Bit device																Word device			
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	Decimal	Hexadecimal		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0	ON
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0001	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	0002	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3	0003	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4	0004	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5	0005	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	6	0006	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	7	0007	3	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	8	0008	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	9	0009	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	10	000A	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	11	000B	3	OFF
																:	$\vdots$	$\vdots$	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	-5	FFFB	15	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	-4	FFFC	14	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	-3	FFFD	15	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	-2	FFFE	15	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	FFFF	16	OFF

## Caution

While the command input is OFF, the instruction is not executed.
The output of the number of bits in the ON status is latched in the previous status.

## Program example

When X000 is ON, the number of bits in the ON status in D0 is counted, and stored to D2.


The number of "1" in D0 is stored to D2.

D $0=K 21847$
D $2=\mathrm{K} 9$


### 12.5 FNC 44 - BON / Check Specified Bit Status

## Outline



This instruction checks whether a specified bit position in a specified device is ON or OFF.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Word device number storing the source data	16- or 32-bit binary
$\mathrm{D} \cdot$	Bit device number to be driven	Bit
n	Bit position to be checked   [n: 0 to 15 (16-bit instruction), 0 to 31 (32-bit instruction) $]$	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number$\qquad$	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
S-								$\checkmark$	-2	-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
D.		$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					
n														$\checkmark$	(2					$\checkmark$	$\checkmark$			

©1: "D $\square . b$ " is available only in $F X_{3} 3$ and $F X_{3} \cup C$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
42: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{F} X_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.
43: This function is supported only in $F X_{3} / / F X_{3} \cup C$ PLCs.

## Explanation of function and operation

1. 16-bit operation (BON and BONP)

The status (ON or OFF) of the bit " n " in $\mathrm{S} \cdot$. is output to $\mathrm{D}^{\circ}$
[When the bit " n " is ON, $\mathrm{D}^{-}$is set to ON. When the bit "n" is OFF, $\mathrm{D}^{-}$is set to OFF.]

- When a constant $(K)$ is specified as the transfer source $S \cdot$, it is automatically converted into binary format.



## 2. 32-bit operation (DBON and DBONP)

The status (ON or OFF) of the bit "n" in $\left[S \cdot+1, S^{\cdot}\right]$ is output to $\qquad$
[When the bit " $n$ " is ON, D• is set to ON. When the bit " $n$ " is OFF, D• is set to OFF.]

- When a constant $(K)$ is specified as the transfer source $\left[S^{\bullet}+1, S^{\bullet}\right.$ ], it is automatically converted into binary format.



## Caution

- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DBON D0 M0 R0", "n" is [R1, R0].


## Program example

When the bit $9(\mathrm{n}=9)$ in D10 is "1" (ON), M0 is set to "1" (ON).

	X000		D.	n
$1 \longmapsto$	FNC 44   BON	D 10	M 0	K 9

D 10


### 12.6 FNC 45 - MEAN / Mean

## Outline

FX3s
This instruction obtains the mean value of data.
Ver. $1.00 \mathrm{H} \Rightarrow$

1. Instruction format

	FNC 45   MEAN	P	16-bit Instruction	Mnemonic	Operation Condition
D			7 steps	MEAN	Continuous - Operation
				MEANP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
	13 steps	DMEAN
	DMEANP	Continuous   Operation   Pulse (Single)   Operation

2. Set data

Operand type	Description	Data type
S•	Head word device number storing data to be averaged	16 - or 32-bit binary
$\mathrm{D} \cdot$	Word device number storing the mean value result	16 - or 32-bit binary
n	Number of data to be averaged $(\mathrm{n}=1$ to 64$)$	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   UपIG	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S.								$\checkmark$	-1	-2			$\checkmark$											
(D.									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$					
n														$\checkmark$	41					$\checkmark$	$\checkmark$			

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.
A2: This function is supported only in $F X_{3} U / F X_{3} \cup C$ PLCs.

## Explanation of function and operation

1. 16-bit operation (MEAN and MEANP)

The mean value of "n" 16 -bit data from $S^{\cdot}$ is stored to $D \cdot$.

- The sum is obtained as algebraic sum, and divided by " n ".
- The remainder is ignored.



## 2. 32-bit operation (DMEAN and DMEANP)

The mean value of "n" 32-bit data from [ $S \cdot+1, S \cdot]$ is stored to [ $\left.D \cdot+1, D^{\circ}\right]$.

- The sum is obtained as algebraic sum, and divided by "n".
- The remainder is ignored.



## Caution

- When a device number is exceeded, " n " is handled as a smaller value in the possible range.
- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DMEAN D0 D100 R0", "n" is [R1, R0].


## Error

When " n " is any value outside the range from "1" to " 64 ", an operation error (M8067) is caused.

## Program example

The data of D0, D1 and D2 are summed, divided by "3", and then stored to D10.


### 12.7 FNC 46 - ANS / Timed Annunciator Set

## Outline

FX ${ }_{3 G}$
FX $3 G C$
Ver. $1.40 \ldots \Rightarrow$
$F X_{3} u$
Ver. $2.20 \mathrm{n} \Rightarrow$

Ver. $1.00 \ldots$
This instruction sets a state relay as an annunciator (S900 to S999).

1. Instruction format

FNC 46	16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
ANS	7 steps	ANS	Continuous Operation		-	

2. Set data

Operand type	Description	Data type
$S \cdot$	Timer number for evaluation time	16 -bit binary
m	Evaluation time data $[\mathrm{m}=1$ to 32767 (unit: 100 ms )]	16 -bit binary
$\mathrm{D} \cdot$	Annunciator device to be set	Bit

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIG	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S.												$\Delta^{1}$							$\checkmark$					
m														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
D.						$\Delta^{2}$													$\checkmark$					

A1 : T0 to T199

- 2 : S900 to S999


## Explanation of function and operation

1. 16-bit operation

When the command input remains ON for equivalent to or longer than the evaluation time [ $\mathrm{m} \times 100 \mathrm{~ms}$, timer $\mathrm{S}^{\cdot}$ ], D. is set.

When the command input remains ON for less than the evaluation time $[\mathrm{m} \times 100 \mathrm{~ms}$ ] and then turns OFF, the current value of the timer for evaluation $S^{\cdot}$ is reset and $D^{-}$is not set.
When the command input turns OFF, the timer for evaluation is reset.


## Related devices

Device	Name	Description
M8049	Enable annunciator	When M8049 is set to ON, M8048 and D8049 are valid.
M8048	Annunciator ON	When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON.
D8049	Smallest state relay   number in ON status	Among S900 to S999, the smallest state relay number in the ON status is stored.

## Program example

## 1. Displaying a fault number using an annunciator

When the program for external fault diagnosis shown below is created and the content of D8049 (smallest state relay number in the ON status) is monitored, the smallest state relay number in the ON status from S900 to S999 is displayed.
If two or more faults are present at the same time, the next smallest fault number is displayed after the fault of the smallest fault number is cleared.


### 12.8 FNC 47 - ANR / Annunciator Reset

## Outline

This instruction resets an annunciator ( S 900 to S 999 ) in the ON status with the smallest number.

1. Instruction format

$\begin{gathered} \text { FNC } 47 \\ \text { ANR } \end{gathered}$		16-bit Instruction   1 step	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	P		ANR	Continuous   L Operation		-	
			ANRP	Pulse (Single) Operation		-	

2. Set data

Operand type	Description	Data type
-	There is no set data.	-

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
-	There are no applicable devices.																							

## Explanation of function and operation

1. 16-bit operation (ANR and ANRP)

When the command input turns ON, a state relay working as annunciator ( S 900 to S 999 ) in the ON status is reset.

- If two or more state relays are ON, the state relay with the smallest number is reset.

When the command input is set to ON again, the state relay with the next smallest number is reset among state relays working as annunciators (S900 to S999) in the ON status.


Related devices

Device	Name	Description
M8049	Enable annunciator	When M8049 is set to ON, M8048 and D8049 are valid.
M8048	Annunciator ON	When M8049 is ON and either one among the state relays S900 to S999 is ON, M8048 turns ON.
D8049	Minimum state relay   number in ON status	Among S900 to S999, the minimum number in the ON status is stored.

## Caution

1. Execution in each operation cycle

- When ANR instruction is used, annunciators in the ON status are reset in turn in each operation cycle.
- When ANRP instruction is used, an annunciator in the ON status is reset only in one operation cycle (only once).


## Program example

Refer to ANS (FNC 46) instruction.

### 12.9 FNC 48 - SQR / Square Root

## Outline

## $F X_{3}$

Ver.2.20 m ,

This instruction obtains the square root.
The ESQR (FNC127) instruction obtains the square root in floating point operation.
$\rightarrow$ For ESQR (FNC127) instruction, refer to Section 18.15.

## 1. Instruction format

	FNC 48	
D	SQR	P

16-bit Instruction
5 steps

Mnemonic	Operation Condition
SQR	Continuous   - Operation
SQRP	Pulse (Single)


2. Set data

Operand type	Description	Data type
S•	Word device number storing data whose square root is obtained	16 - or 32-bit binary
$D \cdot$	Data register number storing the square root operation result	16 - or 32-bit binary

(S•) K0 to K32767 in 16-bit operation, K0 to K2,147,483,647 in 32-bit operation
3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number E	Character String	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
S•														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$			
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (SQR and SQRP)

The square root of the data stored in $S^{\cdot}$ is calculated, and stored to $D^{\cdot}$.


## 2. 32-bit operation (DSQR and DSQRP)

The square root of the data stored in $\left[S^{\cdot}+1, S^{\cdot}\right]$ is calculated, and stored to [ $\left.D^{\cdot}+1, D^{\cdot}\right]$.


## Caution

## 1. Operation result

1) The obtained square root is an integer because the decimal point is ignored.

When the calculated value is ignored, M8021 (borrow flag) turns ON.
2) When the calculated value is true " 0 ", M8020 (zero flag) turns ON.

## Program example

The square root of D10 is stored to D12.
The value of D10 is "100".

$\sqrt{\mathrm{D} \mathrm{10}} \rightarrow$ D 12
$=\sqrt{100} \rightarrow 10$

### 12.10 FNC 49 - FLT / Conversion to Floating Point

## Outline



This instruction converts a binary integer into a binary floating point (real number).

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Data register number storing binary integer	$16-$ or 32-bit binary
D•	Data register number storing binary floating point (real number)	Real number (binary)

3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
(S)														$\checkmark$	-1	-2			$\checkmark$					
(D.)														$\checkmark$	-1	-2			$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
©2: This function is supported only in $\mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (FLT and FLTP)

The binary integer data of $S^{\cdot}$ is converted into binary floating point (real number), and stored to [ $D \cdot+1, D^{\cdot}$ ].


## 2. 32-bit operation (DFLT and DFLTP)

The binary integer data of $[S \cdot+1, S \cdot]$ is converted into binary floating point (real number), and stored to [D• +1, D•].


## Related instruction

Instruction	
INT (FNC129)	Inverse of the FLT instruction, converts binary floating point into binary integer.

## Caution

1. It is not necessary to convert a constant ( K or H ) into a floating point value.

The value of a K or H specified in each instruction for binary floating point (real number) operation is automatically converted into binary floating point (real number). It is not necessary to convert such a constant with the FLT instruction.
( K and H cannot be specified in RAD, DEG, EXP and LOGE instructions.)

## Program example

## 1. Arithmetic operations by binary floating point operations

The sequence program shown below is constructed as follows:

1) Calculation example

2) Sequence program


## 13. High-Speed Processing - FNC 50 to FNC 59

FNC 50 to FNC 59 provide interrupt processing type high-speed instructions that execute sequence control using the latest I/O information and utilize the high-speed processing performance of the PLC.

FNC No.	Mnemonic	Symbol	Function	Reference
50	REF	REF D n	Refresh	Section 13.1
51	REFF	НЮ REFF n -	Refresh and filter adjust	Section 13.2
52	MTR	MTR S D1 2 n	Input Matrix	Section 13.3
53	HSCS	Нト HSCS S1 S2 ${ }^{\text {D }}$	High-speed counter set	Section 13.4
54	HSCR	$\left\|-\quad \mathrm{HSCR} \mathrm{~S}_{1}\right\| \mathrm{S} 2\|\mathrm{D}\|$	High-speed counter reset	Section 13.5
55	HSZ		High-speed counter zone compare	Section 13.6
56	SPD	$\mathrm{H}_{\|-\|} \mathrm{SPD}\|\mathrm{~S} 1\| \mathrm{S} 2\|\mathrm{D}\|$	Speed Detection	Section 13.7
57	PLSY	$\begin{array}{\|} \mathrm{H} \longmapsto & \mathrm{PLSY} & \mathrm{~S} 1 & \mathrm{~S} 2 & \mathrm{D} \\ \hline \end{array}$	Pulse Y Output	Section 13.8
58	PWM		Pulse Width Modulation	Section 13.9
59	PLSR	$\begin{array}{\|} \hline H \longmapsto & \left.\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { PLSR } & \mathrm{S} 1 & \mathrm{~S} 2 & \mathrm{~S} 3 & \mathrm{D} \\ \hline \end{array} \right\rvert\, \end{array}$	Acceleration/deceleration setup	$\begin{aligned} & \text { Section } \\ & 13.10 \end{aligned}$

### 13.1 FNC 50 - REF / Refresh

## Outline



This instruction immediately outputs the latest input $(\mathrm{X})$ information or the current output $(\mathrm{Y})$ operation result in the middle of a sequence program.
2. Set data

Operand Type	Description	Data Type
$D$	Head bit device $(X$ or $Y)$ number to be refreshed	Bit
$n$	Number of bit devices to be refreshed	$16-$ bit binary

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
D	$\Delta 1$	-2																						
n																				-3	-3			

1: X000, X010 or X020
Up to the final input number (whose least significant digit number is "0")
A2: Y000, Y010 or Y020
3: FX3s PLC:
FX3G/FX3Gc PLCs:
FX3u/FX3uc PLCs:

Up to the final output number (whose least significant digit number is "0") K8 (H8) or K16 (H10)
K8 (H8) or K16 (H10): Up to K128 (H80) (which is a multiple of 8)
K8 (H8) or K16 (H10): Up to K256 (H100) (which is a multiple of 8)

## Explanation of function and operation

## 1. 16-bit operation (REF and REFP)

1) When refreshing outputs ( $Y$ )
" n " points are refreshed from the output specified in D . ("n" must be a multiple of 8.)
Command


- When this instruction is executed, the output latch memory is refreshed to the output status in the specified range.

Image memory output ( Y )
REF instruction (executed)
END instruction processing (output)

Output refresh

- REF instruction + END processing
- Only END processing


2) When refreshing inputs ( $X$ )
" $n$ " points are refreshed from the input specified in D . (" $n$ " must be a multiple of 8 .)
Command
 K8 (H8) or K16 (H10): Up to K256 (H100) (which is a multiple of 8)
X000, X010 or X020: Up to the final input number (whose least significant digit number is " 0 ")

- If the input information is turned ON approximately 10 ms (response delay time of the input filter) before the instruction is executed, the input image memory turns ON when the instruction is executed.
- In X000 to X017** , the response delay time of the input filter can be changed.
*1. X000 to X007 in the $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{Gc}$.
$\rightarrow$ For details, refer to "13.1.1 What should be understood before using the REF instruction".



## Cautions

1. Setting the number of refreshed points " n "

Set a multiple of 8 such as "K8 (H8), K16 (H10) ... K256 (H100)". Any other numeric value causes an error.
2. Setting the head device number (D)

Make sure that the least significant digit number is " 0 " such as "X000, X010, X020 ..."or " Y000, Y010, Y020 ..."

## Program examples

1. When refreshing inputs

Only X010 to X017 (8 points in total) are refreshed.

	X000		n
	FNC 50   REF	X010	K 8

2. When refreshing outputs

Y000 to Y007, Y010 to Y017 and Y020 to Y027 (24 points in total) are refreshed.


### 13.1.1 What should be understood before using the REF instruction

1. Changing the input filter

The input filter value is determined by the contents of D8020 (initial value: 10 ms ).
Use the MOV instruction, etc. to adjust the value in D8020, which represents the input filter value.
Target range: X000 to X017 (In inputs X020 and later, the input filter value is fixed at $\mathbf{1 0} \mathbf{~ m s}$ and cannot be changed.)
(The target range is X 000 to X 007 in the $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{Gc}$.)

## 2. Output response time

After the REF instruction is executed, the output ( Y ) sets the output signal to ON after the response time shown below. $\rightarrow$ For details, refer to the respective PLC Hardware Edition manual.

Target range: Y000 to highest connected output number

1) Relay output type The output contact is activated after the response time of the output relay. - Y000 and higher: Approximately 10 ms
2) Transistor output type
a) FX 3 s PLC

- Y000 and Y001: $5 \mu \mathrm{~s}$ or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y002 and higher: 0.2 ms or less (load current $=200 \mathrm{~mA}, 24 \mathrm{~V}$ DC)
b) FX3G PLC (14-point and 24-point type)
- Y000 and Y001: $5 \mu \mathrm{~s}$ or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y002 and higher: 0.2 ms or less (load current $=200 \mathrm{~mA}, 24 \mathrm{~V}$ DC)
c) FX3G PLC (40-point and 60-point type)
- Y000, Y001 and Y002: 5 us or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y003 and higher: 0.2 ms or less (load current $=200 \mathrm{~mA}, 24 \mathrm{~V}$ DC)
d) FX3GC PLC
- Y000 and Y001: $5 \mu \mathrm{~s}$ or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y002 and higher: 0.2 ms or less (load current $=100 \mathrm{~mA}, 24 \mathrm{~V}$ DC)
e) $\mathrm{FX} 3 \cup \mathrm{PLC}$
- Y000, Y001 and Y002: $5 \mu \mathrm{~s}$ or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y003 and higher: 0.2 ms or less (load current $=200 \mathrm{~mA}, 24 \mathrm{~V}$ DC)
f) $\mathrm{FX}_{3} \mathrm{UC}(\mathrm{D}, \mathrm{DSS}) \mathrm{PLCs}$
- Y000, Y001 and Y002: $5 \mu$ s or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y003 and higher: 0.2 ms or less (load current $=100 \mathrm{~mA}, 24 \mathrm{~V}$ DC)
g) $\mathrm{FX}_{3} \cup \mathrm{C}-32 \mathrm{MT}-\mathrm{LT}(-2) \mathrm{PLC}$
- Y000, Y001, Y002 and Y003: $5 \mu$ s or less (load current $=10 \mathrm{~mA}$ or more, 5 to 24 V DC)
- Y004 and higher: 0.2 ms or less (load current $=100 \mathrm{~mA}, 24 \mathrm{~V}$ DC)

3) Triac output type

- Y000 and higher: 1 ms or less (OFF $\rightarrow \mathrm{ON}$ ), 10 ms or less ( $O N \rightarrow O F F$ ).

3. When using the REF instruction between FOR and NEXT instructions or between a pointer (with a lower step number) and CJ instruction (with a higher step number)
Inputs and outputs can be refreshed even when the input information or immediate output is required in the middle of a routine program during control.

## 4. When using the input interrupt (I) function

When executing interrupt processing accompanied by I/O operations, I/O refresh can be executed in the interrupt routine to receive the latest input ( X ) information and give the immediate output ( Y ) of the operation result so that dispersion caused by the operation time is improved.

### 13.2 FNC 51 - REFF / Refresh and Filter Adjust

## Outline

## F× 30

Ver. 2.20 m ,

The digital input filter time of the inputs X000 to X017 can be changed using this instruction or D8020. Using this instruction, the status of inputs X000 to X017 can be refreshed at an arbitrary step in the program for the specified input filter time, and then transferred to the image memory.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
n	Digital input filter time $[\mathrm{K} 0$ to $\mathrm{K} 60(\mathrm{H} 0$ to H 3 C$) \times 1 \mathrm{~ms}]$	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
n														$\checkmark$	$\checkmark$					-	-			

A: K0 (H0) to K60 (H3C)

## Explanation of function and operation

1. 16-bit operation (REFF and REFFP)

16 inputs from X000 to X017 in the image memory are refreshed at the digital input filter time [ $\mathrm{n} \times 1 \mathrm{~ms}$ ].


K0 to K60 (Filter constant from 0 to 60 ms )

- When the input turns $\mathrm{ON} " \mathrm{n} \times 1 \mathrm{~ms}$ " before the instruction is executed, the image memory is set to ON. When the input turns OFF " $\mathrm{n} \times 1 \mathrm{~ms}$ " before the instruction is executed, the image memory is set to OFF.
- When the command input is ON, the REFF instruction is executed in each operation cycle.
- When the command input is OFF, the REFF instruction is not executed, and the input filter of X000 to X017 uses the set value of D8020 (which is the value used during input processing).


## Cautions

1. Setting the filter time " $n$ "

Set "n" within the range from $\mathrm{K0}(\mathrm{HO})$ to $\mathrm{K} 60(\mathrm{H} 3 \mathrm{C})$ [0 to 60 ms ].
2. Function of the input filter

A digital filter is built into the inputs X000 to X017. The filter time can be changed in 1 ms units within the range from 0 to 60 ms using applied instructions. When the filter time is set to " 0 ", the input filter value is as follows.

Input number	Input filter value when set to "0"
X 000 to X 005	$5 \mu \mathrm{~s}^{* 1}$
$\mathrm{X} 006, \mathrm{X} 007$	$50 \mu \mathrm{~s}$
X 010 to $\mathrm{X} 017^{* 2}$	$200 \mu \mathrm{~s}^{* 2}$

*1. When setting the input filter time to " $5 \mu \mathrm{~s}$ ", perform the following actions:

- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of $1.5 \mathrm{k} \Omega$ ( 1 W or more) to the input terminal, and make sure that the load current in the open collector transistor output of the external equipment is 20 mA or more including the input current of the main unit.
*2. The filter time is fixed to 10 ms for X010 to X017 in 16-point type FX3u PLCs and 16-point type FX3Uc PLCs.


## Program example

1. Relationship between the program and the filter time


### 13.2.1 What should be understood before using REFF instruction

Generally, a C-R filter of approximately 10 ms is provided for inputs in PLCs as countermeasures against chattering and noise at the input contacts.
A digital filter is provided for the inputs X000 to X 017 in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 30 c$ PLC. The digital filter value can be changed ranging from 0 to 60 ms using applied instructions.

1. How to change the digital filter (executing END instruction) ${ }^{* 1}$

The input filter initial value ( 10 ms ) for X 000 to X 017 is set in special data register D8020.
By changing this value using the MOV instruction, etc., the input filter value for X000 to X017 which is used during execution of the END instruction can be changed.

*1. This function is supported only in DC input type.
2. Instruction in which the digital filter is automatically changed

Regardless of the change in the filter time executed by the REFF instruction, when the following functions and instruction are executed, the input filter value is automatically changed (to $5 \mu \mathrm{~s}$ in X 000 to X 005 and $50 \mu \mathrm{~s}$ in $\mathrm{X006}$ and X007).
However, if the digital filter is used in any other functions or instructions than the ones listed, the digital filter uses the time set in D8020. As a result, the program will not run correctly if the ON or OFF duration of the corresponding input signal is less than the input filter time.

- Input of interrupt pointer specified in the input interrupt function
- Input used in a high-speed counter
- Input used in the SPD (FNC 56) instruction


### 13.3 FNC 52 - MTR / Input Matrix

## Outline



This instruction reads matrix input as 8 -point input $\times$ " $n$ "-point output (transistor) in the time division method.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S	Input device (X) number of matrix signal input   X000, X010, X020 ... final input device number   (Only "0" is allowed in the least significant digit of device numbers.)	Bit
D1	Head device (Y) number of matrix signal output   Y000, Y010, Y020 ... final output device number   (Only "0" is allowed in the least significant digit of device numbers.)	Bit
(D2)	Head bit device (Y, M or S) number of ON output destination   Y000, Y010, Y020 ... final Y number, M000, M010, M020 ... final M number or S000,   S010, S020 ... final S number   (Only "0" is allowed in the least significant digit of device numbers.)	Bit
n	Number of columns in matrix input (K2 to K8 or H2 to H8)	(16-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Constant		Real Number   E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S)	$\checkmark$																							
(D1)		$\checkmark$																						
(D2)		$\checkmark$	$\checkmark$			$\checkmark$																		
n																				$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (MTR)

An input signal of 8 points $\times$ " n " columns is controlled in the time division method using 8 inputs S and "n" transistor outputs D1. Each column is read in turn, and then output to D2.

$\begin{gathered} \text { Command } \\ \text { input } \\ \text { (normally ON) } \\ \hline \end{gathered}$	Input number		Output number	ON output estinatio	Number of columns
	FNC 52 MTR	(S)	(D1)	(D2)	

- For each output, the I/O processing is executed immediately in turn in interrupt at every 20 ms under consideration of the input filter response delay of 10 ms .

The figure below shows an example of the FX3U series main unit (sink input/sink output).
For wiring details, refer to the Hardware Edition of each PLC.


## Related device

Device	Name	Description
M8029	Instruction execution complete	Turns ON after the first cycle operation.

## Cautions

1. Number of occupied devices
1) Eight input points are occupied from the input device number specified in S .
2) " n " output points are occupied from the output device number specified in (D1.

When specifying the output in (D2 , make sure that " $n$ " output numbers specified in D1 does not overlap the output specified in D2.
2. Limitation in the number of instructions

The MTR instruction can be used only once in a program.
3. Wiring

One diode of $0.1 \mathrm{~A} / 50 \mathrm{~V}$ is required for each switch.
4. Output format

Use the transistor output format.
5. Cautions on writing during RUN

Even if an operand device is changed by write during RUN while the MTR instruction is executed, the PLC operates using the device before change.
The changed device is reflected after the command input is set to OFF once and set to ON again.

## Program example

$\mathrm{n}=$ Three outputs (Y020, Y021 and Y022) are set to ON in turn repeatedly.
Every time an output is set to ON, eight inputs in the 1st, 2nd and 3rd columns are received in turn repeatedly, and stored to M30 to M37, M40 to M47 and M50 to M57 respectively.
In this program example, the FX3U series main unit (sink input/sink output) is used.
For wiring details, refer to the Hardware Edition of each PLC.


MO


1st column input is received.


M8029 (execution complete)

### 13.3.1 Operation and cautions for the MTR instruction

1. Command input
1) Setting the command input to normally Open

For the MTR instruction, set the command input to normally Open.
MOO

(normally Open)	FNC 52   MTR	X020	Y040	M0	K8

2. Input numbers used in the MTR instruction
1) Inputs available in MTR instruction Use inputs X020 and later under normal conditions.
2) When using the inputs $X 000$ to $X 017^{* 1}$

The receiving speed is higher. Because the output transistor recovery time is long and the input sensitivity is high however, erroneous input pulses may be counted.
To prevent erroneous input pulses, connect pull-up resistors ( $3.3 \mathrm{k} \Omega / 0.5 \mathrm{~W}$ ) to transistor outputs used in MTR instruction.
For pull-up resistors, use the power supply shown in the table below.

	Power supply used for pull-up resistors transistor output
AC power type PLC	Service power supply
DC power type PLC	Power supply for driving PLC

The figure below shows an example of the $\mathrm{FX}_{3} \cup$ Series main unit (sink input/sink output).

*1. X000 to X007 in the FX3G/FX3Gc
3. $O N / O F F$ duration of input signals

Because 64 input points ( 8 rows $\times 8$ columns) are received in a cycle of 80 or 160 ms , the ON/OFF duration of each input signal should be greater than or equal to the value shown below:

When inputs X000 to
X017*2 are used


When inputs $\times 020^{* 3}$ or
later are used

*2. X000 to X007 in the FX3G/FX3Gc.

### 13.4 FNC 53 - HSCS / High-Speed Counter Set

## Outline



This instruction compares a value counted by a high-speed counter with a specified value, and immediately sets an external output ( Y ) if the two values are equivalent each other.
$\rightarrow$ For the counter interrupt using HSCS instruction, refer to Section 36.6.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
S1	Data to be compared with the current data value of a high-speed counter or word device   number.	32-bit binary
S2•	Device number of a high-speed counter [C235 to C255]	32-bit binary
D•	Bit device number to be set to ON when the compared two values are equivalent to each   other	Bit

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Constant		Real Number   E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline \text { " } \square \text { " } \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1								$\checkmark$	-2	$\triangle 3$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.													$\checkmark$						$\checkmark$					
D.		$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					-4

A1: "D $\square . b$ " is available only in $\mathrm{FX}_{3}$ and $\mathrm{FX}_{3} \cup \mathrm{C}$ PLCs. However, index modifiers ( V and Z ) are not available.
42: This function is supported only in $F X_{3 G} / \mathrm{FX}_{3} \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 34 \mathrm{C}$ PLCs.
43: This function is supported only in $F X_{3} \mathrm{H} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
44: When using the counter interrupt function in FX3U/FX3uc PLCs, specify an interrupt pointer.
$\rightarrow$ For counter interrupt using HSCS instruction, refer to Section 36.6.

## Explanation of function and operation

1. 32-bit operation (DHSCS)

When the current value of a high-speed counter (C235 to C255) specified in $\mathrm{S}_{2} \cdot$ becomes the comparison value [S1] $+1, S_{1}$ ] (for example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the bit device (D. is set to ON regardless of the operation cycle. This instruction is executed after the counting processing in the high-speed counter.


## Operation

When the current value of the high-speed counter C255 changes from " 99 " to "100" or from "101" to "100", Y010 is set to ON (output refresh).

$\stackrel{\text { M8000 }}{ }$	C255 K2, 147, 483,647					
RUN monitor	Comparison value		Compariso source	$\begin{gathered} \text { Output } \\ \text { destination } \end{gathered}$		Set to
	$\begin{aligned} & \text { FNC } 53 \\ & \text { DHSCS } \end{aligned}$	K100	C255	Y010	K100 = C255	$\rightarrow$ Y010

## Related instructions

The following instructions can be combined with high-speed counters:

Instruction	FNC No.	Instruction name
DHSCS	FNC 53	High-speed counter set
DHSCR	FNC 54	High-speed counter reset
DHSZ	FNC 55	High-speed counter zone compare
DHCMOV	FNC189	High-speed counter move
DHSCT	FNC280	High-speed counter compare with data table

## Cautions

1. Selection of the count comparison method
1) $F X_{3 U} / F X_{3} \cup c$ PLC

When the HSCS instruction is used in FX3U/FX3Uc PLCs, hardware counters (C235, C236, C237, C238, C239, C240, C244 (OP), C245 (OP), C246, C248 (OP), C251 and C253) are automatically switched to software counters, and the maximum frequency and total frequency of each counter are affected.
Refer to the counting operation described below, and select according to the contents of control whether to use HSCS instruction or general-purpose comparison instruction.
a) Case to select DHSCS instruction

- When the output should be given when the counting result becomes equivalent to the comparison value regardless of the scan time of the PLC
b) Cases to select a general-purpose comparison instruction
- When the frequency is beyond the counting performance of software counters (and below the counting performance of hardware counters)
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result
- When one instruction is executed in 33 or more positions at the same time


2) $F X_{3 S} / F X_{3 G} / F X_{3 G c} P L C s$

When the HSCS instruction is used in FX3S/FX3G/FX3GC PLCs, the total frequency of each counter is affected.
Refer to the counting operation described below, and select according to the contents of control whether to use the HSCS instruction or a general-purpose comparison instruction.
a) Case to select the HSCS instruction

- When the output should be given if the counting result becomes equivalent to the comparison value regardless of the scan time of the PLC
b) Cases to select a general-purpose comparison instruction
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result
- When one instruction is executed in 7 or more positions at the same time


2. Device specification range

Only high-speed counters (C235 to C255) can be specified as $\mathrm{S} \cdot$.
3. Only 32 -bit operation instructions are available.

Because instructions for high-speed counters are dedicated to 32 bits, make sure to input "DHSCS (FNC 53)".
4. Priority order in operation among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC 55) instructions for the same high-speed counter
$\rightarrow$ For details, refer to "6. Priority order in operations among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC $55)$ instructions for the same high-speed counter" in Subsection 13.4.1.
5. Reset operation by an external terminal
$\rightarrow$ For details, refer to " 5 . Reset operation by an external terminal" in Subsection 13.4.1.
6. For other cautions on using HSCS instruction, refer to the description later.
$\rightarrow$ For details, refer to the next page.

## Program example

With regard to the current value of a counter, different outputs $(Y)$ are arbitrary set to $O N$ by two values.
 counters.
This section explains common cautions for these instructions.

1. Limitation in the number of instances of each instruction in a program and number of instructions driven at the same time
1) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs

DHSCS, DHSCR and DHSZ instructions can be used as many times as necessary in the same way as general instructions. However, the number of simultaneously driven instructions is limited. The DHSCT instruction can only be used once in any program.

Instruction	Limitation in number of instructions driven at same time
DHSCS	32 instructions including DHSCT instruction
DHSCR	
DHSZ	Only 1 (This instruction can only be used once.)
DHSCT	

2) $\mathrm{FX} 3 \mathrm{~S} / \mathrm{FX} 3 \mathrm{~K} / \mathrm{FX} \mathrm{X}_{3 \mathrm{G}}$ PLCs

DHSCS, DHSCR and DHSZ instructions can be used as many times as necessary in the same way as general instructions. However, the number of simultaneously driven instructions is limited.

Instruction	Limitation in number of instructions driven at same time
DHSCS	6 instructions
DHSCR	
DHSZ	

## 2. Response frequency of high-speed counters

When the DHSZ or DHSCT instruction is used in FX3U/FX3UC PLCs, the maximum response frequency and total frequency of every software counter are limited.
When the DHSCS, DHSCR or DHSZ instruction is used in $F^{2} 3 / / F X_{3 G} / F X_{3} G C$ PLCs, the total frequency of high-speed counters is limited.
$\rightarrow$ For the total frequency in $\mathrm{FX}_{3} \mathrm{~S} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs, refer to Subsection 4.7.7.
$\rightarrow$ For the maximum response frequency and total frequency in FX3U/FX3uc PLCs, refer to Subsection 4.8.10.

## 3. Specification of output numbers (Y) (FX3G/FX3Gc/FX3u/FX3uc PLCs)

When using the same instruction for high-speed counter repeatedly or when driving two or more other instructions for high-speed counter at the same time, specify such output devices $(\mathrm{Y})$ whose high-order two digits are the same (in units of 8 devices).

1) When using devices of the same number (in units of 8 devices)

Example: When using Y000, specify Y000 to Y007. When using Y010, specify Y010 to Y017.
2) When using two or more instructions for high-speed counter and non-consecutive output ( Y ) numbers A program example is shown below:


When C255 reaches K100, the output Y000 is driven by interrupt. Y010 is driven when END processing is executed.
If interrupt drive is required, use an output number ranging from Y001 to Y007 whose high-order two digits are equivalent.

## 4. Caution on the counting operation when the current value is changed

An instruction for the high-speed counter gives the comparison result when a pulse is input to the input $(X)$ of the highspeed counter.
However, the comparison result is not given when the current value of the high-speed counter is changed in the following method:

1) Change method (examples)
a) Overwriting the contents of a word device used as the comparison value using DMOV instruction, etc.
b) Resetting the current value of a high-speed counter in a program
2) Operation

Even if the condition for setting the output to ON or OFF is given as the comparison result, the comparison result does not change when an instruction is simply driven.
5. Reset operation by an external terminal [M8025*1: HSC (external reset) mode]

For a high-speed counter equipped with an external reset terminal ( $R$ ) such as C241, an instruction is executed and the comparison result is output at the rising edge of the reset input signal.
In $F^{2} X_{3} / F X_{3 G} / \mathrm{FX}_{3} G C$ PLCs, high-speed counters operate in the HSC (external reset) mode regardless of the status of M8025.

1) Program

If an instruction for the high-speed counter is used while M8025 ${ }^{* 1}$ is driven, the instruction is executed again when the current value of the high-speed counter C241 is cleared by an external reset terminal. And the comparison result is output even if a counting input is not given.

*1. M8025 is cleared when the PLC mode is changed from RUN to STOP. It is not necessary to drive M8025 in FX3S/FX3G/FX3Gc PLCs.
2) Operation

When the external reset input X001 turns ON while the current value of C241 is "100", for example, the current value of C241 is reset to " 0 ". And Y000 is reset at this time even if a counting input is not given.
6. Priority order in operations among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC 55) instructions for the same high-speed counter

1) $F X_{3} U / F X_{3} \cup c$ PLCs

When the same comparison value is used for the same high-speed counter in the HSCS, HSCR and HSZ instructions, reset (self-reset) of the comparison target high-speed counter for the HSCR instruction is executed with the highest priority (as shown in the table below).
In this case, the comparison results do not change in HSCS, HSCR, and HSZ instructions whose comparison value is programmed to be the same as the comparison value for self-reset by HSCR instruction.
To change the comparison results, set the comparison value to "KO".
2) $\mathrm{FX} 3 \mathrm{~s} / \mathrm{FX} \mathrm{X}_{3} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs In FX3S/FX3G/FX3GC PLCs, the HSCS, HSCR and HSZ instructions are executed in the order of programming.


Program   sequence	Processing sequence		
	FX3U/FX3UC	FX3S/   FX3G/FX3GC/   FX2N/FX2NC	FX1N/FX1NC/   FX1S
	DHSCR (6)   (self-reset)	DHSCS (1)	DHSCS (1)
DHSCS (2)	DHSZ (4)	DHSCS (2)	DHSCS (2)
DHSCR (3)	DHSCS (1)	DHSCR (3)	DHSCR (3)
DHSZ (4)	DHSCS (2)	DHSZ (4)	(Not supported)
DHSCR (5)	DHSCR (3)	DHSCR (5)	DHSCR (5)
DHSCR (6)	DHSCR (5)	DHSCR (6)   (self-reset)	DHSCR (6)   (self-reset)

Operation of $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{KC} /$
FX1s/FX1N/FX1NC/FX2N/FX2NC PLCs [reference]

*3. Due to the response delay at the output, the output may not operate within the short time before the counter's present value is reset to " 0 ".

## 7. Timing at which the instruction is executed

The comparison instruction for high-speed counter is executed at the END instruction for the scan in which the comparison instruction is driven.
When the comparison value is changed, the changed comparison instruction also becomes effective at the END instruction for the scan in which the comparison instruction is driven.

## Operation of $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{uc}$ PLCs

Present value


Y000 to Y002 and Y006 do not change. * ${ }^{1}$

Y003	ON	ON
Y004	OFF	
Y005	OFF	$\leftarrow$

*1. To change the comparison results by the instructions (1) to (3) and (5), change the comparison value "K500" in the instructions (1) to (3) and (5) to "K0".
*2. To set Y005 to ON in the HSZ instruction (4), set a value smaller than the comparison value "K500". However, due to the response delay at the output, the output may not operate within the short time before the counter's present value is reset to " 0 ".

### 13.5 FNC 54 - HSCR / High-Speed Counter Reset

## Outline



This instruction compares the value counted by a high-speed counter with a specified value at each count, and immediately resets an external output $(\mathrm{Y})$ when both values become equivalent to each other.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Data to be compared with the current value of a high-speed counter or word device   number storing the data to be compared	32-bit binary
S2•	Device number of a high-speed counter [C235 to C255]	32-bit binary
D•	Bit device number to be reset (set to OFF) when both values become equivalent each   other.	Bit

## 3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { Uप\GI } \end{array}$	Index			Constant		Real Number E	Charac-   ter String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S		D. b	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-									$\checkmark$	-3	-4		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.														$\checkmark$						$\checkmark$					
(D.)		$\checkmark$	$\checkmark$			$\checkmark$		-1						-2						$\checkmark$					

©1: "D $\square . b$ " is available only in $F X_{3} U$ and $F X_{3} 4 c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
42: The same counter as S2• can be specified also. (Refer to the program example shown later.)
43: This function is supported only in FX3G/FX3GC/FX3U/FX3UC PLCs.
44: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 32-bit operation (DHSCR)

When the current value of a high-speed counter (C235 to C255) specified in S2• becomes the comparison value $[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$ (for example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the bit device (D. is reset (set to OFF) regardless of the operation cycle. In this instruction, the comparison processing is executed after the counting processing in the high-speed counter.

Command


## Operation

When the present value of the high-speed counter C255 changes (counts) from "99" to "100" or from "101" to "100", Y010 is reset (output refresh).


## Related instructions

The following instructions can be combined with high-speed counters:

Instruction	FNC No.	Instruction name
DHSCS	FNC 53	High-speed counter set
DHSCR	FNC 54	High-speed counter reset
DHSZ	FNC 55	High-speed counter zone compare
DHCMOV	FNC189	High-speed counter move
DHSCT	FNC280	High-speed counter compare with data table

## Cautions

1. Selection of the count comparison method
1) $\mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup c$ PLCs

When the HSCR instruction is used in FX3U/FX3UC PLCs, hardware counters (C235, C236, C237, C238, C239, C240, C244 (OP), C245 (OP), C246, C248 (OP), C251 and C253) are automatically switched to software counters, and the maximum frequency and total frequency of each counter are affected.
Refer to the counting operation described below, and select according to the contents of control whether to use HSCR instruction or general-purpose comparison instruction.
a) Case to select DHSCR instruction

- When the output should be given when the counting result becomes equivalent to the comparison value regardless of the scan time of the PLC
b) Cases to select a general-purpose comparison instruction
- When the frequency is beyond the counting performance of software counters (and below the counting performance of hardware counters)
- When counting is important, but the effect of the scan time can be ignored in operations depending on the counting result
- When one instruction is executed in 33 or more positions at the same time


2) $\mathrm{FX}_{3 \mathrm{~s}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs

When the HSCR instruction is used in $F^{2} 3 S / F X_{3 G} / F X_{3} G C$ PLCs, the total frequency of each counter is affected. Refer to the counting operation described below, and select according to the contents of control whether to use the HSCR instruction or a general-purpose comparison instruction.
a) Case to select the HSCR instruction

- When the output should be given if the counting result becomes equivalent to the comparison value regardless of the scan time of the PLC
b) Cases to select a general-purpose comparison instruction
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result
- When one instruction is executed in 7 or more positions at the same time


2. Only 32-bit operation instructions are available.

Because instructions for high-speed counters are dedicated to 32 bits, make sure to input "DHSCR (FNC 54)".
3. Priority order in operation among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC 55) instructions for the same high-speed counter
$\rightarrow$ For details, refer to "6. Priority order in operations among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC 55) instructions for the same high-speed counter" in Subsection 13.4.1.
4. Reset operation by an external terminal
$\rightarrow$ For details, refer to "5. Reset operation by an external terminal [M8025*1: HSC (external reset) mode]" in Subsection 13.4.1.

## 5. Other cautions on using HSCR instruction

$\rightarrow$ For details, refer Subsection 13.4.1.

## Program example

## 1. Example of self-reset circuit

When the current value of C255 becomes "400", C255 is immediately reset. Its current value becomes " 0 ", and the output contact is set to OFF.


### 13.6 FNC 55 - HSZ / High-Speed Counter Zone Compare

## Outline

 comparison result to three bit devices (refresh).
$\rightarrow$ For the table high-speed comparison mode, refer to Subsection 13.6.2. $\rightarrow$ For the frequency control mode, refer to Subsection 13.6.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Data to be compared with the current value of a high-speed counter or word device   number storing data to be compared (comparison value 1)	32-bit binary
S2•	Data to be compared with the current value of a high-speed counter or word device   number storing data to be compared (comparison value 2)	32 -bit binary
S•	Device number of a high-speed counter [C235 to C255]	32 -bit binary
D•	Head bit device number to which the comparison result is output based on upper and   lower comparison values	Bit

## 3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer
	X	Y	M	T	C		S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1•									$\checkmark$	-2	$\triangle 3$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.									$\checkmark$	-2	-3		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S.														$\checkmark$						$\checkmark$					
(D.)		$\checkmark$	$\checkmark$				$\checkmark$	A1												$\checkmark$					

41: "D $\square . b$ " is available only in $F X_{3} U$ and $F X_{3} \cup C$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
42: This function is supported only in FX3G/FX3GC/FX3U/FX3UC PLCs.
43: This function is supported only in $\mathrm{FX}_{3} \mathrm{H} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 32-bit operation (DHSZ)

The current value of a high-speed counter ( C 235 to C 255 ) specified in $\mathrm{S} \cdot$ is compared with two comparison points (comparison value 1 and comparison value 2). Based on the comparison result, "smaller than the lower comparison value", "inside the comparison zone" or "larger than the upper comparison value", one among $D \cdot(D \cdot+1$ and D. +2 is set to ON regardless of the operation cycle.

In this instruction, the comparison processing is executed after the count processing in the high-speed counter.
Command


## Comparison points

Make sure that the comparison value 1 and the comparison value 2 have the following relationship:
$\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right] \leq[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot \cdot]$

Comparison point	Contents (32 bits)
Comparison value 1	$\mathrm{S} 1^{\bullet}+1, \mathrm{~S} 1 \cdot$
Comparison value 2	$\mathrm{~S} 2 \cdot+1, \mathrm{~S} 2 \cdot$

## Operation

When the current value of the high-speed counter C251 changes (counts) as shown below, the comparison result is output to one of the outputs Y000, Y001 or Y002.


$$
\begin{aligned}
\mathrm{K} 1000>\mathrm{C} 251 & \rightarrow \mathrm{Y} 000 \\
\mathrm{~K} 1000 \leq \mathrm{C} 251 \leq \mathrm{K} 2000 & \rightarrow \mathrm{Y} 001 \\
\mathrm{C} 251>\mathrm{K} 2000 & \rightarrow \mathrm{Y} 002
\end{aligned}
$$

Comparison pattern	Current value of C251	Change of output contact (Y)		
		Y000	Y001	Y002
S1- > ${ }^{\text {S }}$	1000 > 5	ON	OFF	OFF
	$999 \rightarrow 1000$	ON $\rightarrow$ OFF	OFF $\rightarrow$ ON	OFF
	$999 \leftarrow 1000$	OFF $\rightarrow$ ON	ON $\rightarrow$ OFF	OFF
S1• $\leq \mathrm{S}^{\cdot} \leq \mathrm{S} 2 \cdot^{-}$	$999 \rightarrow 1000$	ON $\rightarrow$ OFF	OFF $\rightarrow$ ON	OFF
	$999 \leftarrow 1000$	OFF $\rightarrow$ ON	ON $\rightarrow$ OFF	OFF
	$1000 \leq$ S ${ }^{\text {c }} 2000$	OFF	ON	OFF
	$2000 \rightarrow 2001$	OFF	ON $\rightarrow$ OFF	OFF $\rightarrow$ ON
	$2000 \leftarrow 2001$	OFF	$\mathrm{OFF} \rightarrow \mathrm{ON}$	ON $\rightarrow$ OFF
S. $<$ S2.	$2000 \rightarrow 2001$	OFF	ON $\rightarrow$ OFF	OFF $\rightarrow$ ON
	$2000 \leftarrow 2001$	OFF	OFF $\rightarrow$ ON	ON $\rightarrow$ OFF
	(S.) $>2000$	OFF	OFF	ON

## Related instructions

The following instructions can be combined with high-speed counters:

Instruction	FNC No.	Instruction name
DHSCS	FNC 53	High-speed counter set
DHSCR	FNC 54	High-speed counter reset
DHSZ	FNC 55	High-speed counter zone compare
DHCMOV	FNC189	High-speed counter move
DHSCT	FNC280	High-speed counter compare with data table

## Cautions

## 1. Selection of the count comparison method

1) $\mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs

When the HSZ instruction is used in FX3U/FX3UC PLCs, hardware counters (C235, C236, C237, C238, C239, C240, C244 (OP), C245 (OP), C246, C248 (OP), C251 and C253) are automatically switched to software counters, and the maximum frequency and total frequency of each counter are affected.
Refer to the counting operation described below, and select according to the contents of control whether to use the DHSZ instruction or general-purpose comparison instruction.
a) Case to select the DHSZ instruction

- When the output should be given when the counting result becomes equivalent to the comparison value regardless of the scan time of the PLC
b) Cases to select a general-purpose comparison instruction
- When the frequency is beyond the counting performance of software counters (and below the counting performance of hardware counters)
- When counting is important, but the effect of the scan time can be ignored in operations depending on the counting result
- When one instruction is executed in 33 or more positions at the same time


2) $\mathrm{FX} 3 \mathrm{~S} / \mathrm{FX} 3 \mathrm{~K} / \mathrm{FX} 3 \mathrm{GC}$ PLCs

When the HSZ instruction is used in FX3S/FX3G/FX3GC PLCs, the total frequency of each counter is affected. Refer to the counting operation described below, and select according to the contents of control whether to use the HSZ instruction or a general-purpose comparison instruction.
a) Case to select the HSZ instruction

- When the output should be given if the counting result becomes equivalent to the comparison value regardless of the scan time of the PLC
b) Cases to select a general-purpose comparison instruction
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result
- When one instruction is executed in 7 or more positions at the same time


2. Device specification range

Only high-speed counters (C235 to C255) can be specified as S. .
3. Only 32-bit operation instructions are available.

Because instructions for high-speed counters are dedicated to 32 bits, make sure to input "DHSZ (FNC 55)".
4. Caution on values set in the comparison value $1 \mathrm{~S}_{1-}$ and comparison value 2 (S2•)

Make sure that $\mathrm{S}_{1 \cdot}$ is smaller than or equivalent to $\mathrm{S}_{2 \cdot} \cdot$.
5. Relationship between the comparison timing and the result output

1) The DHSZ instruction executes comparison and outputs the result only when a counting pulse is input to a highspeed counter.
(When $\mathrm{S} 1 \cdot^{-}$is "1000" and $\mathrm{S}_{2 \cdot}$ is "1999", the output $\mathrm{D} \cdot$ is set to ON as soon as the current value of C235 changes from "999" to "1000" or from "1999" to "2000".)
2) Because the comparison result cannot be obtained when restoring the power or when the PLC mode switches from STOP to RUN, the result is not output even if the comparison condition is provided.
$\rightarrow$ For details, refer to "13.6.1. Program in which comparison result is set to ON when power is turned ON
[ZCP (FNC 11) instruction]".
6. Priority order in operation among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC 55) instructions for the same high-speed counter
$\rightarrow$ For details, refer to "6. Priority order in operations among HSCS (FNC 53), HSCR (FNC 54), and HSZ (FNC 55) instructions for the same high-speed counter" in Subsection 13.4.1.

## 7. Reset operation by an external terminal

$\rightarrow$ For details, refer to " 5 . Reset operation by an external terminal [M8025*1: HSC (external reset) mode]" in Subsection 13.4.1.
8. Number of occupied devices

1) The comparison value occupies two devices from $\mathrm{S}_{1 \cdot}$ or $\mathrm{S}_{2 \cdot}$ respectively.
2) The output occupies three devices from (D.
9. When an output $(Y)$ is specified in (D. (FX3G/FX3GC/FX3U/FX3UC)

When $\mathrm{Y} \square \square 6$ or $\mathrm{Y} \square \square 7$ is specified as an output ( Y ), the refresh timing of the three outputs ( Y ) occupied by the DHSZ instruction is different for each output.
To make the refresh timing of three points simultaneous, specify $\mathrm{Y} \square \square 0$ to $\mathrm{Y} \square \square 5$.
Example: When Y006 is specified as an output ( Y ), the refresh timing is different between Y006, Y007 and Y010.

### 13.6.1 Program in which comparison result is set to $O N$ when power is turned ON [ZCP (FNC 11) instruction]

DHSZ instruction outputs the comparison result only when a counting pulse is input. Even if the current value of C235 is " 0 ", Y010 remains OFF at the time of startup.
For initializing Y010, compare the current value of C235 with K1000 and K1200 and drive Y010 by DZCPP instruction (for general zone comparison) as pulse operation only at the time of startup. Refer to the program example shown below.

## Explanation of operation

The outputs Y010 to Y012 are as shown below:

$\mathrm{Y} 010=\mathrm{ON}$	$\mathrm{Y} 011=\mathrm{ON}$	$\mathrm{Y} 012=\mathrm{ON}$	
0	1000   Current value of C 235		
0			

## Program example



## Timing chart

In the part [1] in the timing chart, Y010 remains OFF if the current value of a high-speed counter (C235 in the example below) is "0" when restoring the power.

1) For initializing Y010, the current value of C235 is compared with K1000 and K1200, and Y010 is driven using the DZCPP instruction (for general zone comparison) as pulse operation only upon startup.
2) The comparison result in Y 010 is latched until an input pulse is input and the comparison output is driven by the DHSZ instruction.
3) According to the current value of the counter, the DHSZ instruction drives the output (A), (B) or (C).


### 13.6.2 Table high-speed comparison mode (M8130)

This section explains the table high-speed comparison mode (high-speed pattern output) of the DHSZ instruction. When two or more outputs should be activated at one time, use the HSCT instruction which can change up to 16 outputs.

1. Set data

Operand Type	Description	Data Type
S1•	Head word device number storing the data table (only data register D)	32-bit binary
S2•	Number of lines in the table (only K or H) ... K1 to K128 or H1 to H80	32-bit binary
S•	Device number of a high-speed counter [C235 to C255]	32-bit binary
D•	M8130 (special auxiliary relay for declaring the table high-speed comparison mode)	Bit

## Explanation of function and operation

1. 32-bit operation (DHSZ)

When the special auxiliary relay M8130 for declaring the table high-speed comparison mode is specified as $D \cdot$ in the DHSZ instruction, the special function shown below is provided.


Table high-speed comparison mode

## Comparison table

Comparison data (32 bits)	Output (Y) number	SET/RST	Table counter (D8130)
S1- ${ }^{-1, \mathrm{~S}^{-} \text {- }{ }^{\text {a }} \text { ( }}$	S1- +2	S1- +3	$\stackrel{0}{\downarrow}$
(S1- $+5, \mathrm{~S} 1 \cdot^{-}+4$	S1- +6	S1- +7	1 $\downarrow$
(S1- $+9,(\mathrm{~S} 1 \cdot+8$	$(\mathrm{S} 1 \cdot+10$	S1- +11	$\stackrel{2}{\downarrow}$
:	$\vdots$	$\vdots$	$\vdots$
S1• + [ $\mathrm{S} 2 \cdot^{+4-3], \mathrm{S} 1 \cdot}+[\mathrm{S} 2 \cdot \times 4-4]$	S1• $+[\mathrm{S} 2 \cdot \times 4-2]$	$\mathrm{S} 1 \cdot+[\mathrm{S} 2 \cdot \times 4-1]$	

1) Specify the head device number for the comparison table as $\mathrm{S}_{1}{ }^{\circ}$.

Because one line in the comparison table uses four devices, $\mathrm{S}_{2} \cdot \times 4$ devices are occupied from $\mathrm{S}_{1 \cdot}$.
2) Specify the number of lines in the comparison table as S2. .

The created table starts from the head register $\mathrm{S}_{1 \cdot}$, and has the number of lines specified in $\mathrm{S}_{2 \cdot}$.
3) Comparison data

Make sure that the comparison data is 32 bits.
4) Output (Y) number

Specify each digit of the $(\mathrm{Y})$ number in hexadecimal form.
Example: When specifying Y010, specify "H10".
When specifying Y020, specify "H2O".
5) Specification of set and reset

These set and reset are directly controlled as interrupt.

	Contents of setting
Set (ON)	$\mathrm{K} 1 / \mathrm{H} 1$
Reset (OFF)	$\mathrm{K} 0 / \mathrm{H} 0$

## 2. Operation



Comparison table

Comparison   data	Output (Y)   number	SET/RST	Table counter
D201,D200   K123	D 202   H10	D 203   K1	(   $\downarrow$
D205,D204   K234	D 206   H10	D 207   K0	1   $\downarrow$
209,D208   K345	D 210   H11	D 211   K1	2   $\downarrow$
D213,D212   K456	D 214   H11	D 215   K0	3   $\downarrow$
D217,D216   K567	D 218   H11	D219   K1	4   $\downarrow$   Repeated from   "0".

1) When this instruction is executed, the top table in the data table is set as the comparison target data.
2) When the current value of the high-speed counter C251 is equivalent to the comparison target data table, the output ( Y ) number specified in the table is set or reset.
This output processing is directly executed regardless of completion of output refresh by END instruction.
3) " 1 " is added to the current value of the table counter D8130.
4) The comparison target data table is transferred to the next table.
5) The steps 2) and 3) are repeated until the current value of the table counter D8130 becomes "4". When the current value becomes " 4 ", the program execution returns to the step 1 ), and the table counter D8130 is reset to " 0 ".
At this time, the complete flag M8131 turns ON.
6) When the command contact is set to OFF, execution of the instruction is stopped and the table counter D8130 is reset to "0".

## Cautions

1. Limitation in the number of DHSZ instructions

This instruction can be programmed only once in a program.
With regard to the DHSCS, DHSCR, DHSZ and DHSCT instructions used for other purposes, up to 32 instructions including the DHSZ instruction can be driven at one time.
2. When the command input is set to OFF in the middle of execution

Execution of the instruction is aborted, and the table counter D8130 is reset to K0. However, outputs which have been set or reset remain in the current status.
3. Output start timing

After the DHSZ instruction is first executed, creation of the table is completed by END instruction. After that, the DHSZ instruction becomes valid.
Accordingly, the output is activated from the second scan.

## 4. Current value of a high-speed counter

Make sure to execute the DHSZ instruction from a point where the current value of the high-speed counter (regarded as the operation target) is smaller than the value in the 1 st line in the comparison table.


### 13.6.3 Frequency control mode (HSZ and PLSY instructions) (M8132)

F×3UC
Ver. $1.00 \mathrm{~m} \Rightarrow$
in the DHSZ  When the special auxiliary relay M8132 for declaring the frequency control mode is specifi
instruction, the special function shown below is provided if DPLSY instruction is combined.
At this time, only a data register D can be specified as $\mathrm{S} 1^{\bullet}$, and a constant K or H can be specified as $\mathrm{S} 2 \cdot$. The available range is limited to " $1 \leq \mathrm{K}, \mathrm{H} \leq 128$ ".
A high-speed counter C 235 to C 255 can be specified as $\mathrm{S}^{\cdot}$.
This function is different from the zone comparison described above.
PLSY instruction is as shown on the next page, and only the pulse output can be changed by users.

## 1. Control example

Example of table configuration and data setting

Comparison data	Frequency	Table counter D8131
D 301,D 300	D 302, D 303	0
K 20	K300	$\downarrow$
D 305,D 304	D 306, D 307	1
K600	K500	$\downarrow$
D 309,D 308	D 310, D 311	2
K700	K200	$\downarrow$
D 313,D 312	D 314, D 315	3
K800	K100	$\downarrow$
D 317,D 316	D 318, D 319	4
K 0 K 0	$\downarrow$	




## Output pulse characteristics



1) Write prescribed data in advance to data registers constructing the table as shown in this program example.
2) The output frequency of the PLSY instruction remains in the value (D303, D302) until the current value of a highspeed counter specified in S. becomes equivalent to (D301, D300). (D302 specifies low-order 16 bits. D303 specifies high-order 16 bits, but is always " 0 ".)
3) The operation in the 2nd line is started after that, and then the operation in each line is executed in turn.
4) When the operation in the last line is completed, the complete flag M8133 turns ON. The program execution returns to the 1st line, and the operation is repeated.
5) For stopping the operation in the last line, set the frequency in the last table to KO.
6) When the command input is set to OFF, the pulse output turns OFF and the table counter D8131 is reset.
7) After the DHSZ instruction is first executed, creation of the table is completed at the END instruction. The DHSZ instruction becomes valid after that.
8) Accordingly, the contact of PLS M10 is used so that the PLSY instruction is executed from the second scan after the command input has been set to ON.

Data can be written to the table in a program as shown in this example or directly using keys in peripheral equipment.

1) M8132

This is the special auxiliary relay for declaring the frequency control mode
2) D 8132

In the frequency control mode, the frequency set in the table is received by D8132 sequentially according to the table counter count D8131.
3) D8134 (low-order) and D8135 (high-order) In the frequency control mode, the comparison data in the table is received sequentially according to the table counter count.

## Cautions

1) The DHSZ instruction can only be used once.
2) With regard to the DHSCS (FNC 53), DHSCR (FNC 54), DHSZ (FNC 55) and DHSCT (FNC280) instructions used for other purposes, up to 32 instructions including the DHSZ instruction can be driven at one time.
3) Because the table is created when the END instruction is executed, it is necessary to delay execution of the PLSY (FNC 57) instruction until creation of the table is completed.
4) Do not change the data table while the DHSZ instruction is driven.
5) In the frequency control mode, simultaneous output to Y 000 to Y 001 is not permitted.

### 13.7 FNC 56 - SPD / Speed Detection

## Outline



FX3UC
Ver. 1.00 m

Ver.2.20 $\quad \rightarrow$
This instruction counts the input pulse for a specified period of time as interrupt input. The function of this instruction varies depending on the version.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Device number of pulse input (X)	Bit
S2•	Time data (ms) or word device number storing the data	16- or 32-bit binary
D•	Head word device number storing the pulse density data	$16-$ or 32-bit binary

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-	$\Delta 1$																		$\checkmark$					
S2•								$\checkmark$	-2	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	-2		$\checkmark$	$\checkmark$	$\checkmark$					

A1: Specify X000 to X007 in FX3G/FX3Gc/FX3U/FX3Uc PLCs. Specify X000 to X005 in FX3s PLC.
A2: This function is supported only in FX3G/FX3Gc/FX3U/FX3uc PLCs.
43: This function is supported only in $F X_{3} u / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (SPD)

The input pulse $\mathrm{S}_{1 \cdot} \cdot$ is counted only for $\mathrm{S}_{2} \cdot \times 1 \mathrm{~ms}$. The measured value is stored in $\mathrm{D} \cdot$, the present value is stored in (D. +1, and the remaining time is stored in $D \cdot+2(\mathrm{~ms})$.
By repeating this operation, the measured value $D \cdot$ will store the pulse density (which is proportional to the rotation speed).

## Command

input	$\begin{gathered} \text { FNC } 56 \\ \text { SPD } \end{gathered}$	S1.	S2.	(D.)

1) Timing chart

D. +1 counts "OFF $\rightarrow$ ON" operation of S1-.
S2. ms later, the counting result is stored to (D.). Accompanied by this operation, $D \cdot+1$ is reset, and then counting of the "OFF $\rightarrow$ ON" operation of $\mathrm{S}_{1-}$ is started again.

2) The measured value $D^{\cdot}$ is in proportion to the number of rotations as shown below:


## 2. 32-bit operation (DSPD)

## FX3S

The input pulse $\left(\mathrm{S}_{1} \cdot{ }^{\circ}\right.$ is counted only for $\left[\mathrm{S} \cdot \cdot+1, \mathrm{~S}_{2} \cdot\right] \times 1 \mathrm{~ms}$. The measured value is stored in $[\mathrm{D} \cdot \mathrm{D}+1, \mathrm{D} \cdot]$ ], the present value is stored in [ $\left.\mathrm{D}^{\cdot} \cdot+3, \mathrm{D}^{\cdot}+2\right]$, and the remaining time is stored in [ $\left.\mathrm{D}^{\cdot} \cdot+5, \mathrm{D}^{-}+4\right]$ (ms). By repeating this operation, the measured value $\left[D \cdot+1, D^{\cdot}\right]$ will store the pulse density (which is proportional to the rotation speed).
 of $\mathrm{S} 1 \cdot$. $\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2} \cdot\right] \mathrm{ms}$ later, the counting result is stored to [ (D) +1, (D)].
Accompanied by this operation, [ © $-3,(D \cdot+2]$ is reset, and then counting of the "OFF $\rightarrow \mathrm{ON}$ " operation of S4- is started again.
[ (D) $+5,(\mathbb{D}+4$ ] is used to measure the remaining time.
(S2.)
Timing chart


The command contact is set to ON .

[ (D. +1, © ] Measured value

[ $\left.\mathrm{S}_{2 \cdot} \cdot+1, \mathrm{~S}_{2 \cdot}\right] \mathrm{ms}\left[\mathrm{S}_{2 \cdot}+1, \mathrm{~S}_{2 \cdot}\right] \mathrm{ms}$ Counting time Counting time

$$
[(0)+5,(0)+4]
$$

Remaining time (ms)
2) The measured value $\left[D \cdot+1, D^{\circ}\right]$ is in proportion to the number of rotations as shown below:


Proximity switch
"n" pulses/rotation


## Cautions

1. Input specifications of the input $\mathrm{S}_{1} \cdot$

- An input device X000 to X007 specified as $\mathrm{S} 1 \cdot^{-}$cannot overlap the following functions or instructions:
- High-speed counter
- Input interrupt
- Pulse catch
- Pulse width/Pulse period
- DSZR instruction
- DVIT instruction
- ZRN instruction
- For one input, this instruction can only be used once.
- The maximum input frequency of turning the inputs X000 to X007 ON and OFF is shown below:
- FX3s PLC

Used input number	Maximum input frequency
$\mathrm{X} 000, \mathrm{X} 001$	60 kHz
$\mathrm{X} 002, \mathrm{X} 003, \mathrm{X} 004, \mathrm{X} 005$	10 kHz

- FX3G/FX3GC PLCs

Used input number	Maximum input frequency
$\mathrm{X} 000, \mathrm{X} 001, \mathrm{X} 003, \mathrm{X} 004$	60 kHz
$\mathrm{X} 002, \mathrm{X} 005, \mathrm{X} 006, \mathrm{X} 007$	10 kHz

- FX3u/FX3uc PLCs

Used input number	Maximum input frequency		
	FX3UC PLC	FX3U PLC	
		Main unit	FX3U-4HSX-ADP
X000 to X005	$100 \mathrm{kHz}{ }^{* 1}$	$100 \mathrm{kHz}{ }^{* 1}$	200 kHz
$X 006, \mathrm{X} 007$	10 kHz	10 kHz	

*1. When receiving pulses within the response frequency range of 50 k to 100 kHz , perform the following actions:

- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of $1.5 \mathrm{k} \Omega$ ( 1 W or more) to the input terminal, and make sure that the load current in the open collector transistor output of the external equipment is 20 mA or more.

2. Occupied devices
1) When using the 16 -bit operation

Three devices are occupied from a device specified in $D^{*}$. .
2) When using the 32-bit operation

Six devices are occupied from a device specified in (D. *2.
*2. The value is updated by interrupt processing from the CPU, not every scan time (operation cycle) of the PLC.
3. When the value of the word device $\mathrm{S}_{2} \cdot \cdot$ is changed while the SPD instruction is being executed. When the value of the word device is changed while the SPD instruction is being executed, the operation varies depending on the PLC model.

- FX3U/FX3uc PLCs The changed value of the word device is reflected on the operation at every scan time (operation cycle).
- FX3S/FX3G/FX3GC PLCs

The changed value of the word device is not reflected on the operation at every scan time (operation cycle), and the PLC operates using the value specified when execution of the SPD instruction started.
The PLC operates using the changed value after the command input of the SPD instruction is turned OFF once and turned ON again.

## Function change depending on the version

The function of the FNC 56 instruction varies depending on the PLC version shown in the table below.

Applicable version					Item	Outline of function
FX3S	FX3G	FX3GC	FX3U	FX3UC		
Ver. 1.00   or later	Ver. 1.00   or later	Ver. 1.40   or later	Ver. 2.20   or later	Ver. 2.20   or later	Addition of 32-bit instruction	32-bit operations (DSPD) are enabled.

### 13.8 FNC 57 - PLSY / Pulse Y Output

## Outline

This instruction generates a pulse signal.

$\rightarrow$ For the frequency control mode, refer to Subsection 13.6.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Output pulse frequency	Number of output pulses
S2•	Device number (Y) from which pulses are output	16- or 32-bit binary
D•	16- or 32-bit binary	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIGロ	Index			Constant		Real Number   E	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1.								$\checkmark$	-2	$\triangle 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2•								$\checkmark$	-2	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
D•		A1																	$\checkmark$					

41: Specify a transistor output on the main unit or Y000 or Y001 on a special high-speed output adapter ${ }^{* 1}$.


- 3: This function is supported only in FX3u/FX3uc PLCs.
*1. High-speed output special adapters can be connected only to FX3U PLC.


## Explanation of function and operation

1. 16-bit operation (PLSY)

A pulse train of frequency $\widehat{\mathrm{S}_{1} \cdot}$ is output in the quantity $\mathrm{S}_{2 \cdot}$ from the output $(\mathrm{Y}) \mathrm{D}^{\circ}$
Command


- Specify the frequency in $\mathrm{S}_{1} \cdot$. Allowable setting range: 1 to 32767 (Hz)
- Specify the generated pulse quantity in S2•. Allowable setting range: 1 to 32767 (PLS)
- Specify the output (Y) number from which pulses are to be output in $\mathrm{D}^{-}$. Allowable setting range: Y000, Y001


## 2. 32-bit operation (DPLSY)

A pulse train at the frequency $\left[S \mathrm{~S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]$ is output by the quantity $\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot \cdot\right]$ from the output $(\mathrm{Y}) \mathrm{D} \cdot$.
Command

| input |
| :---: | :---: | :---: | :---: | | FNC 57 |
| :---: | :---: | :---: |
| DPLSY | S1-

- Specify the frequency in $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]$.
- When special high-speed output adapters are used Allowable setting range: 1 to $200,000(\mathrm{~Hz})$
- When the $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 34 \mathrm{C}$ PLCs main unit is used Allowable setting range: 1 to $100,000(\mathrm{~Hz})$
- Specify the generated pulse quantity in $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot \cdot]$.

Allowable setting range: 1 to $2,147,483,647$ (PLS)

- Specify the output (Y) number from which pulses are output in $\mathrm{D}^{-}$.

Allowable setting range: Y000, Y001
$\rightarrow$ For the method to output pulses without any limitation, refer to the program example later.

## Related devices

## 1. Instruction execution complete flag

The instruction execution complete flag M8029 used for PLSY instruction can be used also for other instructions. When using other instructions, setting the M8029 flag to ON or OFF, or using two or more PLSY instructions, make sure to use each M8029 flag just after an instruction to be monitored.
$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

| Device | Name | Description |
| :---: | :---: | :---: | :---: |
| M8029 | Instruction execution com- <br> plete | ON: Generation of specified number of pulses is completed. <br> OFF: Generation of pulses is paused before the specified number of pulses is reached or the <br> continuous pulse generation operation is stopped. |

Command


Command

2. Monitoring the current number of generated pulses

The number of pulses output from Y000 or Y001 is stored in the following special data registers:

Device		Description	Contents of data
High   order	Low   order	$\|$Accumulated number of pulses   D8141 D8140	Accumulat number of pulses output from Y000 by PLSY and PLSR   instructions
D8143	D8142	Accumulated number of pulses   output from Y001	Accumulated number of pulses output from Y001 by PLSY and PLSR   instructions
D8137	D8136	Total accumulated number of   pulses output from Y000 and Y001	Total accumulated number of pulses output from Y000 and Y001 by PLSY and   PLSR instructions

The contents of each data register can be cleared using the following program:
Command

input	FNC 12   DMOV	K0	Low-order device shown in   table above

## 3. How to stop the pulse output

- When the command input is set to OFF, the pulse generation is immediately stopped. When the command input is set to ON again, pulse generation operation restarts from the beginning.
- When the special auxiliary relays $(M)$ shown below are set to $O N$, the pulse output is stopped.

Device		Description
FX3S/FX3G/FX3GC	FX3U/FX3UC	
M8145, M8349	M8349	Immediately stops pulse output from Y000.
M8146, M8359	M8359	Immediately stops pulse output from Y001.

To restart pulse output, set the device (FX3S/FX3G/FX3GC : M8145, M8146, M8349, M8359
FX3U/FX3UC : M8349, M8359) corresponding to the output signal to OFF, and then drive the pulse output instruction again.

## Cautions

1. When a word device is specified as $\mathrm{S}_{1} \cdot$ or $\mathrm{S}_{2} \cdot$

When the value of the word device is changed while the instruction is executed, the following operation results:

- When the data in $\mathrm{S}_{1 \cdot}$ - is changed, the output frequency changes accordingly.
- When the data in $\mathrm{S} 2 \cdot$ is changed, the change (new value) becomes valid the next time the instruction is driven.

2. Frequency $\mathrm{S}_{1} \cdot$

When using transistor outputs in the main unit, set the output frequency S1• to " $100,000 \mathrm{~Hz}$ " or less. If the load is operated using pulses at a frequency higher than $100,000 \mathrm{~Hz}$, the PLC may be damaged.
Do not set the output frequency to "0".

## 3. Pulse output

- Only a transistor output on the main unit or Y000 or Y001 on a special high-speed output adapter ${ }^{* 1}$ can be specified in D.
When using the PLSY (FNC 57) instruction with a relay output type or triac output type FX3U PLC, a special highspeed output adapter is required.
*1. High-speed output special adapters can be connected only to FX3U PLC.
- The duty cycle of the pulse ON/OFF time is $50 \%$ inside the PLC. However, $50 \%$ may not be output depending on the frequency due to the effect of the output circuit.
- The pulse output is controlled by the dedicated hardware not affected by the sequence program (operation cycle).
- If the command input is set to OFF during continuous pulse output, the output from $\mathrm{D}^{-}$turns OFF.

4. Handling of pulse output terminals in $F X_{3} / / F X_{3 G} / F X_{3 G C} / F X_{3} U / F X_{3} U C$ series main units

The outputs Y000 and Y001 are the high-speed response type.
When using a pulse output instruction or positioning instruction, adjust the load current of the open collector transistor output to about 10 to 100 mA ( 5 to 24 V DC).

When the load is smaller, connect a dummy resistor in parallel to the outside of a used output terminal (Y000 or Y001) as shown in the circuit diagram below so that the specified current shown above flows in the output transistor.


## 5. Cautions on using special high-speed output adapters

1) Outputs of special high-speed output adapters work as differential line drivers.
2) Set the pulse output type setting switch in a special high-speed output adapter to the "pulse chain + direction" (PLS•DIR) side.
If the switch is set to the "forward rotation pulse chain reverse rotation pulse chain" (FP•RP) side, normal operations are disabled. The pulse output destination changes depending on the PLC output status as shown in the table below.

Pulse output   destination	Output affecting   operation	Operation
$D \cdot$ Y000	Y004	While Y004 is ON, pulses are output from Y000 in the high-speed output adapter.   While Y004 is OFF, pulses are output from Y004 in the high-speed output adapter.
$D \cdot$ Y001	Y005	While Y005 is ON, pulses are output from Y001 in the high-speed output adapter.   While Y005 is OFF, pulses are output from Y005 in the high-speed output adapter.

3) Set the pulse output type setting switch while the PLC is stopped or while the power is OFF.

Do not manipulate the pulse output form setting switch while pulses are being output.
4) When special high-speed output adapters are connected, the same output numbers in the main unit are assigned as shown in the table below.
Only wire the appropriate output terminals.
Outputs in special high-speed output adapters and the main unit operate as shown below.

Assignment of output numbers in special high-speed output adapters

Status of output form setting switch	Signal name	Setting name in each positioning instruction	Output number			
			1st unit		2nd unit	
			1st axis	2nd axis	3rd axis	4th axis
"FP•RP" side	Forward rotation pulse chain (FP)	Pulse output destination	Y000	Y001	Y002	Y003
	Reverse rotation pulse chain (RP)	Rotation direction signal	Y004	Y005	Y006	Y007
"PLS•DIR" side	Pulse chain	Pulse output destination	Y000	Y001	Y002	Y003
	Direction	Rotation direction signal	Y004	Y005	Y006	Y007

## Output operation

	Output operation
Relay output type/triac output type main   unit	While instruction is activated, relevant output is ON. (LED is also ON.)   Use a special high-speed adapter.
Special high-speed output adapter	Operated. (LED is also operated.)   Set the output frequency to "200kHz" or less.
Transistor output type main unit	Operated. (LED is ON.)   Set the output frequency to "100kHz" or less.

## 6. Others

1) Types of pulse output, positioning and other relevant instructions and their target output numbers

Classification	Instruction	Instruction name	Target output numbers
Pulse output	PLSY (FNC 57)	Pulse Y output	Y000,Y001
	PLSR (FNC 59)	Acceleration/deceleration setup	Y000,Y001
Positioning	DSZR (FNC150)	DOG search zero return	Y000, Y001, Y002*1 ${ }^{\text {, Y003*2 }}$
	DVIT (FNC151)*3	Interrupt positioning	Y000,Y001,Y002, Y003*2
	ZRN (FNC156)	Zero return	Y000, Y001, Y002*1 ${ }^{\text {, }}$ Y003*2 ${ }^{\text {2 }}$
	PLSV (FNC157)	Variable speed pulse output	
	DRVI (FNC158)	Drive to increment	Y000,Y001, Y002*1, Y003*2
	DRVA (FNC159)	Drive to absolute	Y000,Y001, Y002*1 ${ }^{\text {, Y003 }}{ }^{*}$
High-speed processing	PWM (FNC 58)	Pulse width modulation	

*1. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3S/FX3GC PLCs.
*2. Y003 is available only when two high-speed output special adapters are connected to the FX3U PLC.
*3. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
2) When using the same output relay (Y000 or Y001) in several instructions.

While a pulse output monitor (BUSY/READY) flag is ON a pulse output instruction and positioning instruction for the same output relay cannot be executed.
While a pulse output monitor flag is ON even after the instruction drive contact is set to OFF, a pulse output instruction or positioning instruction for the same output relay cannot be executed.
Before executing such an instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.

Pulse output destination device	Pulse output monitor flag
Y000	M8340
Y001	M8350

3) "Frequency control mode" in which DHSZ (FNC 55) and PLSY (FNC 57) instructions are combined can only be used once in a program.

Program example (when outputting pulses without any limitation)
When (S2•) is set to K0, pulses are output without any limitation.

Command
input
FNC 57   DPLSY



### 13.9 FNC 58 - PWM / Pulse Width Modulation

## Outline

$\mathrm{FX}_{3} \mathrm{~S}$

Ver. 1.00 " $\Rightarrow$ $\underset{\text { Fer. } 1.00 \text { " } \Rightarrow}{\text { F }}$ | F ${ }_{\text {F3GC }}$ |
| :--- |
| Ver. 1.40 н |

This instruction outputs pulses with a specified period and ON duration.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\mathrm{S} 1 \cdot$	Output pulse width $(\mathrm{ms})$	16-bit binary
$\mathrm{S} 2 \cdot$	Period $(\mathrm{ms})$	16 -bit binary
$\mathrm{D} \cdot$	Device number $(\mathrm{Y})$ from which pulses are to be output	Bit

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant		Real Number   E	Charac-   ter String   $\square \square "$	Pointer
	X	Y	M	T	C	S	D. b b	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1.								$\checkmark$	$\triangle 2$	$\triangle 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	$\triangle 2$	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)		$\Delta 1$																	$\checkmark$					

©1: Specify transistor output Y000, Y001, or $\mathrm{Y} 002^{* 1}$ on the main unit or $\mathrm{Y} 000, \mathrm{Y} 001, \mathrm{Y} 002$, or Y 003 on a special highspeed output adapter*2.
42: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX}}^{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \mathrm{uc}$ PLCs.
©3: This function is supported only in $F X_{3} / / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs.
*1. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3s/FX3GC PLCs.
*2. High-speed output special adapters can be connected only to FX3u PLC.

## Explanation of function and operation

1. 16-bit operation (PWM)

Pulses whose ON pulse width is $\mathrm{S}_{1} \cdot \mathrm{~ms}^{-}$are output in periods of $\mathrm{S}_{2 \cdot} \mathrm{~ms}$.
Command



- Specify the pulse width "t" in S1•.

Allowable setting range: 0 to 32767 ms

- Specify the period "T0" in S2. .

Allowable setting range: 1 to 32767 ms

- Specify the output (Y) number from which pulses are to be output in $\mathrm{D}^{-}$. Allowable setting range: Y000, Y001, Y002, Y003


## Cautions

1. Setting the pulse width and period

Make sure that the pulse width $\mathrm{S}_{1 \cdot}$ and period $\mathrm{S}_{2 \cdot}$ satisfy the relationship " $\mathrm{S}_{1} \cdot \leq \mathrm{S}_{2 \cdot}$ ".

## 2. Pulse output

- Only the following outputs can be specified in $D \cdot$ according to the system configuration.
- When using special high-speed output adapters ${ }^{* 1}$ : Y000, Y001, Y002 ${ }^{* 2}$, or Y003*2
- When transistor outputs in the main unit are used: Y000, Y001, or Y002*3
*1. High-speed output special adapters can be connected only to FX3U PLC. Use a transistor output type PLC.
*2. When specifying Y002 or Y003 on a special high-speed output adapter, a second special high-speed output adapter is required.
*3. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3s/FX3Gc PLCs.
- The pulse output is controlled by interrupt processing not affected by the sequence program (operation cycle).
- If the command input is set to OFF, the output from D. turns OFF.
- While a pulse output monitor (BUSY/READY) flag is ON, a pulse output or positioning instruction for the same output relay cannot be executed.
While a pulse output monitor flag is ON even after the instruction drive contact is set to OFF, a pulse output or positioning instruction for the same output relay cannot be executed.
Before executing a pulse output or positioning instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.

Pulse output destination device	Pulse output monitor flag
Y000	M8340
Y001	M8350
Y002	M8360
Y003	M8370

## 3. Cautions on using special high-speed output adapters

1) Outputs of special high-speed output adapters work as differential line drivers.
2) Set the pulse output type setting switch of a special high-speed output adapter to the "pulse chain + direction" (PLS•DIR) side.
If the switch is set to the "forward rotation pulse chain reverse rotation pulse chain" (FP•RP) side, normal operations are not possible. The pulse output destination changes depending on the output status as shown in the table below.

Pulse output   destination	Output affecting   operation	Operation
D• = Y000	Y004	While Y004 is ON, pulses are output from Y000 on the high-speed output adapter.   While Y004 is OFF, pulses are output from Y004 on the high-speed output adapter.
D• = Y001	Y005	While Y005 is ON, pulses are output from Y001 on the high-speed output adapter.   While Y005 is OFF, pulses are output from Y005 on the high-speed output adapter.
D• = Y002	Y006	While Y006 is ON, pulses are output from Y002 on the high-speed output adapter.   While Y006 is OFF, pulses are output from Y006 on the high-speed output adapter.
D• = Y003	Y007	While Y007 is ON, pulses are output from Y003 on the high-speed output adapter.   While Y007 is OFF, pulses are output from Y007 on the high-speed output adapter.

3) Set the pulse output type setting switch while the PLC is stopped or while the power is OFF.

Do not adjust the pulse output type setting switch while pulses are being output.
4) When special high-speed output adapters are connected, the same output numbers in the main unit are assigned as shown in the table below.
Only wire the appropriate output terminals.
Outputs in special high-speed output adapters and the main unit operate as shown below.
Assignment of output numbers in special high-speed output adapters

Setting status of output form setting switch	Signal name	Setting name in each positioning instruction	Output number			
			1st unit		2nd unit	
			1st axis	2nd axis	3rd axis	4th axis
"FP•RP" side	Forward rotation pulse chain (FP)	Pulse output destination	Y000	Y001	Y002	Y003
	Reverse rotation pulse chain (RP)	Rotation direction signal	Y004	Y005	Y006	Y007
"PLS•DIR" side	Pulse chain	Pulse output destination	Y000	Y001	Y002	Y003
	Direction	Rotation direction signal	Y004	Y005	Y006	Y007

Output operation

	$\quad$Output operation   Relay output type main unit
Do not use the PWM (FNC 58) instruction with relay-output type main units.   (Considerable output response delay may be generated, chattering may occur in   contacts, or the contact life may be shortened.)	
Triac output type main unit	Do not use the PWM (FNC 58) instruction with triac-output type main units.   (Considerable output response delay may be generated.)
Special high-speed output adapter	Use a transistor output type main unit.
Transistor output type main unit	Operated.

## Program example

When the contents of D10 are changed ranging from " 0 " to " 50 " in the program example shown below, the average output from Y000 will be ranging from 0 to $100 \%$.
An error will occur if the contents of D10 exceed 50.
In this program example the FX3U series main unit (sink output) is used. For wiring details, refer to the Hardware Edition of each PLC.

X0	FNC 58   PWM	D10	K50	Y000



## Example of smoothing circuit


$\mathrm{R} \gg \mathrm{P}$
$\tau=\mathrm{P}(\mathrm{k} \Omega) \times \mathrm{C}(\mu \mathrm{F})=470 \mathrm{~ms} \gg \mathrm{~T} 0$
The time constant of the filter should be considerably larger than the pulse cycle To.
The ripple value " $\Delta \mathrm{e}$ " in the mean output current "e" is approximately " $\Delta \mathrm{e} / \mathrm{e} \leq \mathrm{T} 0 / \tau$ "

### 13.10 FNC 59 - PLSR / Acceleration/Deceleration Setup

## Outline



This pulse output instruction has the acceleration/deceleration function.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Maximum frequency (Hz)	16- or 32-bit binary
S2•	Total number of output pulses (PLS)	16- or 32-bit binary
S3	Acceleration/deceleration time (ms)	16- or 32-bit binary
D•	Device number (Y) from which pulses are to be output	Bit

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square$ IG $\square$	Index			Constant		Real Number	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S1.								$\checkmark$	$\pm 2$	$\triangle 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	-2	$\triangle 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(S3)								$\checkmark$	-2	$\Delta 3$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)		-1																	$\checkmark$					

41: Specify a transistor output on the main unit or Y000 or Y001 on a special high-speed output adapter ${ }^{*}$.
©2: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup c ~ P L C s . ~$
43: This function is supported only in FX3U/FX3uc PLCs.
*1. High-speed output special adapters can be connected only to FX3U PLC.

## Explanation of function and operation

1. 16-bit operation (PLSR)

Pulses are output from output (Y) (D. by the specified number S2• with acceleration/deceleration to the maximum frequency $\mathrm{S}_{1} \cdot$ over the time $\mathrm{S}_{3} \cdot(\mathrm{~ms}$ ).

Command

Comman input$\qquad$ 1					
	$\begin{gathered} \text { FNC } 59 \\ \text { PLSR } \\ \hline \end{gathered}$	S1.	S2.)	S3.)	(D.)
		Maximum frequency (Hz)	Total number of output pulses (PLS)	Acceleration/ deceleration time (ms)	$\begin{aligned} & \hline \text { Output } \\ & \text { number } \\ & \text { (Yooo, } \\ & \text { Yoo1) } \end{aligned}$

S1-): Maximum frequency (Hz)
Allowable setting range: 10 to 32767 (Hz)
S2•:
Total number of output pulses (PLS)
Allowable setting range: 1 to 32767 (PLS)
S3.): Acceleration/deceleration time (ms) Allowable setting range: 50 to 5000 (ms)
(D.): Pulse output number

Allowable setting range: Y000, Y001

(S3. Acceleration/ deceleration time

## 2. 32-bit operation (DPLSR)

Pulses are output from the output (Y) D• by the specified number [ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot \cdot]$ with acceleration/deceleration to the maximum frequency $\left[S 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]$ for the time $\left[\mathrm{S} \cdot \cdot+1, \mathrm{~S}_{3} \cdot\right]$ ] ms ).

Command

Comma					
input	FNC 59 DPLSR	S1.	S2.)	S3-	( ${ }^{\text {- }}$
		Maximum frequency   (HZ)	Total number of output pulses (PLS)	Acceleration/ deceleration time (ms)	Output number (Y000, Y001)

$\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot \mathrm{]}\right]:$ Maximum frequency $(\mathrm{Hz})$

- When special high-speed output adapters are used Allowable setting range: 10 to $200,000(\mathrm{~Hz})$
- When the $F X_{3 S} / F X_{3} / F X_{3 G C} / F X_{3 U} / F X_{3} U_{C}$ PLCs main unit is used Allowable setting range: 10 to $100,000(\mathrm{~Hz})$
$\left[\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2} \cdot\right]$ : Total number of output pulses (PLS) Allowable setting range: 1 to 2,147,483,647 (PLS)
[S3• +1, $\mathrm{S}_{3} \cdot$ ]: Acceleration/deceleration time (ms)
Allowable setting range: 50 to 5000 (ms)
(D.): Pulse output number

Allowable setting range: Y000, Y001

## 3. Pulse output specifications

- Simple positioning (with the acceleration/deceleration function) The operation pattern is as shown below:
(S1. Maximum frequency ( Hz ) - 16-bit operation: 10 to 32767 Hz

Pulse frequency (Hz) - 32-bit operation: 10 to $200,000 \mathrm{~Hz}$


- Output processing

The pulse output is controlled by the dedicated hardware regardless of the operation cycle.

- Data change while the instruction is executed

Even if operands are overwritten while the instruction is executed, such changes are not reflected immediately. The changes become valid the next time the instruction is driven.

## Related devices

## 1．Instruction execution complete flag

$\rightarrow$ For the instruction execution complete flag use method，refer to Subsection 6．5．2．

Device	Name	Description
M8029	Instruction execution com－   plete	OFF：The input command is OFF，or pulses are being output．（This flag does not turn ON if the   pulse output is interrupted in the middle of output．）   ON：Output of the number of pulses set in $\mathrm{S2} \mathrm{\cdot}$

## 2．Monitoring the number of generated pulses

The number of pulses output from Y000 or Y001 is stored in the following special data registers：

Device		Description	Contents of data
High   order	Low   order	$\mid$	
D8141	D8140	Accumulated number of pulses   output from Y000	Accumulated number of pulses output from Y000 by PLSY and PLSR   instructions
D8143	D8142	Accumulated number of pulses   output from Y001	Accumulated number of pulses output from Y001 by PLSY and PLSR   instructions
D8137	D8136	Total accumulated number of   pulses output from Y000 and Y001	Total accumulated number of pulses output from Y000 and Y001 by PLSY and   PLSR instructions

The contents of each data register can be cleared using the following program：
Command

$\left.$| input |  |  |
| :---: | :---: | :---: |
|  | FNC 12 <br> DMOV | K0 | | Low－order device shown in |
| :---: |
| above table | \right\rvert\,

## 3．How to stop the pulse output

－When the command input is set to OFF，the pulse generation is immediately stopped．When the command input is set to ON again，pulse generation operation restarts from the beginning．
－When the special auxiliary relays $(M)$ shown below are set to $O N$ ，the pulse output is stopped．

Device		Description
FX3S／FX3G／FX3GC	FX3U／FX3UC	
M8145，M8349	M8349	Immediately stops pulse output from Y000．
M8146，M8359	M8359	Immediately stops pulse output from Y001．

To restart pulse output pulses again，set the device（FX3S／FX3G／FX3GC ：M8145，M8146，M8349，M8359
FX3U／FX3UC ：M8349，M8359）corresponding to the output signal to OFF，and then drive the pulse output instruction again．

## Cautions

## 1．Frequency $\mathrm{S}_{1} \cdot$

When using transistor outputs on the main unit，set the output frequency S1• to＂100，000 Hz＂or less．
If the load is operated using pulses at a frequency higher than $100,000 \mathrm{~Hz}$ from transistor outputs in the main unit，the PLC may be damaged．

## 2．Pulse output

－Only a transistor output on the main unit or Y000 or Y001 on a special high－speed output adapter ${ }^{* 1}$ can be specified in D．
＊1．High－speed output special adapters can be connected only to FX3U PLC．
When using the PLSR（FNC 59）instruction with a relay output type or triac output type FX3U PLC，a special high－speed output adapter is required．
－The duty cycle of the pulse ON／OFF time is $50 \%$ inside the PLC．
However， $50 \%$ may not be output depending on the frequency due to the effect of the output circuit．
－The pulse output is controlled by the dedicated hardware not affected by the sequence program（operation cycle）．
－If the command input is set to OFF during continuous pulse output，the output from $D \cdot$ turns OFF．
3. Handling of pulse output terminals in $F X_{3} S / F X_{3 G} / F X_{3 G C} / F X_{3} U / F X_{3} U C$ series main units

The outputs Y000 and Y001 are the high-speed response type.
When using a pulse output instruction or positioning instruction, adjust the load current of the open collector transistor output to about 10 to 100 mA ( 5 to 24 V DC).

Item	Description
Operating voltage range	5 to 24 V DC
Operating current range	10 to 100 mA
Output frequency	100 kHz or less

When the load is smaller, connect a dummy resistor in parallel to the outside of a used output terminal (Y000 or Y001) as shown in the circuit diagram below so that the specified current shown above flows in the output transistor.


## 4. Cautions on special high-speed output adapters

1) Outputs of special high-speed output adapters work as differential line drivers.
2) Set the pulse output type setting switch in a special high-speed output adapter to the "pulse chain + direction" (PLS•DIR) side.
If the switch is set to the "forward rotation pulse chain reverse rotation pulse chain" (FP•RP) side, normal operations are disabled. The pulse output destination changes depending on the PLC output status as shown in the table below.

Pulse output   destination	Output affecting   operation	Operation
D• = Y000	Y004	While Y004 is ON, pulses are output from Y000 in the high-speed output adapter.   While Y004 is OFF, pulses are output from Y004 in the high-speed output adapter.
$D \cdot=$ Y001	Y005	While Y005 is ON, pulses are output from Y001 in the high-speed output adapter.   While Y005 is OFF, pulses are output from Y005 in the high-speed output adapter.

3) Set the pulse output type setting switch while the PLC is stopped or while the power is OFF.

Do not manipulate the pulse output type setting switch while pulses are being output.
4) When special high-speed output adapters are connected, the same output numbers in the main unit are assigned as shown in the table below.
Only wire the appropriate output terminals.
Outputs in special high-speed output adapters and the main unit operate as shown below.
Assignment of output numbers in special high-speed output adapter


## 5. Others

1) Types of pulse output, positioning and other relevant instructions and their target output numbers

Classification	Instruction	Instruction name	Target output numbers
Pulse output	PLSY (FNC 57)	Pulse Y output	Y000,Y001
	PLSR (FNC 59)	Acceleration/deceleration setup	Y000,Y001
Positioning	DSZR (FNC150)	DOG search zero return	Y000, Y001,Y002*1, Y003*2
	DVIT (FNC151)*3	Interrupt positioning	Y000, Y001,Y002, Y003*2
	ZRN (FNC156)	Zero return	Y000,Y001,Y002*1, Y003*2
	PLSV (FNC157)	Variable speed pulse output	Y000,Y001,Y002*1, Y003*2
	DRVI (FNC158)	Drive to increment	Y000,Y001,Y002*1, Y003*2
	DRVA (FNC159)	Drive to absolute	Y000,Y001,Y002*1,Y003 ${ }^{*}$
High-speed processing	PWM (FNC 58)	Pulse width modulation	Y000, Y001,Y002 ${ }^{* 1}$, Y003 ${ }^{* 2}$

*1. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3s/FX3Gc PLCs.
*2. Y003 can be used only when two special high-speed output adapters are connected to an FX3U PLC.
*3. This function is supported only in FX3U/FX3Uc PLCs.
2) When using the same output relay (Y000 or Y001) in several instructions.

While a pulse output monitor (BUSY/READY) flag is ON, a pulse output or positioning instruction for the same output relay cannot be executed.
While a pulse output monitor flag is ON, even after the instruction drive contact is set to OFF, a pulse output or positioning instruction for the same output relay cannot be executed.
Before executing a pulse output or positioning instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.

Pulse output destination device	Pulse output monitor flag
Y000	M8340
Y001	M8350

## 14. Handy Instruction - FNC 60 to FNC 69

FNC 60 to FNC 69 provide handy instructions which achieve complicated control in a minimum sequence program.

FNC No.	Mnemonic	Symbol	Function	Reference
60	IST	IST S 11) 24	Initial State	Section 14.1
61	SER	SER S 1 S 2 D n	Search a Data Stack	Section 14.2
62	ABSD	ABSD S1 S2 D n	Absolute drum sequencer	Section 14.3
63	INCD	1 INCD S 1 S 2 D n	Incremental drum sequencer	Section 14.4
64	TTMR	TTMR D n	Teaching Timer	Section 14.5
65	STMR	STMR s m D	Special Timer	Section 14.6
66	ALT	-1 ALT $\mathrm{D}^{\text {A }}$	Alternate State	Section 14.7
67	RAMP	RAMP S1 2 D n	Ramp Variable Value	Section 14.8
68	ROTC		Rotary Table Control	Section 14.9
69	SORT	SORT S m 1 m 2 D n	SORT Tabulated Data	Section 14.10

### 14.1 FNC 60 - IST / Initial State

## Outline

This instruction automatically controls the initial state and special auxiliary relays in a step ladder program.
$\rightarrow$ For SFC programs and step ladder, refer to Chapter 35.

1. Instruction format

2. Set data

Operand type	Description	Data type
(S.)	Head bit device number of the selector switch in the operation mode	Bit
(D1-	Smallest state relay number of practical state relays in the automatic mode ( D1•) < D2•)	Bit
(D2.)	Largest state relay number of practical state relays in the automatic mode ( $\mathrm{D} 1 \cdot$ - $\mathrm{D} 2 \cdot$ )	Bit

## 3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \text { and } \end{gathered}$	Index			Con-   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S-	$\checkmark$	$\checkmark$	$\checkmark$				©1												$\checkmark$					
(D1-)						$\Delta 2$													$\checkmark$					
(D2.)						12													$\checkmark$					

A 1: "D $\square . b$ " is available only in $F X_{3}$ and $F X_{3} \cup c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
A2: S20 to S899 and S1000 to S4095 in the FX3G, FX3Gc, FX3u and FX3Uc PLCs.
S20 to S255 in the FX3s PLC.
Explanation of function and operation


- Specify the head input in the operation mode in S.

Selector switches in the operation mode occupy eight devices from the head device $S^{\cdot}$, and the switch functions shown in the table below are assigned to each of them.
When X020 is assigned as shown below, it is necessary to set X020 to X024 as rotary switches so that they do not turn ON at the same time.
It is not necessary to wire unused switches, but they cannot be used for any other purpose because they are occupied by IST instruction.

Source	Device number (example)	Switch function
$S \cdot$	X020	Individual operation
$S \cdot+1$	X021	Return to zero point
$S \cdot+2$	X022	Stepping
$S \cdot+3$	X023	Cycle operation
$S \cdot+4$	X024	Continuous operation
$S \cdot+5$	X025	Zero return start
$S \bullet+6$	X026	Automatic start
$S \cdot+7$	X027	Stop

- Specify the smallest device number of practical state relays in (D1• (for the automatic mode).
- Specify the largest device number of practical state relays in D2. (for the automatic mode).

1. Control of devices by switch operations (occupied devices)

While the command input is ON, the following devices are automatically switched and controlled. While the command input is OFF, the devices are not switched.

Device number	Operation function
M8040	STL transfer disable
M8041 $^{* 1}$	Transfer start
M8042	Start pulse
M8043 $^{* 1}$	Zero return complete
M8045	All output reset disable
M8047*2	Enable STL monitoring


Device number	Operation function
S0	Individual operation initial state
S1	Zero return initial state
S2	Automatic operation initial state

*1.Cleared when the PLC mode is changed from RUN to STOP.
*2. Set to ON when END instruction is executed.
Do not program the following state relays as general state relays;

| Device number | Operation function |
| :---: | :--- | :--- |
| S0 to S9 | Occupied for the initial state |
|  | $\bullet$ S0 to S2 are used for individual operation, zero return and automatic operation as shown above. |
|  | $\cdot \quad$ S3 to S9 can be used arbitrarily. |
| S10 to S19 | Occupied for zero return |

If the devices are switched among individual operation (X020), zero return (X021) and automatic operation (X022, X023 and X024) while the zero return complete device (M8043) is OFF, all outputs are set to OFF.
Automatic operation can be started again after zero return is completed.
$\rightarrow$ For introducing IST instruction, refer to "14.1.2 Example of IST instruction introduction (example of workpiece transfer mechanism)".

## Cautions

1. Device specified as $S \cdot$ and switches to be used

It is not necessary to use all switches for mode selection.
When some switches are not used, leave the corresponding numbers in the unused status. Such numbers cannot be used for any other purpose.
2. Programming order of the IST instruction and STL instruction

- The IST instruction should be programmed earlier than a series of STL circuit such as state relays S0 to S2.


## 3. State relays used for the zero return operation

Use the state relays S10 to S19 for the zero return operation.
In the final state in the zero return operation, set M8043 to ON, and then let it be reset to OFF by itself.
4. Limitation in the number of IST instructions

The IST instruction can only be used once in a program.

### 14.1.1 IST instruction equivalent circuit

The details on special auxiliary relays ( M ) and initial state relays ( S 0 to S 9 ) which are automatically controlled by the IST instruction are as shown in the equivalent circuit below. (Refer to the equivalent circuit below for reference.)
This equivalent circuit cannot be programmed.

1. Equivalent circuit


M8041 is set to ON when the start button is pressed in the automatic mode. Especially in the continuous mode, M8041 holds its status by itself, and is reset when the stop button is pressed.

M8040 is set to ON in the stepping mode, and set to OFF every time the start button is pressed.
In the zero return operation or cycle operation, M8040 holds its status by itself when the stop button is pressed, and is reset when the start button is pressed.


The initial state is switched according to each mode input, and M8043 is controlled at the same time. However, it is necessary to control M8044 and M8043 in user programs also.
*1. Because the above equivalent circuit is provided only for explanation, it cannot be actually programmed.

## 2. Switching of the operation mode

When the operation mode is switched among the individual operation, zero return operation and automatic operation, all outputs and conventional states are reset at one time unless the machine is located in the zero point. (Reset of all outputs ${ }^{* 2}$ is not executed when M8045 is driven.)


Even if the mode is switched from automatic operation to zero return operation while S 2 is ON , state relays (except initial state relays) and outputs are not reset.
*2. All outputs: Outputs $(Y)$ not driven by state relays $S$ and outputs $(Y)$ driven by state relays $S$ in OUT and SET instructions

### 14.1.2 Example of IST instruction introduction (example of workpiece transfer mechanism)

1. Operation mode


Mechanism for transferring a workpiece from the point $A$ to the point $B$ using the robot hand



Operation mode		Contents of operation
Manual   mode	Individual   operation mode	Each load is turned ON and OFF by an individual pushbutton switch.
	When the pushbutton switch for zero return is pressed, the machine automatically returns to the zero point.	
	Ctepping   operation mode	Every time the start button is pressed, the machine performs one process.
	mode	When the start button is pressed while the machine is located at the zero point, the machine performs one   cycle of automatic operation and stops at the zero point.   If the stop button is pressed in the middle of one cycle, the machine stops immediately. When the start   button is pressed after that, the machine performs the continuous operation from the last position, and   automatically stops at the zero point.
	Continuous   operation mode	When the start button is pressed while the machine is located at the zero point, the machine starts   continuous operation.   When the stop button is pressed, the machine finishes the current cycle until the zero point, and then stops   at the zero point.

2. Transfer mechanism


The upper left position is regarded as the zero point. The machine transfers a workpiece from the left to the right in the order "moving down $\rightarrow$ clamping $\rightarrow$ moving up $\rightarrow$ rightward travel $\rightarrow$ moving down $\rightarrow$ unclamping $\rightarrow$ moving up $\rightarrow$ leftward travel".
Double-solenoid type solenoid valves (with two inputs for driving and non-driving) are adopted for moving down, moving up, leftward travel and rightward travel. Single type solenoid valves (which operate only while the power is ON) are adopted for clamping.

## 3. Assignment of mode selection inputs

For using IST instruction, it is necessary to assign inputs having consecutive device numbers as shown below for mode inputs.
When using non-consecutive inputs or omitting some modes, change the layout by using an auxiliary relay as the head input for mode specification as shown in the figure below.

- X020: Individual operation mode
- X021: Zero return operation mode
- X022: Stepping operation mode
- X023: Cycle operation mode
- X024: Continuous operation
- X025: Zero return start
- X026: Automatic mode start
- X027: Stop

When inputs do not have
consecutive device numbers

Example:
X030:Individual operation mode X035:Zero return operation mode
X033:Stepping operation mode
X040:Cycle operation mode
X032:Continuous operation mode
X034:Zero return start
X026:Automatic mode start
X041:Stop

When only the continuous
operation mode and zero return
operation mode are used

Example:
X030:Zero return operation mode X031:Continuous operation mode X032:Automatic mode start zero return start
X033:Stop

## 4. Special auxiliary relay (M) for the IST instruction

Auxiliary relays (M) used in the IST instruction are classified into two types. Some auxiliary relays are automatically controlled by the IST instruction itself according to the situation. Other auxiliary relays should be controlled by a program for preparation of operation or for purpose of control.

1) Special auxiliary relays automatically controlled by the IST instruction
a) M8040: STL transfer disable

When this special auxiliary relay turns ON, transfer of every state is disabled.
Individual operation mode: M8040 is always effective.
Zero return operation mode and cycle operation mode:
When the stop button is pressed, the operation is held until the start button is pressed.
Stepping operation mode:
M8040 is always effective except when the start button is pressed. When the start button is pressed, M8040 is not effective and transfer of states is allowed.
Others: The operation is latched when the PLC mode switches from STOP to RUN, and reset when the start button is pressed. Even in the transfer disabled status, the operation is held for outputs in the states.
b) M8041: Transfer start

This special auxiliary relay allows transfer from the initial state S2 to the next state.
Individual operation mode and zero return operation mode:
M8041 is not effective.
Stepping operation mode and cycle operation mode:
M8041 is effective only while the start button is pressed and held.
Continuous operation mode:
The operation is latched when the start button is pressed, and cleared when the stop button is pressed.
c) M8042: Start pulse

M8042 is activated instantaneously only when the start button is pressed.
d) M8047: Enable STL monitoring

When IST instruction is executed, M8047 is set to ON.
When the M8047 turns ON, STL monitoring becomes valid, and state relay numbers (S0 to S899) in the ON status are stored in turn in the ascending order of device number to the special data register D8040 to D8047. Up to eight state relay numbers in the ON status can be monitored.
If either state relay is ON, the special auxiliary relay M8046 is set to ON.
2) Auxiliary relays controlled by a sequence program
a) M8043: Zero return complete

Set this special auxiliary relay ( M ) to ON by a user program when the machine returns to the zero point in the zero return operation mode.
b) M8044: Zero point condition

Detect the zero point condition of the machine, and drive this special auxiliary relay. This signal is effective in every mode.
c) M8045: All output reset disable

When the mode is switched among individual operation mode, zero return operation mode and automatic mode, all outputs and operation state relays are reset if the machine is not located at the zero point. If M8045 has been set to ON in advance, however, only operation state relays are reset.

## 5. Program example

1) Circuit diagram

In the sequence circuit shown below, all areas except shaded areas are standard.
Program the shaded areas according to the contents of control.
a) Initial circuit

While the machine is operating, the operation mode can be switched arbitrarily (among stepping operation, cycle operation and continuous operation) in the automatic mode.
When the operation mode is switched between the individual operation mode, zero return operation mode and automatic mode while the machine is operating, all outputs are reset once to assure safety, after which the following mode becomes valid.
(While M8045 (All output reset disable) is ON, outputs are not reset at all.)

b) Individual operation mode

Programming is not required when the individual operation mode is not provided.

c) Zero return operation mode

Programming is not required when the zero return operation mode is not provided.
It is necessary to set M8043 (zero return complete) to ON before starting the automatic mode.

## SFC block


d) Automatic mode (stepping operation mode, cycle operation mode or continuous operation mode)

## SFC block



## 6. List program

The list program for the circuit diagram shown on the previous page is as shown below:


Programming is not required.

(RET)
$\begin{array}{llr}55 & \text { STL } & 2 \\ 56 \text { LD } & \text { M8041 }\end{array}$ 57 AND M8044 58 SET S $20-$ 60 STL S 20 62 LD X001 63 SET S 21 ـ
65 STL S 21 66 SET Y 001
67 OUT T 0 (SP) K 10


### 14.2 FNC 61 - SER / Search a Data Stack



## Outline

This instruction searches for the same data, maximum value and minimum value in a data table.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1•	Head device number in which same data, maximum value and minimum value are   searched	16- or 32-bit binary
S2•	Data to be searched for or device number storing data	16- or 32-bit binary
D•	Head device number storing number of same data, maximum value and minimum value   detected by search	$16-$ or 32-bit binary
n	Number of data in which same data, maximum value and minimum value are searched   [16-bit instruction: 1 to 256,32 -bit instruction: 1 to 128$]$	$16-$ or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIG $\square$	Index			Constant		Real Number   E	Character String" "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S1.								$\checkmark$	-1	-2			$\checkmark$											
(S2.)								$\checkmark$	A1	A2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
n														$\checkmark$	41					$\checkmark$	$\checkmark$			

©1: This function is supported only in $F^{2 G} / \mathrm{FX}_{3} \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
$\Delta 2$ : This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{P}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (SER and SERP)

In " n " data starting from $\mathrm{S}^{\bullet \cdot}$, same data as $\mathrm{S}_{2 \cdot}$ is searched, and the search result is stored to $\mathrm{D}^{\cdot}$ to $\mathrm{D} \cdot+4$.


1) Contents of searched data and the search result
a) When same data was detected Five devices starting from (D. store the number of same data, first position, last position, maximum value position and minimum value position.
b) When same data was not detected

Five devices starting from (D. store the number of same data, first position, last position, maximum value position and minimum value position.
In this case, however, " 0 " is stored in three devices starting from (D. (which store the number of same data, first position and last position).
2) Operation example
a) Example of search result table configuration and data (When $n=10$ )

Searched device S1•	Searched data$\qquad$ value (example)	Comparison data S2• value (example)	Data position	Search result		
				Maximum value $\frac{D \cdot}{+4}$	$\begin{gathered} \text { Same } \\ D \cdot \end{gathered}$	Minimum value D. +3 $+3$
S1-	K100	K100	0		$\begin{gathered} \hline \checkmark \text { (first } \\ \text { position) } \end{gathered}$	
S1- +1	K111		1			
S1• +2	K100		2		$\checkmark$	
S1• +3	K 98		3			
S1• + 4	K123		4			
S1• + 5	K 66		5			$\checkmark$
S1• + 6	K100		6		$\begin{gathered} \checkmark \text { (last } \\ \text { position) } \end{gathered}$	
S1- +7	K 95		7			
S1• +8	K210		8	$\checkmark$		
S1• +9	K 88		9			

b) Search result table

Device number	Contents	Search result item
D•	3	Number of same data
D• +1	0	Same data position (first position)
D• +2	6	Same data position (last position)
D• +3	5	Minimum value position (last position)
D• +4	8	Maximum value position (last position)

## 2. 32-bit operation (DSER and DSERP)

In "n" data starting from [S1• $+1, \mathrm{~S}_{1} \cdot$ ], same data as $\left[\mathrm{S}_{2} \cdot+1\right.$, $\mathrm{S}_{2} \cdot$ ] is searched, and the search result is stored to $\left[D \cdot+1, D^{-}\right.$] to $[D \cdot+9, D \cdot+8]$


1) Contents of searched data and the search result
a) When same data was detected

Five 32-bit devices starting from [D• $\mathrm{D} \cdot \mathrm{1}$, $\mathrm{D} \cdot$ ] store the number of same data, first position, last position maximum value position and minimum value position.
b) When same data was not detected

Five 32-bit devices starting from [D• +1, D• ] store the number of same data, first position, last position, maximum value position and minimum value position
In this case, however, " 0 " is stored in three devices starting from [ $D \cdot+1, D \cdot D$ (which store the number of same data, first position and last position).
2) Operation example
a) Example of search result table configuration and data (When $n=10$ )

Searched device $\mathrm{S} 1 \cdot^{-}$	Searched data$\qquad$ value (example)	Comparison data S2.	Data position	Search result		
				Maximum value $\text { D. }+9,+8$	$\begin{gathered} \text { Same } \\ \text { D• } \end{gathered}$	Minimum value $\text { D. }+7,+6$
[ $\left.\mathrm{S} 1^{\cdot}+1, \mathrm{~S}^{-}\right]$	K100000	K100000	0		$\begin{gathered} \hline \checkmark \text { (first } \\ \text { position) } \end{gathered}$	
[ $\left.\mathrm{S}_{1 \cdot} \cdot+3, \mathrm{~S} \mathrm{~S}^{\cdot}+2\right]$	K110100		1			
[ $\mathrm{S}_{1} \cdot+5, \mathrm{~S} 1 \cdot^{+4}$	K100000		2		$\checkmark$	
$\left[\mathrm{S} 1^{\cdot}+7, \mathrm{~S} 1 \cdot^{-6}\right.$	K 98000		3			
$[\mathrm{S} 1 \cdot+9, \mathrm{~S} 1 \cdot+8]$	K123000		4			
[ $\left.\mathrm{S}_{1} \cdot+11, \mathrm{~S}_{1} \cdot+10\right]$	K 66000		5			$\checkmark$
[ $\mathrm{S} 1 \cdot+13, \mathrm{~S} 1 \cdot+12]$	K100000		6		$\begin{gathered} \hline \checkmark \text { (last } \\ \text { position) } \end{gathered}$	
[ $\left.\mathrm{S}_{1} \cdot+15, \mathrm{~S}_{1} \cdot+14\right]$	K 95000		7			
[S1• + 17, (S1• + 16]	K910000		8	$\checkmark$		
[ $\left.\mathrm{S} 1 \cdot^{-}+19, \mathrm{~S} 1 \cdot^{+18}\right]$	K910000		9	$\checkmark$		

b) Search result table

Device number	Contents	Search result item
$[\mathrm{D} \cdot+1, \mathrm{D} \cdot]$	3	Number of same data
$[\mathrm{D} \cdot+3, \mathrm{D} \cdot \mathrm{C}+2]$	0	Same data position (first position)
$[\mathrm{D} \cdot+5, \mathrm{D} \cdot+4]$	6	Same data position (last position)
$[\mathrm{D} \cdot+7, \mathrm{D} \cdot+6]$	5	Minimum value position (last position)
$[\mathrm{D} \cdot+9, \mathrm{D} \cdot+8]$	9	Maximum value position (last position)

## Cautions

- Comparison of values

It is executed algebraically.
(example: -10<2)

- When there are two or more maximum or minimum values

When there are two or more maximum or minimum values in the searched data, the last position of the max/min is stored respectively.

- Number of occupied devices

When this instruction is driven, the following number of devices are occupied for storing the search result D. .
Make sure that such devices are not used in other controls for the machine.
1)In the case of 16 -bit operation

Five devices, $D^{\cdot}, D^{\cdot}+1, D^{-}+2, D^{\cdot}+3$ and $D^{\cdot}+4$, are occupied.
2)In the case of 32 -bit operation
 [ $\left.D \cdot+9, D^{-}+8\right]$, are occupied.

- Note that the 32 -bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32 -bit instruction. In the case of "DSER D0 D100 D200 R0", "n" is [R1, R0].


## 14．3 FNC 62 －ABSD／Absolute Drum Sequencer

## Outline

This instruction creates many output patterns corresponding to the current value of a counter．
1．Instruction format


2．Set data

Operand type	Description	Data type
S1•	Head device number storing the data table（with rising and falling point data）	16－or 32－bit binary
S2•	Counter number for monitoring the current value compared with the data table	16－or 32－bit binary
D•	Head bit device number to be output	Bit
n	Number of lines in the table and the number of output bit devices   $[1 \leq \mathrm{n} \leq 64]$	16－bit binary

3．Applicable devices

Oper－ and Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con－ stant			Charac－ ter String$\text { " } \square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1．								$\checkmark$	－2	$\triangle 3$			$\checkmark$											
S2．													$\checkmark$						$\checkmark$					
（D．）		$\checkmark$	$\checkmark$			$\checkmark$	©1												$\checkmark$					
n																				$\checkmark$	$\checkmark$			

41：＂D口．b＂is available only in FX3U and FX3uc PLCs．However，index modifiers（V and Z）are not available．
©2：This function is supported only in $F X_{3 G} / F X_{3 G} / F X_{3} U / F X_{3} \cup c$ PLCs．
43：This function is supported only in FX3u／FX3uc PLCs．

## Explanation of function and operation

## 1．16－bit operation（ABSD）

In this example，outputs are controlled to ON or OFF by one rotation（ 0 to $360^{\circ}$ using the rotation angle signal of $1^{1} /$ pulse）．
The current value $\mathrm{S}_{2 \cdot}$ ．of the counter is compared with the data table with＂ n ＂lines starting from $\mathrm{S}_{1} \cdot$（which occupies＂ n ＂lines $\times 2$ devices），and consecutive＂ n ＂outputs starting from $\mathrm{D} \cdot$ are controlled to ON or OFF during one rotation．


1) Write the following data to $\mathrm{S}_{1} \cdot$ to $\mathrm{S}_{1} \cdot+2 \mathrm{n}-1$ in advance by a transfer instruction:

Rising point		Falling point		Target output
	Data value (example)		Data value (example)	
S1.	40	S1• +1	140	(D.)
S1•)+2	100	S1• +3	200	D• + 1
S1• +4	160	S1• +5	60	D• + 2
S1- +6	240	S1•)+7	280	D• + 3
$\vdots$		$\vdots$		:
S1• + 2n-2		S1• $+2 n-1$	-	D• $+\mathrm{n}-1$

For example, store rising point data and falling point data alternately.
2) Output pattern

When the command input is set to ON, " n " points starting from $\mathrm{D} \cdot$ change as shown below.
Each rising point/falling point can be changed respectively by overwriting the data in $\mathrm{S}_{1-}$ to $\mathrm{S}_{1} \cdot+2 \mathrm{n}-1$.


## 2. 32-bit operation (DABSD)

In this example, outputs are controlled to ON or OFF by one rotation ( 0 to $360^{\circ}$ using the rotation angle signal of 1ºpulse).
The present value $\mathrm{S} 2 \cdot$ of the counter is compared with the data table having " n " lines starting from $[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$ (which occupies " n " lines $\times 4$ devices), and consecutive " n " outputs starting from $\mathrm{D} \cdot$ are controlled to ON or OFF during one rotation.


1) Write the following data to $\left[S S_{1} \cdot\left(\mathrm{~S}_{1} \cdot+1\right]\right.$ to $\left[\mathrm{S}_{1} \cdot+4 \mathrm{n}-2, \mathrm{~S}_{1} \cdot+4 \mathrm{n}-1\right]$ in advance using a transfer instruction:

Rising point		Falling point		Target output
	Data value (example)		Data value (example)	
[ $\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$	40	[ $\mathrm{S} 1 \cdot \mathrm{+}$, $\mathrm{S} 1 \cdot \mathrm{+}$ + $]$	140	(D.)
[ $\left.\mathrm{S} 1 \cdot^{\cdot}+5, \mathrm{~S} 1 \cdot+4\right]$	100	$[(\mathrm{S} 1 \cdot)+7, \mathrm{~S} 1 \cdot \mathrm{+}$ + $]$	200	(D.) +1
[ $\mathrm{S} 1 \cdot^{+}+9, \mathrm{~S} 1 \cdot^{+8}$	160	[ $\left.\mathrm{S}_{1 \cdot}+11, \mathrm{~S}_{1 \cdot}+10\right]$	60	(D. +2
[ $\mathrm{S}_{1} \cdot+13,\left(\mathrm{~S}_{1} \cdot+12\right]$	240		280	(D.) +3
:		.		:
[ $\left.\mathrm{S}_{1} \cdot+4 \mathrm{n}-3, \mathrm{~S}_{1} \cdot+4 \mathrm{n}-4\right]$	-	[ $\mathrm{S} 1 \cdot+4 \mathrm{n}-1, \mathrm{~S} 1 \cdot+4 \mathrm{n}-2]$	-	D. $+\mathrm{n}-1$

For example, store rising point data and falling point data alternately.
2) Output pattern

When the command input is set to ON, " n " points starting from D. change as shown below.
Each rising point/falling point can be changed respectively by overwriting the data in $\left[\mathrm{S}_{1} \cdot \cdot+1, \mathrm{~S}_{1} \cdot\right]$ to $\left[\mathrm{S}_{1} \cdot+4 \mathrm{n}-1, \mathrm{~S}_{1} \cdot+4 \mathrm{n}-2\right]$.


## Cautions

## 1. Specifying a high-speed counter (C235 to C255)

In DABSD instruction, a high-speed counter can be specified as (S2.).
When the high-speed counter is specified, the output pattern contains response delay caused by the scan cycle with regard to the current value of a counter.
When high responsivity is required in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs, use the table high-speed comparison function offered by the HSZ instruction, or use the HSCT instruction.
2. When specifying digits of a bit device as $\mathrm{S}_{1-}$

1) Device number

Specify a multiple of $16(0,16,32,64 \ldots)$.
2) Number of digits

- In ABSD instruction (16-bit operation): Only K4 is available.
- In DABSD instruction (32-bit operation): Only K8 is available.


## 3. Other cautions

- The value " n " determines the number of target outputs ( $1 \leq \mathrm{n} \leq 64$ ).
- Even if the command input is set to OFF, the ON/OFF status of outputs does not change.


### 14.4 FNC 63 - INCD / Incremental Drum Sequencer

## Outline



This instruction creates many output patterns using a pair of counters.

1. Instruction format


16 -bit Instruction	Mnemonic	Operation Condition
9 steps INCD $\boxed{L}$Continuous   Operation		


32 -bit Instruction	Mnemonic
-	

2. Set data

Operand type	Description	Data type
S1•	Head word device number storing the set value	16-bit binary
S2•	Head number of counters whose current value is monitored	16 -bit binary
D•	Head bit device number to be output	Bit
n	Number of output bit devices $[1 \leq \mathrm{n} \leq 64]$	16 -bit binary

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number   E	Character String   ${ }^{11} \square$ II	$\begin{gathered} \text { Pointer } \\ \hline P \end{gathered}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \mathrm{G} \square$	V	Z	Modify	K	H			
S1*								$\checkmark$	$\Delta 2$	$\Delta 3$			$\checkmark$											
S2•													$\checkmark$						$\checkmark$					
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©1: "D $\square . b$ " is available only in $F X_{3} U$ and $F X_{3} \cup C$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
42: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.
43: This function is supported only in $F X_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (INCD)

The current value S2. of a counter is compared with the data table having " n " lines starting from $\mathrm{S}_{1} \cdot$ (which occupies " $n$ " lines $\times 1$ device). When S2. is equivalent to the table data, the current output is reset, and the next output is set to ON. In this way, the ON/OFF status of specified outputs is controlled in turn.


## Operation



1) Timing chart

Suppose that the following data is written in advance by a transfer instruction:

Device storing data		Output	
	Data value (example)		Example
S1-	D300 $=20$	(D.)	M0
S1- +1	D301 $=30$	(D.) + 1	M1
S1- +2	D302 $=10$	(D.) +2	M2
S1• +3	D303 $=40$	(D.) +3	M3
$\vdots$	$\vdots$	$\vdots$	$\vdots$
S1• + $\mathrm{n}-1$	-	(D.) $+n-1$	-



M8029 Complete flag
2) When the command contact turns ON , the output MO turns ON .
3) When the current value of C0 reaches the comparison value D300, the output M0 is reset. "1" is added to the count value of the process counter C 1 , and the current value of the counter C 0 is reset.
4) The next output M1 turns ON.
5) When the current value of C0 reaches the comparison value D301, the output M1 is reset. "1" is added to the count value of the process counter C 1 , and the current value of the counter C 0 is reset.
6) The current value is compared for up to " $n$ (K4)" outputs in the same way ( $1 \leq n \leq 64$ ).
7) When the final process specified by " n " is finished, the execution complete flag M8029 turns ON and remains ON for one operation cycle.
M8029 is used for many instructions as the instruction execution complete flag. Use M8029 as a contact just after a corresponding instruction.
8) The program execution returns to the beginning, and outputs are repeated.

## Caution

1. When specifying digits of a bit device as $\mathrm{S}_{1} \cdot$

As a device number, specify a multiple of $16(0,16,32,64 \ldots)$.
2. Number of occupied devices

Two devices are occupied from a device specified as S2•. Make sure not to use devices used in another control.

### 14.5 FNC 64 - TTMR / Teaching Timer

## Outline

This instruction measures the period of time in which TTMR instruction is ON.
Use this instruction to adjust the set value of a timer by a pushbutton switch.

1. Instruction format

2. Set data

Operand type	Description	Data type
$\mathrm{D} \cdot$	Device number storing the teaching data	16 -bit binary
n	Magnification by which the teaching data is multiplied $[\mathrm{K} 0$ to $\mathrm{K} 2 / \mathrm{H} 0 \mathrm{to} \mathrm{H} 2]$	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { Uप\G } \end{array}$	Index			Constant		Real Number E	Character String	Pointer   $P$
	X	Y	M	T	C	S	Dप.b	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)														$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (TTMR)

The period of time to press and hold the command input (pushbutton switch) is measured in 1 -second units, multiplied by the magnification $\left(10^{n}\right)$, and then transferred to $D \cdot$.


The table below shows the actual value indicated by $\quad \mathrm{D} \cdot$ depending on the magnification n and the pressing and holding time t0 (unit: 1 sec ).

$\mathbf{n}$	Magnification	D•
K0	$\tau 0$	D• $\times 1$
K1	$10 \tau 0$	D• $\times 10$
K2	$100 \tau 0$	D• $\times 100$

## Related instruction

There is a handy instruction as follows:

Instruction	Description
HOUR (FNC169)	Measures the input contact ON time in 1-hour units, and outputs alarm when the measurement   result reaches a specified value.

## Cautions

## 1. When the command contact turns OFF

The current value $\left[D^{\cdot}+1\right]$ of the pressing and holding time is reset, and the teaching time $D^{\circ}$ will not change any more.

## 2. Number of occupied devices

Two devices are occupied from a device specified as the teaching time D. .
Make sure that these devices are not used in other controls for the machine.

- D• : Teaching time
- D• +1: Current value of the pressing and holding time


## Program example

1. Writing the teaching time to 10 types of data registers

Suppose that the set value is written to D400 to D409 in advance.


### 14.6 FNC 65 - STMR / Special Timer

## Outline

This instruction can easily make off-delay timers, one-shot timers and flicker timers.

1. Instruction format


16 -bit Instruction	Mnemonic	Operation Condition
7 steps	STMR	$\boxed{ }$Continuous   Operation


32-bit Instruction	Mnemonic	Operation Condition
	-	

2. Set data

Operand type	Description	Data type
S•	Used timer number [T0 to T199 $(100 \mathrm{~ms}$ timer $)]$	16 -bit binary
m	Set value of the timer [1 to 32,767$]$	16 -bit binary
$\mathrm{D} \mathrm{\cdot}$	Head bit number to which the set value is output (Four devices are occupied.)	Bit

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number   E	Character String"口"	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S•												$\checkmark$							$\checkmark$					
m														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	-												$\checkmark$					

A: "D $\square . b$ " cannot be indexed with index registers ( $V$ and $Z$ ).

## Explanation of function and operation

1. 16-bit operation (STMR)

The value specified in " $m$ " is handled as the set value of a timer specified in $S \cdot$, and output to four devices starting from (D.
Create a proper program according to the purpose while referring to the example shown below.


Off-delay timer and one-shot timer
When T10 is set to $\mathrm{S}^{\circ}$, and M0 is set to D.


- M0 [D. $] \begin{aligned} & \text { : Off-delay timer which turns OFF with delay of the timer set value after the command contact } \\ & \text { turned OFF }\end{aligned}$
- M1 [ $\left.D^{D} \cdot+1\right]$ : One-shot timer which turns ON after the command contact turned OFF from ON, and turns OFF after the timer set value
- M2 [ $\left.D^{\cdot} \cdot+2\right]$ : Occupied, and can be used for flicker.
- M3 [D• ${ }^{+3}$ ] : Occupied.


Flicker
In the program shown below which turns OFF STMR instruction at the NC contact of $D \cdot+3$, flicker is output to (D.)+1 and (D.)+2.
(D.) and D• +3 are occupied.


- M0 [D. ] : Occupied (, and can be used for off-delay timer). (Refer to the previous page.)
- M1 [D. $\mathrm{D}+1$ ] : Flicker (NO contact) which turns ON and OFF repeatedly at the interval of timer set value
- M2 [D•+2] : Flicker (NC contact) which turns ON and OFF repeatedly at the interval of timer set value
- M3 [D. +3] : Occupied.



## Cautions

1. Handling of a specified timer

The timer number specified in this instruction cannot be used in other general circuits (such as OUT instruction). If the timer number is used in other general circuits, the timer malfunctions.
2. Number of occupied devices

Four devices are occupied from a device specified in (D. .
Make sure that these devices are not used in other controls for the machine.

Device	Function	
	Off-delay timer   One-shot timer	Flicker
D•	Off-delay timer	Occupied
D• +1	One-shot timer	Flicker (NO contact)
$D \cdot+2$	Occupied	Flicker (NC contact)
$D \cdot+3$	Occupied	Flicker (NC contact)

3. When the command contact is set to OFF
(D. , $D^{\cdot}+1$ and $D^{\cdot}+3$ will turn OFF after the set time. (D• +2 and the timer $\mathrm{S}^{-}$are immediately reset.

### 14.7 FNC 66 - ALT / Alternate State

## Outline



This instruction alternates a bit device (from ON to OFF or from OFF to ON) when the input turns ON.

1. Instruction format

2. Set data

Operand type	Description	Data type
D•	Bit device number whose output is alternated	Bit

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant			Character String	$\begin{gathered} \text { Pointer } \\ P \end{gathered}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	$\triangle$												$\checkmark$					

A: "D $\square . b$ " is available only in $F X_{3} U$ and $F X_{3} \cup c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.

## Explanation of function and operation

1. 16-bit operation (ALT and ALTP)

## Alternating output (1-step)

Every time the command input turns from OFF to ON, a bit device specified in D. is alternated (from ON to OFF or from OFF to ON).


## Dividing output (by 2-step alternating output)

Multi-step dividing outputs are achieved by combination of two or more ALTP instructions.


## Caution

## 1. When using (continuous operation type) ALT instruction

- When ALT instruction is used, a specified bit device is alternated in every operation cycle. To alternate a specified device by turning the command ON or OFF, use the (pulse operation type) ALTP instruction, or use a pulse operation type command contact such as LDP.


## Program examples

1. Start and stop by one input
1) When the pushbutton switch $X 000$ is pressed, the start output $Y 001$ is set to $O N$.
2) When the pushbutton switch $X 000$ is pressed again, the stop output $Y 000$ is set to $O N$.


## 2. Flicker operation

1) When the input $X 006$ is set to ON , the contact of the timer T 2 turns ON instantaneously every 5 seconds.
2) Every time the contact of T 2 turns ON , the output Y 007 is set to ON or OFF alternately.

3. Alternating output operation using auxiliary relays (M) (operation equivalent to ALT instruction) The circuit below is provided as an example of alternating operation using basic instructions and auxiliary relays (M) which is equivalent to ALT instruction.
1) When $X O 00$ is set to $O N, M O$ turns $O N$ and remains $O N$ for only one operation cycle.
2) When MO turns ON for the first time, YOOO is latched. When MO turns ON the second time, YOOO becomes unlatched.


### 14.8 FNC 67 - RAMP / Ramp Variable Value

## Outline

This instruction obtains the data which changes between the start value (initial value) and the end value (target value) over the specified " n " times.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1•	Device number storing the initial value of ramp	16-bit binary
S2•	Device number storing the target value of ramp	16 -bit binary
D•	Device number storing the current value of ramp	16 -bit binary
n	Ramp transfer time (scan) [1 to 32, 767]	16-bit binary

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
(S1*)														$\checkmark$	A				$\checkmark$					
S2•														$\checkmark$	A				$\checkmark$					
(D.)														$\checkmark$	A				$\checkmark$					
n														$\checkmark$	A					$\checkmark$	$\checkmark$			

$\mathbf{\Delta}$ : This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} X_{3} \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (RAMP)

When the start value $\mathrm{S}_{1} \cdot$ and the end value $\mathrm{S}_{2 \cdot}$ have been specified and the command input is set to ON, the value obtained by adding a value divided equally by " n " times to $\mathrm{S} 1 \cdot$ in every operation cycle is stored to D. . By combining this instruction and an analog output, the cushion start/stop command can be output.


1) In the case of " S1- < S2-"
2) In the case of " $\mathrm{S}_{1}{ }^{-}>\mathrm{S}_{2}$ "
(S1.)



- The number of scans (" 0 " to " n ") is stored in D• +1 .
- The time from start to the end value is the operation cycle multiplied by " n " times.
- If the command input is set to OFF in the middle of operation, execution is paused. (The present data value stored in (D. is held, and the number of scans stored in $D^{\cdot}+1$ is cleared.) When the command input is set to ON again, (D. is cleared, and the operation is started from $\mathrm{S} 1 \cdot$.
- After transfer is completed, the instruction execution complete flag M8029 turns ON, and the $D \cdot$ value is returned to the $\mathrm{S}_{1} \cdot$ value.

(M8029)

- When acquiring the operation result at a constant time interval (constant scan mode)

Write a prescribed scan time (which is longer than the actual scan time) to D8039 and set M8039 to ON to select the constant scan mode in the PLC.
For example, when " 20 ms " is written to D 8039 and " n " is set to 100 , the $\mathrm{D} \cdot$ value will change from $\mathrm{S}_{1} \cdot$ to S2• in 2 seconds.

## 2. Operation of the mode flag (M8026)

In $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs, the contents of D. are changed as follows depending on the ON/OFF status of the mode flag M8026.
In FX3s/FX3G/FX3GC PLCs, the contents of $D \cdot$ are same as the case "2) When M8026 is ON" below regardless of the ON/OFF status of the mode flag M8026.

1) When M8026 is OFF

2) When M8026 is ON


## Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8029	Instruction   execution complete	Turns ON when $\mathrm{D} \cdot$ becomes equivalent to $\mathrm{S} \cdot \cdot$ after "n" operation cycles.
M8026*1	RAMP mode	Refer to the operation of the mode flag M8026 described above.

*1. M8026 is available only in FX3U/FX3UC PLCs, and is cleared when the PLC mode switches from RUN to STOP.

## Caution

1. When specifying a latched (battery backed) type device as $D \cdot$

When setting PLC to the RUN mode while the command input is ON, clear D. in advance.

### 14.9 FNC 68 - ROTC / Rotary Table Control

Outline
This instruction is suitable for efficient control of the rotary table for putting/taking a product into/out of the rotary table.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Data register for counting	Number of divisions
m 1	Number of low-speed sections	16-bit binary
m 2	Head bit device number to be driven	$16-$ bit binary
$\mathrm{D} \cdot$	$16-$ bit binary	

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S		D.b	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
S.															$\checkmark$	$\checkmark$				$\checkmark$					
m1																					$\checkmark$	$\checkmark$			
m2																					$\checkmark$	$\checkmark$			
(D.)		$\checkmark$	$\checkmark$			$\checkmark$		-												$\checkmark$					

© : "D $\square . b$ " cannot be indexed with index registers ( V and Z ).

## Explanation of function and operation

## 1. 16-bit operation (ROTC)

The table rotation is controlled by "m2", S• and D. so that a product can be efficiently put into or taken out of the rotary table divided into "m1" $(=10)$ sections as shown in the figure below.


1) Register (word device) specifying the calling condition $S^{-}$

$S \cdot$	Works as a register for counting.	Set them in advance using a transfer instruction.
$S \cdot+1$	Sets the port No. to be called.	
$S \cdot+2$	Sets the product No. to be called.	

2) Register (bit device) specifying the calling condition $D \cdot$

(D.)	A phase signal	Construct an internal contact circuit in advance which is driven by the input signal (X)
(D.) + 1	B phase signal	
D. +2	Zero point detection signal	
(D. +3	Forward rotation at high-speed	
(D.) +4	Forward rotation at low-speed	
D. +5	Stop	
(D.) +6	Backward rotation at low-speed	
D. +7	Backward rotation at high-speed	

## Operation conditions

The conditions required to use this instruction are as shown in the example below.

1) Rotation detection signal: $X \rightarrow D \cdot$

- Provide a 2-phase switch (X000 and X001) for detecting the rotation direction (forward or backward) of the table and the switch X002 which turns ON when the product No. 0 reaches the port No. 0.
- Create the sequence program shown below.

2-phase switch


X000 to X002 are replaced with internal contacts of D• to D• +2.
An arbitrary head device number can be specified by $X$ or $D \cdot$.
2) Specification of a register for counting: $S \cdot$

The counter S• detects which number of product is located at the port No. 0.
3) Registers specifying the calling condition: S• +1 and S•+2
a) Set the port No. to be called in $S \cdot+1$.
b) Set the product No. to be called in $S \cdot+2$.
4) Number of divisions m1 and number of low-speed sections m2 Specify the number of divisions m 1 of the table, and number of low-speed sections m2.

When the above conditions are specified, forward/backward rotation and high-speed/low-speed/stop are output to (D.) +3 to $D^{\cdot}+7$ specified by the head device (D•).

## Cautions

1. Operations caused by the command input ON/OFF status

- When the command input is set to ON and this instruction is executed, the result will be automatically output to D• +3 to $D \cdot+7$.
- When the command input is set to OFF, D• +3 to $D^{-}+7$ are set to OFF accordingly.

2. Multiple activation of the rotation detection signal ( $D^{\cdot}$ to $D^{\cdot}+2$ ) in one division For example, when the rotation detection signal ( $\overline{D \cdot}$ to $(\bar{D} \cdot+2$ ) is activated 10 times in one division, set a value multiplied by " 10 " to each division, port No. to be called and product No. to be called.
As a result, an intermediate value of the division number can be set to a low-speed section.
3. Zero point detection signal (D.

When the zero point detection signal (M2) turns ON while the command input is ON, the contents of the register for counting S• are cleared to "0".
This clear operation should be executed before starting the operation.

### 14.10 FNC 69 - SORT / SORT Tabulated Data

## Outline

This instruction sorts a data table consisting of data (lines) and group data (columns) based on a specified group data (column) sorted by line in ascending order. This instruction stores the group data (columns) in serial devices.
On the other hand, SORT2 (FNC149) instruction stores the data (lines) in serial devices facilitating the addition of data (lines), and sorts a table in either ascending or descending order.
$\rightarrow$ For SORT2 (FNC149) instruction, refer to Section 19.7.

## 1. Instruction format



32-bit Instruction Mnemonic

Operation Condition
2. Set data

Operand type		Description
S	Head device number storing the data table [which occupies $\mathrm{m} 1 \times \mathrm{m} 2 \mathrm{points}]$	
m 1	Number of data (lines) [1 to 32]	16-bit binary
m 2	Number of group data (columns) [1 to 6]	
D	Head device number storing the operation result [which occupies $\mathrm{m} 1 \times \mathrm{m} 2$ points]	
n	Column number of the group data (column) used as the basis of sorting [1 to m 2$]$	

3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real   Number   E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S															$\checkmark$	$\checkmark$									
m1																					$\checkmark$	$\checkmark$			
m2																					$\checkmark$	$\checkmark$			
(D)															$\checkmark$	$\checkmark$									
n															$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (SORT)

In the data table (sorting source) having ( $\mathrm{m} 1 \times \mathrm{m} 2$ ) points from $S$, data lines are sorted in the ascending order based on the group data in the column No. " n ", and the result is stored in the data table (sorting result) having ( $\mathrm{m} 1 \times$ $\mathrm{m} 2)$ points from D.
$\rightarrow$ For operation examples, refer to the next page.


Instruction execution complete flag M8029 MOO Instruction execution complete flag for SORT instruction

- The data table configuration is explained in an example in which the sorting source data table has 3 lines and 4 columns ( $\mathrm{m} 1=\mathrm{K} 3, \mathrm{~m} 2=\mathrm{K} 4$ ). For the sorting result data table, understand S ) as D .

Column No.		Number of groups ( $\mathrm{m} 2=$ K4)			
Line No.		1	2	3	4
		Control number	Height	Weight	Age
$\begin{gathered} \begin{array}{c} \text { Number of } \\ \text { data } \\ \mathrm{m} 1=\mathrm{K} 3 \end{array} \end{gathered}$	1	(S)	(S) +3	(S) +6	(S) +9
	2	(S) +1	(S) +4	(S) +7	(S) +10
	3	(S) +2	(S +5	(S +8	(S +11

- When the command input turns ON, data sorting is started. Data sorting is completed after "m1" scans, and the instruction execution complete flag M8029 is set to ON.
$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.


## 2. Operation examples

When the instruction is executed with " $n=K 2$ (column No. 2)" and " $n=K 3$ (column No. 3) for the following sorting source data, the operations shown below are acquired.
It is recommended to put a serial number such as a control number in the first column so that the original line number can be estimated based on the contents.

## Sorting source data

Column No.		Number of groups (m2 = K4)			
Line No.		1	2	3	4
		Control number	Height	Weight	Age
Number of data $\mathrm{m} 1=\mathrm{K} 5$	1	(S)	S + 5	(S)+10	(S)+15
		1	150	45	20
	2	(S)+1	S + 6	(S)+11	(S)+16
		2	180	50	40
	3	(S) +2	S +7	(S) 12	(S)+17
		3	160	70	30
	4	(S) +3	S + 8	(S)+13	(S)+18
		4	100	20	8
	5	S +4	S +9	(S)+14	(S)+19
		5	150	50	45

1) Sorting result when the instruction is executed with " $\mathrm{n}=\mathrm{K} 2$ (column No. 2)"

Column No.   Line No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	Control number	Height	Weight	Age
1	D	$\mathrm{D}+5$	$\mathrm{D}+10$	$\mathrm{D}+15$
	4	100	20	8
2	$\mathrm{D}+1$	$\mathrm{D}+6$	$\mathrm{D}+11$	$\mathrm{D}+16$
	1	150	45	20
3	$\mathrm{D}+2$	$\mathrm{D}+7$	$\mathrm{D}+12$	$\mathrm{D}+17$
	5	150	50	45
4	$\mathrm{D}+3$	$\mathrm{D}+8$	$\mathrm{D}+13$	$\mathrm{D}+18$
	3	160	70	30
		$\mathrm{D}+4$	$\mathrm{D}+9$	$\mathrm{D}+14$
	D	$\mathrm{D}+19$		
	2	180	50	40

2) Sorting result when the instruction is executed with " $\mathrm{n}=\mathrm{K} 3$ (column No. 3)"

Column No.   Line No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
	Control number	Height	Weight	Age
1	D	$\mathrm{D}+5$	$\mathrm{D}+10$	$\mathrm{D}+15$
	4	100	20	8
2	$\mathrm{D}+1$	$\mathrm{D}+6$	$\mathrm{D}+11$	$\mathrm{D}+16$
	1	150	45	20
3	$\mathrm{D}+2$	$\mathrm{D}+7$	$\mathrm{D}+12$	$\mathrm{D}+17$
	2	180	50	40
4	$\mathrm{D}+3$	$\mathrm{D}+8$	$\mathrm{D}+13$	$\mathrm{D}+18$
	5	150	50	45
	$\mathrm{D}+4$	$\mathrm{D}+9$	$\mathrm{D}+14$	$\mathrm{D}+19$
		3	160	70

## Related device

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8029	Instruction   execution complete	Turns ON when sorting is completed.

## Cautions

- Do not change the contents of operands and data while the instruction is executed.
- Before executing the instruction again, set the command input to OFF.
- Limitation in the number of instructions Only one instruction can be used in a program.
- When the same device is specified in $S$ and $D$ The source data is overwritten by the data acquired by sorting.
Take special care so that the contents of $S$ are not changed until execution is completed.


## 15. External FX I/O Device - FNC 70 to FNC 79

FNC 70 to FNC 79 provide instructions to receive data from and send data to external devices mainly using inputs and outputs in PLC.
Because these instructions easily achieve complicated controls with a minimum required sequence program and external wiring, they are similar to handy instructions described in the preceding chapter.
FROM and TO instructions, essential for controlling special units and special blocks, are included in this group. (In FX3U and FX3Uc PLCs, transfer can be also executed using a MOV instruction.)

FNC No.	Mnemonic	Symbol	Function	Reference
70	TKY	TKY S D 1 D 2	Ten Key Input	Section 15.1
71	HKY		Hexadecimal Input	Section 15.2
72	DSW		Digital switch (thumbwheel input)	Section 15.3
73	SEGD	HЮ SEGD $\mathrm{S}_{\text {S }} \mathrm{D}$ -	Seven Segment Decoder	Section 15.4
74	SEGL	SEGL S D n	Seven Segment With Latch	Section 15.5
75	ARWS	Нト. ARWS	Arrow Switch	Section 15.6
76	ASC	ASC S D	ASCII code data input	Section 15.7
77	PR		Print (ASCII Code)	Section 15.8
78	FROM	HЮ FROM $\mathrm{m} 1 \mathrm{~m} 2\|\mathrm{D}\| \mathrm{n} \mid$	Read From A Special Function Block	Section 15.9
79	то	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { TO } & \mathrm{m} 1 & \mathrm{~m} 2 & \mathrm{~s} & \mathrm{n} \\ \hline \end{array}$	Write To A Special Function Block	$\begin{gathered} \text { Section } \\ 15.10 \end{gathered}$

### 15.1 FNC 70 - TKY / Ten Key Input

## Outline

This instruction sets data for timers and counters through ten key inputs ranging from "0" to "9".

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head bit device number from which one of the ten keys is input [10 devices are occupied]	Bit
D1•	Word device number storing the data	16- or 32-bit binary
D2•	Head bit device number storing the key pressing information [11 devices are occupied]	Bit

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real Number   E	Charac-ter String	Pointer   P
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$		-												$\checkmark$					
(D1-										$\checkmark$															
(D2.)		$\checkmark$	$\checkmark$			$\checkmark$		-												$\checkmark$					

A: "D $\square . b$ " cannot be indexed with index registers ( $V$ and $Z$ ).

## Explanation of function and operation

1. 16-bit operation (TKY)
(D1•) stores a numeric value input from S. to $\mathrm{S} \cdot+9$ connected to the ten keys. Output information for key pressing and key sensing are output to (D2• to D2• +10 .
1) Input numeric value (D1-

- When an input value is larger than "9999", it overflows from the most significant digit.
- An input numeric value is stored in binary format.
- When the ten keys are pressed in the order "[1] $\rightarrow[2] \rightarrow[3] \rightarrow[4]$ " in the figure shown on the next page, "2130" is stored in (D1-.

2) Key pressing information [ D2• to (D2• +10]

- For the key pressing information, (D2• to (D2•-9 turn ON or OFF according to the pressed keys.
- For the key sensing output, (D2• +10 turns ON when any key is pressed.


The figure below shows an example of $\mathrm{FX}_{3} \cup$ PLC (sink input). For wiring details, refer to the following manual.
$\rightarrow$ FX3u Hardware Edition. $\rightarrow$ FX3UC Hardware Edition.



Key sensing output
" 2130 " is stored in

## 2. 32-bit operation (DTKY)

[D1• +1, D1•] store a numeric value input from $S \cdot$ to $S \cdot+9$ connected to the ten keys. Output information for key pressing and key sensing are output to $\mathrm{D} 2 \cdot$ to $\mathrm{D} 2 \cdot+10$.

1) Input numeric value [ $\overline{\mathrm{D} 1 \cdot} \cdot$ ]

- When an input value is larger than " $99,999,999$ ", it overflows from the most significant digit.
- An input numeric value is stored in binary format.

2) Key pressing information [D2• to (D2•+10]

- For the key pressing information, (D2• to D2• +9 turn ON or OFF according to the pressed keys.
- For the key sensing output, D2•+10 turns ON when any key is pressed.


For the ten-key connection example and key pressing information, refer to the 16-bit operation (TKY) shown above.

## Cautions

1. When two or more keys are pressed at the same time In such a case, only the first key pressed is valid.
2. When the command contact turns OFF

Though the contents of (D1•) do not change, all of D2• to D2•+10 turn OFF.

## 3. Number of occupied device

1) Ten bit devices are occupied from (S• for connecting the ten keys. Because these devices are occupied even if the ten keys are not connected, they cannot be used for any other purpose.
2) Eleven bit devices are occupied from (D2• for outputting the key pressing information. Make sure that these devices are not used in other controls for the machine.

- D2• to D2• +9 : Turn ON or OFF according to input of the ten keys " 0 " to " 9 ".
- D2• +10 : Is ON while either one among " 0 " to " 9 " keys is pressed (key sensing output).


## 4. Limitation in the number of instructions

The TKY or DTKY instruction can only be used once in a program.
When the TKY and/or DTKY instruction need to be used two or more times, use the indexing (V, Z) function.

## Program example

In the program example shown below, the input X 000 is set as the head bit device, and the ten keys " 0 " to " 9 " are connected.

1. Program

2. Connection diagram

This connection diagram shows an example of FX3U PLC (sink input).
For wiring details, refer to the following manual.
$\rightarrow$ FX3u Hardware Edition $\rightarrow$ FX3uc Hardware Edition


## 3. Timing chart

1) When the ten keys are pressed in the order "[1] $\rightarrow[2] \rightarrow[3]$ $\rightarrow[4]$ " shown in the figure, "2130" is stored in (D0). When an input value is larger than "9999", it overflows from the most significant digit.
(An input numeric value is stored in binary format in DO).
2) When X 002 is pressed, M12 turns ON and remains ON until another key is pressed. Other keys work in the same way. In this way, M10 to M19 turn ON and OFF according to the inputs X000 to X011.
3) When pressing a key, the key sensing output M20 is ON only while it is pressed.


Key sensing output

### 15.2 FNC 71 - HKY / Hexadecimal Input

## Outline

This instruction multiplexes four X-devices and four Y-devices to allow for 16 key ( 0 to F) 4-digit (byte) input. Keys 0 to 9 stores numerical values, and keys A to F represent function keys.
When the extension function is set to ON , hexadecimal keys 0 to F all store their corresponding numerical values.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head X device number to be used (Four devices occupied.)	Bit
(D1•	Head Y device number to be used (Four devices occupied.)	Bit
D2•	Device number storing the numerical input from the 16 keys	16- or 32-bit binary
D3•	Head bit device number storing the key pressing information   (Eight devices are occupied.)	Bit

3. Applicable devices

Operand   Type	Bit Devices								Word Devices													Others				
	System User								Digit Specification				System User					Special   Unit   U $\square \backslash \square \square$	Index			Constant		Real   Number   E	Character String	$\frac{\text { Pointer }}{}$
	X	Y	M		T	C	S	Dप.b	KnX	KnY	KnM	KnS	T	C		D	R		V	Z	Modify	K	H			
(S.)	$\checkmark$																				$\checkmark$					
(D1.)		$\checkmark$																			$\checkmark$					
(D2.)													$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$					
(D3-)		$\checkmark$	$\checkmark$				$\checkmark$	-													$\checkmark$					

A: "D $\square . \mathrm{b}$ " cannot be indexed with index registers ( V and Z ).

## Explanation of function and operation

1. 16-bit operation (HKY)
signals [ $\mathrm{S} \cdot$ to $\mathrm{S} \cdot+3$ ] and [ $\mathrm{D} 1 \cdot$ to $(\mathrm{D} 1 \cdot+3$ ] connected to the 16 key input ( 0 to F ) are scanned.
When a key 0 to 9 is pressed, the corresponding numeric value is shifted into (D2. from the least significant byte, and (D3.) +7 turns ON.
When a key A to F is pressed, the corresponding key press information bit [ D3. to D3.) +5 ] turns ON , and (D3.) +6 turns ON.

1) Input of a numeric value through keys 0 to 9 :

- When an input value is larger than "9999", it overflows from the most significant digit.
- The numeric value input is stored to (D2• in binary.
- The key sensing output $D_{3} \cdot+7$ turns ON when any key 0 to 9 is pressed.

2) Key pressing information for the keys $A$ to $F$ :

- Six devices starting from (D3• corresponding to keys A through F turn ON.
- The key sensing output © ${ }^{(1 \cdot}+6$ turns ON when any key $A$ through $F$ is pressed.

Key	Key pressing information	Key	Key pressing information
A	( $3_{3}$.	D	(D3. +3
B	(D3. +1	E	(D3. +4
C	(D3.) +2	F	(D3. +5

## 2. 32-bit operation (DHKY)

Signals [ $\mathrm{S} \cdot \mathrm{s}$ to $\mathrm{S} \cdot+3$ ] and $[\mathrm{D} 1 \cdot$ to $(\mathrm{D} 1 \cdot+3]$ connected to the 16 key input ( 0 to F ) are scanned.
When a key 0 to 9 is pressed, the corresponding numeric value is shifted into [ $\left.D 2 \cdot+1, D_{2} \cdot\right]$ from the least significant byte, and (D3.)+7 turns ON.
When a key A to F is pressed, the corresponding key press information bit [ (D3•• to (D3.) +5 ] turns ON. and (D3.) +6 turns ON.


1) Input of a numeric value through keys 0 to 9 :

- When an input value is larger than "99,999,999", it overflows from the most significant digit.
- The numeric value input is stored to [D2• +1, D2• ] in binary.
- The key sensing output © ${ }^{-} \cdot+7$ turns ON when any key 0 to 9 is pressed.

2) Key pressing information for the keys A to F: Six devices starting from (D3.) corresponding to keys A to F turn ON. The key sensing output (D3• +6 turns $O N$ when any key $A$ to $F$ is pressed.

## Extension function

When M8167 is set to ON making the extension function valid, the numerical values for keys 0 to F are stored in binary.
When the extension function is valid, the function and operation are the same except for the following.

## 1. 16-bit operation (HKY)

Hexadecimal numerical value data input using keys 0 to $F$ is shifted into (D2• from the least significant byte.

1) Input of a numeric value using keys 0 to $F$ :

- When the input value is larger than "FFFF", it overflows from the most significant digit.
- Example:

When "1 $\rightarrow 2 \rightarrow 3 \rightarrow \mathrm{~B} \rightarrow \mathrm{~F}$ " is input, numerical value "23BF" is stored in (D2• in binary.
"1" overflows when " $F$ " is input.


## 2. 32-bit operation (DHKY)

Hexadecimal numerical value data input using keys 0 to $F$ is shifted into [D2• +1, D2• ] from the least significant byte.

1) Input of a numeric value using keys 0 to $F$ :

- When the input value is larger than "FFFFFFFF", it overflows from the most significant digit.
- Example: When "9 $\rightarrow 2 \rightarrow 3 \rightarrow \mathrm{~B} \rightarrow \mathrm{~F} \rightarrow \mathrm{~A} \rightarrow \mathrm{~F}$ " is input, numerical value "923BFAF" is stored in [(D2•)+1, D2•)] in binary.

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.


## Related devices

Device	Name	Description
M8167	Extension function flag	Turns ON/OFF the hexadecimal data handling function of HKY (FNC 71) instruction. OFF: Ten-keys and function keys ON: Hexadecimal keys
M8029	Instruction execution complete flag	OFF: Data is being output to $\mathrm{D} 1^{\bullet}$ to $\mathrm{D} 1^{\bullet}+3$ or the instruction is not executed yet.   ON: A cycle operation of outputting data to (D1• to (D1• +3 (scan of the keys 0 to $F$ ) is completed.

## Cautions

1. Limitation in the number of instructions

The HKY or DHKY instruction can only be used once in a program.
When the TKY and/or DTKY instruction should be used two or more times, use the indexing $(\mathrm{V}, \mathrm{Z})$ function.
2. When two or more keys are pressed at the same time In such a case, the first key pressed is valid.

## 3. When the command contact turns OFF

Though the contents of (D2• do not change, (D3•) to (D3•• +7 turn OFF.
4. Number of devices occupied

1) Four devices are occupied from the head $X$ device (S• for connecting 16 keys.
2) Four devices are occupied from the head $Y$ device (D1•) for connecting 16 keys.
3) Eight devices are occupied from the head device (D3•) for outputting the key pressing information. Make sure that these devices are not used by other machine controls.

- (D3. to (D3. +5 : Key pressing information for the keys $A$ to $F$
- (D3. +6: Key sensing output for the keys $A$ to $F$
- (D3.- +7 : Key sensing output for the keys 0 to 9

5. Key input receiving timing

HKY and DHKY instructions are executed in synchronization with the operation cycle of the PLC.
8 scan cycles are required to finish reading the keys.
To prevent key input receiving errors caused by the filter delay, utilize the "constant scan mode" and "timer interrupt" function.
6. Caution on use in timer interrupt programs

When the HKY instruction is used in a timer interrupt program, it turns ON M8029 in the interrupt program.
$\rightarrow$ For details, refer to Subsection 36.5.2
7. Output format

Use a transistor output type PLC.

## Program example



The figure below shows an example of the FX3U series main unit (sink input/sink output). For wiring details, refer to the following manual.


### 15.3 FNC 72 - DSW / Digital Switch (Thumbwheel Input)

## Outline



This instruction reads the set value of digital switches.
This instruction can read a set of 4 digits ( $n=K 1$ ) or two sets of 4 digits ( $n=K 2$ ).

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device (X) number connected to a digital switch   (Four devices are occupied.)	Bit
D1•	Head device (Y) number to which the strobe signal is output   (Four devices are occupied.)	Bit
D2•	Device number storing the numeric value of a digital switch   ("n" devices are occupied.)	16-bit binary
n	Total number of 4-digit switch sets (4 digits/set) ( $\mathrm{n}=1$ or 2 )	16 -bit binary

3. Applicable devices

Oper-   and   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C		S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S.	$\checkmark$																			$\checkmark$					
(D1-		$\checkmark$																		$\checkmark$					
(D2.)													$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					
n																					$\checkmark$	$\checkmark$			

©1: This function is supported only in FX3G/FX3GC/FX3U/FX3uc PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (DSW)

The value of each digital switch connected to $S \cdot$ is input by the time division method (in which the value is input in turn from the 1 st digit by the output signal at the interval of 100 ms ), and stored to (D2. .


1) Data $D 1 \cdot$

- A numeric value from 0 to 9999 (up to 4 digits) can be read.
- A numeric value is stored in binary format.
- The first set is stored to D2• , and the second set is stored to D2•+1.

2) Specification of the number of sets ("n")

- When using one set of 4 digits [ $n=k 1$ ]

A 4-digit BCD digital switch connected to $\mathrm{S} \cdot$ to $\mathrm{S}^{\cdot}+3$ is read in turn by the strobe signal (D1•) to (D1- +3 , and stored in binary format to (D2•).

- When using two sets of 4 digits [ $n=k 2$ ]

A 4-digit BCD digital switch connected to $S \cdot$ to $S^{\cdot}+3$ is read in turn by the strobe signal (D1• to (D1- +3 , and stored in binary format to (D2•).
A 4-digit $B C D$ digital switch connected to $S^{\bullet}+4$ to $S^{\cdot}+7$ is read in turn by the strobe signal D1• to D1•• +3 , and stored in binary format to $\mathrm{D} 2 \cdot+1$.

## Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Device	Name	Description	
M8029	Instruction execution com-   plete flag	OFF:   ON:	Data is being output to $\left(\begin{array}{l}\text { A cycle operation of outputting data to } \\ \text { digits) is completed. }\end{array}\right.$

## Cautions

1. When the command contact turns OFF

Though the contents of (D2• do not change, all of (D1• to D1• $^{-}+3$ turn OFF.
2. Number of occupied devices

1) When two sets of 4 digits $(\mathrm{n}=\mathrm{K} 2)$ are used, two devices are occupied starting from (D2•).
2) When one set of 4 digits is used, four devices are occupied starting from S. When two sets of 4 digits are used, eight devices are occupied starting from S•.
3. When connecting a digital switch of up to 3 digits

It is not necessary to wire the strobe signal (output for digit specification) (D1• to unused digits. Because unused digits are occupied also by this instruction, however, they cannot be used for any other purpose. Make sure to leave unused outputs are left vacant.
4. Transistor output type is recommended

For continuously receiving digital switch values, make sure to use a transistor output type PLC.
$\rightarrow$ For a relay type PLC, refer to "4. How to use this instruction in a relay output type PLC" later.

## 5. Digital switches

Use BCD output type digital switches.

## Program example

In the program example shown below, digital switches are connected to inputs starting from X010 and outputs from Y010.

## 1. Program

	(5.)		(1)	( 22.	n
X000	$\begin{gathered} \text { FNC } 72 \\ \text { DSW } \end{gathered}$	X010	Y010	D 0	K 1

## 2. Connection diagram

The figure below shows an example of the FX3U series main unit (sink input/sink output).
For wiring details, refer to the Hardware Edition of each PLC.

3. Timing chart


While X000 is ON, Y010 to Y013 turn ON in turn at every 100 ms . After one cycle is finished, the execution complete flag M8029 turns ON.

## 4. How to use this instruction in a relay output type PLC

By providing a "digital switch read input", this instruction can be used in a relay output type PLC.
When the push button switch (X000) is pressed, DSW (FNC 72) instruction executes a series of operations. Accordingly, with regard to this program, it is not necessary to consider the relay contact life even if Y010 to Y013 are relay outputs.


1) While MO (digital switch read input) is ON, DSW (FNC 72) is driven.
2) DSW (FNC 72) completes one cycle of operation, and remains driven until the execution complete flag (M8029) turns ON.

### 15.4 FNC 73 - SEGD / Seven Segment Decoder

## Outline

This instruction decodes data, and turns the seven-segment display unit (1 digit) ON.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head word device to be decoded	16 -bit binary
D.	Word device number storing the data to be displayed in the seven-segment display unit	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   UपIGロ	Index			Constant		Real   Number   E	Character String$\square$	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S.								$\checkmark$																
(D.)									$\checkmark$															

## Explanation of function and operation

## 1. 16-bit operation (SEGD and SEGDP)

" 0 " to "F" (hexadecimal numbers) in low-order 4 bits (1 digit) of $S \cdot$ are decoded to data for the seven-segment display unit, and stored in the low-order 8 bits of $D \cdot$.

2. Seven-segment decoding table

S.					Seven-segment configuration	(D.)											Display data
Hexadecimal number	b3	b2	b1	b0		B15	...	B8	B7	B6	B5	B4	B3	B2	B1	B0	
0	0	0	0	0		-		-	0	0	1	1	1	1	1	1	[1]
1	0	0	0	1		-		-	0	0	0	0	0	1	1	0	I
2	0	0	1	0		-		-	0	1	0	1	1	0	1	1	■
3	0	0	1	1		-		-	0	1	0	0	1	1	1	1	$\square$
4	0	1	0	0		-		-	0	1	1	0	0	1	1	0	I-1
5	0	1	0	1		-		-	0	1	1	0	1	1	0	1	ミ
6	0	1	1	0	B0	-		-	0	1	1	1	1	1	0	1	E
7	0	1	1	1	B5 B6 B1	-		-	0	0	1	0	0	1	1	1	17
8	1	0	0	0	B4 B2	-		-	0	1	1	1	1	1	1	1	-
9	1	0	0	1	B3	-		-	0	1	1	0	1	1	1	1	E
A	1	0	1	0		-		-	0	1	1	1	0	1	1	1	F1
B	1	0	1	1		-		-	0	1	1	1	1	1	0	0	I-I
C	1	1	0	0		-		-	0	0	1	1	1	0	0	1	$\underline{\square}$
D	1	1	0	1		-		-	0	1	0	1	1	1	1	0	-1
E	1	1	1	0		-		-	0	1	1	1	1	0	0	1	E
F	1	1	1	1		-		-	0	1	1	1	0	0	0	1	F

The head bit device or the least significant bit of a word device is handled as BO.

## Caution

1. Number of occupied devices

Low-order 8 bits of $D \cdot$ are occupied, and high-order 8 bits do not change.

### 15.5 FNC 74 - SEGL / Seven Segment With Latch

## Outline



This instruction controls one or two sets of 4-digit seven-segment display units having the latch function.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$S^{\bullet}$	Head word device converted into the BCD format	16 -bit binary
$\left(D^{\cdot}\right.$	Head Y number to be output	Bit
n	Parameter number [setting range: $\mathrm{K} 0(\mathrm{H} 0)$ to $\mathrm{K} 7(\mathrm{H} 7)]$	$16-$ bit binary

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)		$\checkmark$																	$\checkmark$					
n																				$\checkmark$	$\checkmark$			

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (SEGL)

The 4-digit numeric value stored in S. is converted into BCD data, and each digit is output to the seven-segment display unit with the BCD decoder by the time division method.


## When using one set of 4 digits ( $\mathrm{n}=\mathrm{K} 0$ to K3)

$\rightarrow$ For selection of " n ", refer to Subsection 15.5.2.

1) Data and strobe signal

A 4-digit numeric value stored in $S \cdot$ is converted from binary into BCD, and each digit is output in turn from (D.) to (D. +3 by the time division method.

The strobe signal is output in turn from (D. +4 to $\quad \mathrm{D} \cdot+7$ by the time division method also to latch one set of 4digit seven-segment display unit.
2) For $S \cdot$, binary data ranging from 0 to 9999 is valid.
3) Example of connecting one seven-segment display unit

The figure below shows an example of the FX3U series main unit (sink output).
For wiring details, refer to the Hardware Edition of each PLC.


When using two sets of 4 digits ( $\mathrm{n}=\mathrm{K} 4$ to K 7 )
$\rightarrow$ For selection of " n ", refer to Subsection 15.5.2.

1) Data and strobe signal
a) 1 st set of 4 digits

A 4-digit numeric value stored in $S^{\cdot}$ is converted from binary into $B C D$, and its each digit is output in turn from (D. to $D^{\cdot}+3$ by the time division method.
The strobe signal is output in turn from (D. +4 to $D^{\cdot}+7$ by the time division method also to latch the first set of 4-digit seven-segment display unit.
b) 2 nd set of 4 digits

A 4-digit numeric value stored in $S \cdot+1$ is converted from binary into $B C D$, and its each digit is output in turn from $D \cdot+10$ to $D+13$ by the time division method.
The strobe signal is output in turn from $D^{\cdot}+4$ to $D^{\cdot}+7$ by the time division method also to latch the second set of 4-digit seven-segment display unit. (The strobe signal outputs $D \cdot+4$ to $D \cdot+7$ are shared by the 1 st and 2 nd sets.)
2) For $S \cdot$ and $S \cdot+1$, binary data ranging from 0 to 9999 is valid.
3) Example of connecting two seven-segment display units

The figure below shows an example of the FX3U series main unit (sink output).
For wiring details, refer to the Hardware Edition of each PLC.


## Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8029	Instruction execution com-   plete flag	Turns ON when output of 4 digits is finished.

## Cautions

1. Time to update the 4-digit seven-segment display

The scan time (operation cycle) multiplied by 12 is required to update (one or two sets of) the 4-digit display.
2. Operation when the command input turns OFF

While the command input is ON, the operation is repeated.
When the command contact is set to OFF in the middle of an operation, the operation is paused. When the command contact is set to ON again, the operation is started from the beginning.
3. Number of occupied devices

When one set of 4 digits is used:
1 device is occupied from the head device specified in $S \cdot$.
8 devices are occupied from the head device specified in (D. . Even if the number of digits is smaller than 4, unused devices cannot be used for any other purpose.
When two sets of 4 digits are used:
2 devices are occupied from the head device specified in S. .
Twelve devices are occupied from the head device specified in (D. Even if the number of digits is smaller than 4 , unused devices cannot be used for any other purpose.
4. Scan time (operation cycle) and the display timing

SEGL instruction is executed in synchronization with the scan time (operation cycle) of the PLC.
For achieving a series of display, the scan time of the PLC should be 10 ms or more.
If the scan time is less than 10 ms , use the constant scan mode so that the scan time exceeds 10 ms .
5. Caution on use in timer interrupt programs

When the SEGL instruction is used in a timer interrupt program, it turns ON M8029 in the interrupt program.
$\rightarrow$ For details, refer to Subsection 36.5.2.
6. Output type of the PLC

Use a transistor output type PLC.

### 15.5.1 How to select a seven-segment display unit

When selecting a seven-segment display unit based on its electrical characteristics, refer to the manual below:
$\rightarrow$ For the wiring, refer to the Hardware Edition of the PLC used.

1. Points to be checked for the seven-segment specifications
1) The input voltage and current characteristics of the data input and strobe signal satisfy the output specifications of the PLC.

- The input signal voltage (Lo) is approximately 1.5 V or less
- The input voltage is from 5V DC to 30V DC

2) The seven-segment display unit has the BCD decoding and latch functions

### 15.5.2 How to select parameter " n " based on seven-segment display specifications

The value set to the parameter " n " varies depending on the signal logic of the seven-segment display. Select " n " as described below.
The check column is provided at the bottom of the table. Check a corresponding type of logic (positive or negative), and utilize it for parameter setting.

1. Role of the parameter " $n$ "

The parameter " $n$ " should be determined according to the data input logic (positive or negative) of the seven-segment display unit, the logic (positive or negative) of the strobe signal and the number of sets of 4 digits to be controlled ( 1 or 2).
2. Checking the output logic of the PLC

Transistor outputs in PLCs are classified into the sink output type and source output type. The table below shows the specifications for each type.

Logic	Negative logic	Positive logic
Output type	Sink output (- common)	Source output (+ common)
Output circuit		
Description	Because transistor output (sink) is provided, the output becomes low level $(0 \mathrm{~V})$ when the internal logic is "1 ( ON output)". This is called "negative logic".	Because transistor output (source) is provided, the output becomes high level $(\mathrm{V}+$ ) when the internal logic is "1 ( ON output)". This is called "positive logic".
Check		

3. Confirming the logic of the seven-segment display unit
1) Data input

Logic	Negative logic	Positive logic
Timing chart	( ) :	
Description	BCD data at low level	BCD data at high level
Check		

2) Strobe signal

Logic	Negative logic	Positive logic
Timing chart		
Description	Data latched at low level is held.	Data latched at high level is held.
Check		

4. Setting the parameter "n"

Set a proper value according to the logic (positive or negative) of the PLC and the logic (positive or negative) of the seven-segment display unit as shown in the table below:

PLC output logic	Data input	Strobe signal	Parameter "n"	
			4 digits $\times 1$ set	4 digits $\times 2$ sets
Negative logic	Negative logic (match)	Negative logic (match)	0	4
		Positive logic (mismatch)	1	5
	Positive logic (mismatch)	Negative logic (match)	2	6
		Positive logic (mismatch)	3	7
Positive logic	Positive logic (match)	Positive logic (match)	0	4
		Negative logic (mismatch)	1	5
	Negative logic (mismatch)	Positive logic (match)	2	6
		Negative logic (mismatch)	3	7

5. Explanation of the parameter " $n$ " setting method according to an actual example

When the following seven-segment display unit is selected, " $n$ " should be "1" when one display unit is connected (4 digits $\times 1$ set) or " 5 " when two display units are connected ( 4 digits $\times 2$ sets).

1) Transistor output of PLC

- Sink output = Negative logic
- Source output = Positive logic

2) Seven-segment display unit

- Data input = Negative logic
- Strobe signal = Positive logic

PLC output logic	Data input	Parameter " n "		
			4 digits $\times \mathbf{1}$ set	4 digits $\times \mathbf{2}$ sets
Negative logic	Negative logic (match)	Negative logic (match)	0	4
		Positive logic (mismatch)	1	5
	Positive logic (mismatch)	Negative logic (match)	2	6
		Positive logic (mismatch)	3	7

### 15.6 FNC 75 - ARWS / Arrow Switch

## Outline



This instruction inputs data through arrow switches used for shifting the digit and incrementing/decrementing the numeric value in each digit.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head bit device number to be input	Bit
D1•	Word device number storing data converted into BCD	16-bit binary
D2•	Head bit device $(\mathrm{Y})$ number connected to seven-segment display unit	Bit
n	Number of digits of seven-segment display unit [setting range: K 0 to K3]	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\G口	Index			Con-   stant		Real Number E	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S•)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	-												$\checkmark$					
(D1-												$\checkmark$												
(D2.)		$\checkmark$																	$\checkmark$					
n																				$\checkmark$	$\checkmark$			

A: "D $\square . b$ " cannot be indexed with index registers ( $V$ and $Z$ ).

## Explanation of function and operation

Four arrow switches are connected to the inputs $S \cdot$ to $S \cdot+3$, a seven-segment display unit having the BCD decoder is connected to the outputs (D2•) to (D2• +7, and a numeric value is input to (D1•).

1. 16-bit operation (ARWS)
(D1-) actually stores a 16-bit binary value ranging from 0 to 9999 , but the value is expressed in the BCD format in the explanation below for convenience.
When the command input is set to ON, the ARWS instruction executes the following operation.


## Contents of the display and operation part



1) Specifying the number of digits of the seven-segment display unit having the BCD decoder $n$ In the explanation below, " n " is set to " 4 " (up to the $10^{3}$ digit).
2) Operation of the digit selection switches (S•+2 and $S \cdot+3$ )

- Operation when the lower digit input $S \cdot+2$ turns ON

Every time the lower digit switch is pressed, the digit specification changes in the way " $10^{3} \rightarrow 10^{2} \rightarrow 10^{1} \rightarrow 10^{0}$ $\rightarrow 10^{3 \prime}$.

- Operation when the higher digit input $\mathrm{S} \cdot+3$ turns ON

Every time the higher digit switch is pressed, the digit specification changes in the way " $10^{3} \rightarrow 10^{0} \rightarrow 10^{1} \rightarrow 10^{2}$ $\rightarrow 10^{3}$ ".
3) Operation of the LED for displaying a selected digit ( $\mathrm{D} 2 \cdot+4$ to $\mathrm{D} 2 \cdot+7$ )

A specified digit can be displayed by the LED offered by the strobe signals (D2•+4 to (D2•-7.
4) Operation of the switches for changing data in each digit (S. and S. +1) In a digit specified by a digit selection switch described above, data is changed as follows:

- When the increment input turns ON

Every time the increment switch is pressed, the contents of $D 1 \cdot$ change in the way " $0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 8 \rightarrow 9$ $\rightarrow 0 \rightarrow 1$ ".

- When the decrement input turns ON

Every time the decrement switch is pressed, the contents of $D 1 \cdot$ change in the way " $0 \rightarrow 9 \rightarrow 8 \rightarrow 7 \ldots 1 \rightarrow 0$ $\rightarrow 9 "$.
The contents can be displayed in the seven-segment display unit.
As described above, a target numeric value can be written to D1• using a series of operation while looking at the seven-segment display unit.

## Cautions

1. Setting of the parameter " $n$ "

Refer to the explanation of parameter setting in the SEGL (FNC 74) instruction. The setting range is from 0 to 3 for the ARWS instruction.
$\rightarrow$ For the parameter setting, refer to Subsection 15.5.2.

## 2. Output type of the PLC

Use a transistor output type PLC.
3. Scan time (operation cycle) and the display timing

ARWS instruction is executed in synchronization with the scan time (operation cycle) of the PLC.
For achieving a series of display, the scan time of the PLC should be 10 ms or more.
If the scan time is less than 10 ms , use the constant scan mode so that the scan time exceeds 10 ms .
4. Number of occupied devices

1) Four input devices are occupied starting from S.
2) Eight output devices are occupied starting from (D2.).
5. Limitation in the number of the instruction

ARWS instruction can only be used once in a program.
When ARWS instruction should be used two or more times, use the indexing $(V, Z)$ function.

## Program example

## 1. When changing the timer number and displaying the current value

1) Specifying the timer number using a 3-digit digital switch

2) Setting the constant of the timer using the arrow switches


## Explanation of operation

Every time the read/write key is pressed, the read/write LED lights alternately.

- In reading

Set the timer number using the digital switch, and then press the set switch (X003).

- In writing

Set a numeric value using the arrow switches while looking at the seven-segment display unit, and then press the switch X003.

Program


### 15.7 FNC 76 - ASC / ASCII Code Data Input

## Outline

## $F X_{3} U$

Ver.2.20 $\quad \Rightarrow$


This instruction converts a half-width alphanumeric character string into ASCII codes. Use this instruction for selecting one among two or more messages and displaying it on an external display unit.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S	Eight half-width alphanumeric characters input from a personal computer*1	Character string   (only ASCII codes)
D•	Head word device number storing ASCII data	16 -bit binary

*1. The number of characters is fixed to 8 . When ASCII code less than 8 characters is input, the space character (H20) is stored in remaining $D \cdot$
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S																							$\checkmark^{* 2}$	
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

*2. It is not necessary to attach quotes (" ") to the character string specified in S.

## Explanation of function and operation

## 1. 16 -bit operation (ASC)

The half-width alphanumeric characters specified in $S$ are converted into ASCII codes, and each ASCII code is transferred in turn to $D \cdot$.

- (S) can handle half-width characters A to Z, 0 to 9 and symbols (, but cannot handle regular-width characters). A character string is entered when a program is created with a programming tool.
- D. stores converted ASCII codes in the order of low-order 8 bits and high-order 8 bits by 2 characters/byte at one time.



## Extension function

When M8161 is set to ON for making the extension function valid, a half-width alphanumeric character string specified in $S$ is converted into ASCII codes, and transferred in turn only to low-order 8 bits (1 byte) of D.

"HOO" is stored in high-order 8 bits.

	D.		(S)
	High-order 8 bits	Low-order 8 bits	Character string
(D.)	00	41	A
(D.)+1	00	42	B
(D.)+2	00	43	C
(D.)+3	00	44	D
(D.) +4	00	45	E
(D.)+5	00	46	F
(D.)+6	00	47	G
(D.)+7	00	48	H

## Related devices

Device	Name	Description
M8161	Extension function flag	8-bit processing mode for ASC (FNC 76), RS (FNC 80), ASCI (FNC 82), HEX (FNC 83) and   CCD (FNC 84) instructions
		OFF: Two characters are stored to low-order 8 bits and high-order 8 bits in this order at one   time (2 characters/word).
		ON: One character is stored to low-order 8 bits at one time (1 character/word).

## Caution

1. Number of occupied devices
1) While the extension function is OFF

- Four devices are occupied from D. .

2) While the extension function is $O N$

- Eight devices are occupied from D. .

2. When using RS (FNC 80), ASCI (FNC 82), HEX (FNC 83) and/or CCD (FNC 84) instructions

The extension function flag M8161 is also used for other instructions.
When using an instruction described above and the ASC instruction in the same program, make sure to set M8161 to ON or OFF just before the ASC instruction so that M8161 does not apply to another instruction.

### 15.8 FNC 77 - PR / Print (ASCII Code)

## Outline

$F X_{3 U}$
Ver.2.20 $\quad$ ㄷ
This instruction outputs ASCII code data to outputs $(\mathrm{Y})$ in parallel.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\left(S^{\bullet}\right.$	Head device number storing ASCII code data	Character string   (only ASCII codes)
$(D \cdot$	Head output $(Y)$ number to which ASCII code data is output	Bit

3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   UपIG■	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.													$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)		$\checkmark$																		$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (PR)

ASCII codes stored of $S \cdot$ to $S^{\cdot}+3$ are output to $D \cdot$ to $D \cdot+7$ in turn by one character at a time in the time division method.


Eight bytes are sent from the low-order 8 bits ( 1 byte) of $S \cdot$ first to the high-order 8 bits ( 1 byte) of $S \cdot+3$ at the end. When data is stored from $S \cdot$ to $S \cdot+3$ as shown in the table below, data is sent in the order of $A$ to H of " 2 .
Timing chart".

$\mathrm{S} \cdot$		$\mathrm{S} \cdot+1$		$\mathrm{~S} \cdot+2$		$\mathrm{~S} \cdot+3$	
high-order 8 bits	low-order 8 bits	high-order 8 bits	low-order 8 bits	high-order 8 bits	low-order 8 bits	high-order 8 bits	
low-order 8 bits							
$\mathrm{B}(\mathrm{H} 42)$	$\mathrm{A}(\mathrm{H} 41)$	$\mathrm{D}(\mathrm{H} 44)$	$\mathrm{C}(\mathrm{H} 43)$	$\mathrm{F}(\mathrm{H} 46)$	$\mathrm{E}(\mathrm{H} 45)$	$\mathrm{H}(\mathrm{H} 48)$	

## 2. Timing chart

Command input $\qquad$


## Types of output signals

- D• to $D^{-}+7$ : Sending output (D• handles low-order bits, and $D^{\circ}+7$ handles high-order bits.)
- D. +8 : Strobe signal
- D• +9: Execution flag which operates as shown in the above timing chart


## Extension function

## 1. 16-byte serial output

The number of output characters varies depending on the ON/OFF status of the special auxiliary relay M8027.
While M8027 is OFF, 8-byte serial output (fixed to 8 characters) is executed. While M8027 is ON, 16-byte serial output (1 to 16 characters) is executed.
In the example shown below, up to 16 characters (1 character/byte) are output to the display unit (external display unit A6FD*1, for example).
It is supposed that data to be displayed is stored in hexadecimal codes in D300 to D307.

1) Program

2) Connection example of the external display unit A6FD*1

The PLC shown in the example below is the FX2N-16EYT (sink output) connected to the FX3U-32M $\square$.
PLC

*1. A6FD was distributed only inside Japan, however, production of the external display unit A6FD was terminated in November 2002.
3) Timing chart (while M8027 is ON)

*2. If "H00 (NULL code)" is contained in the data (16 characters), the character just before "H00 (NULL code)" is handled as the last character.

## Related devices

Device	Name		Description
M8027*3	PR mode	OFF:   ON:	8-byte serial output (fixed to 8 characters)   16-byte serial output (1 to 16 characters)

*3. Cleared when the PR mode is changed from RUN to STOP.

## Cautions

1. Command input and instruction operation

While the command input is ON : Even if the command input is continuously ON, execution is completed after a series of outputs. M8029 turns ON when the command input turns OFF after M8027 turns ON and execution is completed.
While the command input is OFF: All outputs are OFF.
2. Relationship with the scan time (operation cycle)

This instruction is executed in synchronization with the scan time.
If the scan time is short, the constant scan mode can be used. If the scan mode is too long, the timer interrupt function can be used.
. Output type of the PLC
Use a transistor output type PLC.
4. When " 00 H (NULL code)" is contained in the data (while M8027 is ON)

The instruction is executed completely, and the data after " 00 H " is not output.
M8029 remains ON during one operation cycle.

## 5. Limitation in number of instructions

The PR instruction can only be executed twice in a program.
If it is necessary to use the PR instruction 3 times or more, use the indexing $(\mathrm{V}, \mathrm{Z})$ function in programming.
6. Caution on use in timer interrupt programs

When the PR instruction is used in a timer interrupt program, it turns ON M8029 in the interrupt program.
$\rightarrow$ For details, refer to Subsection 36.5.2.

### 15.9 FNC 78 - FROM / Read From A Special Function Block

## Outline

## $F X_{3 G}$



Ver. $2.20 \mathrm{~m} \quad \mathrm{~b}$
F×3UC Ver. $1.00 \mathrm{H} \Rightarrow$
This instruction reads the contents of buffer memories (BMF) in a special function unit/block attached to a PLC.
When a large capacity of buffer memory (BFM) data is read by this instruction, a watchdog timer error may occur. When bad effect is not given to the control even if data to be read is divided, use RBFM (FNC278) instruction.
$\rightarrow$ For RBFM (FNC278) instruction, refer to Section 31.1.

1. Instruction format

	FNC 78		16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
D	FROM	P	9 steps	FROM	Continuous Operation	17 steps	DFROM	Continuous Operation
				FROMP	Pulse (Single) Operation		DFROMP	Pulse (Single) Operation

## 2. Set data

Operand Type	Description	Data Type
m 1	Unit number of a special extension unit/block   (K0 to K7 from the right side of the main unit)	16- or 32-bit binary
m 2	Transfer source buffer memory (BFM) number	16 - or 32-bit binary
$\mathrm{D} \cdot$	Transfer destination device number	16 - or 32-bit binary
n	Number of transfer points	16 - or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit$\text { U } \square \text { IG } \square$	Index			Constant		Real Number E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
m1														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
m2														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
D•									$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$											
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (FROM and FROMP)

$\rightarrow$ For the common items between FROM instruction and TO instruction, refer to Subsection 15.9.1.

Special extension unit/block (BFM) $\rightarrow$ PLC (word device)
" n "-point 16 -bit data starting from the buffer memory (BFM) \# m2 inside a special function unit/block No. m1 are transferred (read) to "n"-point 16-bit data starting from (D• inside a PLC.


## 2. 32-bit operation (DFROM and DFROMP)

## Special extension unit/block (BFM) $\rightarrow$ PLC (word device)

" n " 32-bit data starting from the buffer memory (BFM) \# [m2+1, m2] inside a special extension unit/block No. m 1 are transferred (read) to "n" devices starting from [D• +1, D• ] inside a PLC.


## Related devices

Device	Name	Description
		Disables or enables interrupts while FROM/TO instruction is executed.   $\rightarrow$ For details, refer to "Acceptance of interrupts while FROM/TO instruction is executed
(M8028)" on the next page.		

## Cautions

- Digit specification in bit device D•

For the 16-bit operation instruction, specify K1 to K4. For the 32-bit operation instruction, specify K1 to K8.

- Note that the 32-bit values [m1+1, 1], [m2+1, m2] and [n+1, n] are valid when D or R is specified as "m1", "m2" or " n " in a 32 -bit instruction.
In the case of "DFROM D0 D2 D100 R0", "m1" is [D1, D0], "m2" is [D3, D2], and "n" is [R1, R0].


## Program examples

In programs, the contents of buffer memories (BFMs) in special extension units/blocks are read (transferred) to data registers (D), extension registers (R) and auxiliary relays (M) with digit specification using the FROM instruction and direct specification of buffer memories ${ }^{* 1}$.
*1. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
Example: When the BFM\#4 (abnormal station information) in the CC-Link/LT master unit (whose unit number is fixed to "0") built in the FX3Uc-32MT-LT(-2) is read to D0 -In case of FROM instruction

-In case of MOV instruction


Example: When the BFMs\#0 to 3 (remote station connection information) in the CC-Link/LT master unit (whose unit number is fixed to "0") built in the FX3UC-32MT-LT(-2) are read to D10 to D13
-In case of FROM instruction

| FNC 78 <br> FROMP | K0 | K0 | D10 | K4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit <br> No. 0 | BFM\#0 | Transfer <br> destination | Number of <br> transfer <br> points |  |

-In case of BMOV instruction


### 15.9.1 Common items between FROM instruction and TO instruction (details)

## Contents specified by operands

1. Unit number "m1" of a special extension unit/block

Use the unit number to specify which equipment FROM/TO instruction works for.
Setting range: K0 to K7


A unit number is automatically assigned to each special extension unit/block connected to a PLC.
The unit number is assigned in the way "No. $0 \rightarrow$ No. $1 \rightarrow$ No. $2 \ldots$... starting from the equipment nearest to the main unit.
When the main unit is the FX3UC-32MT-LT(-2), the unit number is assigned in the way "No. $1 \rightarrow$ No. $2 \rightarrow$ No. $3 \ldots$..." starting from the equipment nearest to the main unit because the CC-Link/LT master is built into the FX3UC-32MT-LT (-2).

## 2. Buffer memory (BFM) number "m2"

Up to 32767 16-bit RAM memories are built into a special extension unit/block, and they are called buffer memories. Buffer memory numbers range from " 0 " to " 32766 " and their contents vary depending on the function of the extension equipment.
Setting range: K0 to K32766

- When BFMs are handled in a 32-bit instruction, a specified BFM stores low-order 16 bits, and a consecutive BFM stores high-order 16-bits.

High-order   16 bits
Low-order   16 bits    BFM\#10 BFM\#9$\leftarrow$ Specified BFM number

3. Number of transfer points " $n$ "

Setting range: K1 to K32767
Specify the number of transferred word devices in "n".
" $n=2$ " in a 16 -bit instruction indicates the same meaning with " $n=1$ " in a 32 -bit instruction.


In the case of " $\mathrm{n}=5$ " in a 16-bit instruction


In the case of " $\mathrm{n}=2$ " in a 32-bit instruction

## Acceptance of interrupts while FROM/TO instruction is executed (M8028)

## 1. While M8028 is OFF

While a FROM/TO instruction is being executed, interrupts are automatically disabled. Input interrupts and timer interrupts are not executed.
Interrupts generated during the execution of FROM/TO instructions are immediately executed after the FROM/TO instruction completes.
FROM/TO instructions can be used in interrupt programs.
2. While M8028 is ON

When an interrupt is generated during the execution of a FROM/TO instruction, the FROM/TO operation is momentarily paused while the interrupt program executes. FROM/TO instructions cannot be used in interrupt programs.

## Action against watchdog timer error

1. Cause of watchdog timer error

A watchdog timer error may occur in the following cases:

1) When a large number of special extension equipment is connected

When a large number of special extension equipment (such as positioning units, cam switches, link units and analog units) are connected, considerable time may be required to initialize buffer memories when the PLC mode is set to RUN, the operation time may be long, and a watchdog timer error may occur.
2) When many FROM/TO instructions are driven at the same time When many FROM/TO instructions are driven at the same time or when many buffer memories are transferred, the operation time may be long, and a watchdog timer error may occur.
2. Countermeasures

1) Using RBFM (FNC278) or WBFM (FNC279) instruction [Ver. 2.20 or later]

FXзис
Ver.2.20 $\mathrm{m} \Rightarrow$
$\rightarrow$ For divided BFM read [RBFM (FNC278) instruction], refer to Section 31.1.
$\rightarrow$ For divided BFM write [WBFM (FNC279) instruction], refer to Section 31.2.
2) Changing the watchdog timer time

By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time can be changed. When the program shown below is input, the sequence program after the input will be monitored with the new watchdog timer time.

3) Changing $\mathrm{FROM} / \mathrm{TO}$ instruction execution timing

Shift FROM/TO instruction execution timing to make the operation time shorter.

## Handling of special extension units/blocks

For the special extension unit/block connection method, number of connectable special extension units/blocks and handling of I/O numbers, refer to the manuals of the PLC and each special extension unit/block.

### 15.10 FNC 79 - TO / Write To A Special Function Block

## Outline



This instruction writes data from a PLC to buffer memories (BFM) in a special function unit/block.
When a large capacity of data is written to buffer memories (BFM) by this instruction, a watchdog timer error may occur. When splitting the data to be written does not affect the control, use WBFM (FNC279) instruction.
$\rightarrow$ For WBFM (FNC279) instruction, refer to Section 31.2.

1. Instruction format

	FNC 79		16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
D	TO	P	9 steps		Continuous Operation		17 steps	DTO	Continuous Operation
				TOP	Pulse (Single) Operation			DTOP	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
m 1	Unit number of a special extension unit/block   (K0 to K7 from the right side of the main unit)	16- or 32-bit binary
m 2	Transfer destination buffer memory (BFM) number	$16-$ or 32-bit binary
$\mathrm{S} \cdot$	Device number storing the transfer source data	$16-$ or 32-bit binary
n	Number of transfer points	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IGロ	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
m1														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
m2														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
S ${ }^{\text {c }}$									$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$											
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (TO and TOP)
$\rightarrow$ For the common items between FROM instruction and TO instruction, refer to Subsection 15.9.1.
PLC (word device) $\rightarrow$ Special extension unit/block (BFM)
"n"-point 16-bit data starting from S. inside a PLC are transferred (written) to "n"-point buffer memories starting from the buffer memory (BFM) \# m2 inside a special function unit/block No. m1.


## 2. 32-bit operation (DTO and DTOP)

## PLC (word device) $\rightarrow$ Special extension unit/block (BFM)

"n"-point 32-bit data starting from [S•, S•+1] inside a PLC are transferred (written) to "n"-point buffer memories starting from the buffer memory (BFM) \# [m2+1, m2] inside a special extension unit/block No. m1.


## Related devices

Device	Name	Description
		Disables or enables interrupts while FROM/TO instruction is executed.   $\rightarrow$ For details, refer to "Acceptance of interrupt while FROM/TO instruction is executed   M8028
(M8028)" in Subsection 15.9.1.		

## Cautions

- Digit specification in bit device $S \cdot$

For the 16-bit operation instruction, specify K1 to K4. For the 32-bit operation instruction, specify K1 to K8.

- Note that the 32 -bit values $[m 1+1,1],[m 2+1, m 2]$ and $[n+1, n]$ are valid when $D$ or $R$ is specified as " $m 1$ ", "m2" or " n " in a 32-bit instruction. In the case of "DTO D0 D2 D100 R0", "m1" is [D1, D0], "m2" is [D3, D2], and "n" is [R1, R0].


## Program examples

In programs, the contents of data registers (D), extension registers (R), auxiliary relays (M) with digit specification and constants (K and H) are written (transferred) to buffer memories (BFMs) in special extension units/blocks using the TO instruction and direct specification of buffer memories ${ }^{* 1}$.
*1. This function is supported only in FX3U/FX3UC PLCs.
Example: When writing " HO " to the BFM\#27 (command) in the CC-Link/LT master unit (whose unit number is fixed to " 0 ") built in the FX3Uc-32MT-LT(-2) -In case of TO instruction

M1	FNC 79   TOP	K0	K27	H0
Unit   No. 0	BFM\#27	K1	Transfer   source   data	Number of   Transfer   points

-In case of MOV instruction

M1	FNC 12 MOVP	H0	U0\G27
		sourc	Unit No. 0 BFM\#27

## 16. External FX Device - FNC 80 to FNC 89

FNC 80 to FNC 89 provide control instructions for special adapters mainly connected to serial ports.
PID control loop instruction is included in this group.

FNC No.	Mnemonic	Symbol	Function	Reference
80	RS	$\begin{array}{\|} \mathrm{H} & \begin{array}{l\|l\|l\|l\|l\|} \hline \mathrm{RS} & \mathrm{~s} & \mathrm{~m} & \mathrm{D} & \mathrm{n} \\ \hline \end{array} \mathbf{~} \end{array}$	Serial Communication	Section 16.1
81	PRUN	$\text { Hゅ } \quad \left\lvert\, \begin{array}{\|l\|l\|l\|} \text { PRUN } & \mathrm{S} & \mathrm{D} \\ \hline \end{array}\right.$	Parallel Run (Octal Mode)	Section 16.2
82	ASCI	  $A S C I$ $S$ $D$ n	Hexadecimal to ASCII Conversion	Section 16.3
83	HEX	HEX S D n	ASCII to Hexadecimal Conversion	Section 16.4
84	CCD	$C C D$ S D n	Check Code	Section 16.5
85	VRRD	$\begin{array}{\|r\|r\|r\|} \hline \text { VRRD } & \mathrm{S} & \mathrm{D} \\ \hline \end{array}$	Volume Read	Section 16.6
86	VRSC	$\begin{array}{\|r\|l\|l\|} \hline & \text { VRSC } & \mathrm{S} \\ \hline \end{array}$	Volume Scale	Section 16.7
87	RS2	RS 2 S m D n n 1	Serial Communication 2	Section 16.8
88	PID	HЮ PID $\mathrm{Sl}_{1} \mathrm{~S} 2\|\mathrm{~S} 3\| \mathrm{D} \mid$	PID Control Loop	Section 16.9
89	-			-

### 16.1 FNC 80 - RS / Serial Communication

## Outline

This instruction sends and receives data using non-protocol communication by way of a serial port (only ch1) in accordance with RS-232C or RS-485 provided in the main unit.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
9 steps	RS	Continuous Operation


32-bit Instruction	Mnemonic	Operation Condition
	-	

2. Set data

Operand type	Description	Data type
S•	Head device of data registers storing data to be sent	$16-$ bit binary or   character string
m	Number of bytes of data to be sent [setting range: 0 to 4096]	16 -bit binary
$\mathrm{D} \cdot$	Head device of data registers storing received data when receiving is completed	$16-$ bit binary or   character string
n	Number of bytes to be received [setting range: 0 to 4096]	16 -bit binary

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
S.														$\checkmark$	-				$\checkmark$					
m														$\checkmark$	-					$\checkmark$	$\checkmark$			
(D.)														$\checkmark$	-				$\checkmark$					
n														$\checkmark$	-					$\checkmark$	$\checkmark$			

$\mathbf{A}$ : This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (RS)

This instruction sends and receives data in non-protocol communication by way of serial ports in accordance with RS-232C or RS-485 provided in the main unit.
$\rightarrow$ For detailed explanation, refer to the Data Communication Edition manual.


## Related devices

$\rightarrow$ For detailed explanation, refer to the Data Communication Edition manual.

Device	Name
M8063 $^{* 1}$	Serial communication error 1
M8121 $^{* 2}$	Sending wait flag
M8122 $^{* 2}$	Sending request
M8123*2	Receiving complete flag
M8124 $^{\text {M8129 }}$	Carrier detection flag
Mime-out check flag	
M8161	


Device	Name
D8063 $^{* 1}$	Error code number of serial communication error
D8120 $^{* 3}$	Communication format setting
D8122 $^{* 4}$	Remaining amount of data to be sent
D8123*4	Amount of data already received
D8124	Header
D8125	Terminator
D8129*3	Time-out time setting
D8405	Communication parameter display
D8419	Operation mode display

*1. Cleared when PLC power supply is turned from OFF to ON (in FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs). Cleared when the PLC mode is changed from STOP to RUN (in other PLCs).
*2. Cleared in the following cases:

- When the PLC mode is changed from RUN to STOP
- When the RS instruction is not driven
*3. Latched (battery or EEPROM backed).
*4. Cleared when the PLC mode is changed from RUN to STOP.


## System configuration

To use this instruction, it is necessary to attach one of the products shown in the table below to the main unit.
$\rightarrow$ For the system configuration, refer to the respective PLC Hardware Edition manual. $\rightarrow$ For detailed explanation, refer to the Data Communication Edition manual.

PLC	Communication type	Option
FX3S	RS-232C communication	FX3G-232-BD or FX3U-232ADP(-MB) (with FX3S-CNV-ADP)
	RS-485 communication	FX3G-485-BD(-RJ) or FX3U-485ADP(-MB) (with FX3S-CNV-ADP)
FX3G	RS-232C communication	FX3G-232-BD or FX3U-232ADP(-MB) (with FX3G-CNV-ADP)
	RS-485 communication	FX3G-485-BD(-RJ) or FX3U-485ADP(-MB) (with FX3G-CNV-ADP)
FX3GC,	RS-232C communication	FX3U-232ADP(-MB)
	RS-485 communication	FX3U-485ADP(-MB)
FX3U,	RS-232C communication	FX3U-232-BD or FX3U-232ADP(-MB) (with FX3U-CNV-BD)
FX3UC-32MT-LT(-2)	RS-485 communication	FX3U-485-BD or FX3U-485ADP(-MB) (with FX3U-CNV-BD)

Differences between the RS (FNC 80) instruction and RS2 (FNC 87) instruction

Item	RS2 instruction	RS instruction	Remarks
Header size	1 to 4 characters (bytes)	Up to 1 character (byte)	For the RS2 instruction, up to 4 characters (bytes)
Terminator size	1 to 4 characters (bytes)	Up to 1 character (byte)	can be specified as a header or terminator.
Attachment of check sum	The check sum can be automatically attached.	The check sum should be attached by a user program.	For the RS2 instruction, the check sum can be automatically attached to the sent and received data.   In this case, however, make sure to use a terminator with the communication frame to be sent and received.
Used channel number	ch0, ch1, ch2	ch1	For the RS2 instruction:   Ch0 is available only in FX3G/FX3GC PLCs. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLC.

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- The RS (FNC 80) instruction can be used for ch1 only (cannot be used for ch0/ch2).
- Do not drive two or more RS (FNC 80) and/or RS2 (FNC 87) instructions for the same port at the same time.
- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)" instruction and an "IVCK (FNC270) to IVMC (FNC275)", "ADPRW (FNC276)", "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.


### 16.2 FNC 81 - PRUN / Parallel Run (Octal Mode)

## Outline



This instruction handles the device number of $S \cdot$ with digit specification and the device number of $D \cdot$ as octal numbers, and transfers data.

1. Instruction format

	FNC 81 PRUN	P	16-bit Instruction   5 steps	Mnemonic	Operation Condition
D				PRUN	L Continuous
				PRUNP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DPRUN	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DPRUNP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
S•	Digit specification ${ }^{* 1}$	16- or 32-bit binary
D•	Device number of transfer destination ${ }^{* 1}$	16- or 32-bit binary

*1. Make sure that the least significant digit of a specified device number is " 0 ".
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S-								$\checkmark$		$\checkmark$									$\checkmark$					
(D.)									$\checkmark$	$\checkmark$									$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (PRUN and PRUNP)

## Octal bit device $\rightarrow$ Decimal bit device



Octal bit device (X)


## Decimal bit device $\rightarrow$ Octal bit device



Dec	b	devic	(M)					ot tran	sferr								
M17	M16	M15	M14	M13	M12	M11	M10	M99	M8]	M7	M6	M5	M4	M3	M2	M1	M0

## 2. 32-bit operation (DPRUN and DPRUNP)

Octal bit device $\rightarrow$ Decimal bit device


Octal bit device (X)


Decimal bit device $\rightarrow$ Octal bit device


Decimal bit device (M)

Octal bit device $(\mathrm{Y})$


### 16.3 FNC 82 - ASCI / Hexadecimal to ASCII Conversion

## Outline

This instruction converts hexadecimal code into ASCII code.
On the other hand, BINDA (FNC261) instruction converts binary data into ASCII code, and ESTR (FNC116) instruction converts binary floating point data into ASCII code.
$\rightarrow$ For BINDA (FNC261) instruction, refer to Section 29.6.
$\rightarrow$ For ESTR (FNC116) instruction, refer to Section 18.4.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Head device number storing hexadecimal code to be converted	16 -bit binary
D•	Head device number storing converted ASCII code	Character string   (only ASCII code)
n	Number of characters (digits) of hexadecimal code to be converted [setting range: 1 to   $256]$	$16-$ bit binary

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   UपIG $\square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.									$\checkmark$	41	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)										$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	41	-2			$\checkmark$					
n															$\checkmark$	41					$\checkmark$	$\checkmark$			

41: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} / F X_{3} \cup c$ PLCs.
$\boldsymbol{\Delta}$ 2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (ASCI and ASCIP)

" n " hexadecimal code characters (digits) stored in $\mathrm{S} \cdot$ and later are converted into ASCII code, and then stored to the devices $\quad D \cdot$ and later.
The 16 -bit mode and 8 -bit mode options are available for this instruction. For operation in each mode, refer to the proceeding pages.

2. 16-bit conversion mode (while M8161 is OFF) (M8161 is also used for the RS, HEX, CCD and CRC instructions.)
Each digit of hexadecimal data stored in S• and later is converted into ASCII code, and transferred to the highorder 8 bits and low-order 8 bits of each device (D. and later. The number of digits (characters) to be converted is specified by "n".
Each ASCII code is stored in either the high-order 8 bits or low-order 8 bits of each device (D.) and later.
M8161 is used also for RS, HEX, CCD and CRC instructions. When using the 16-bit mode, set M8161 to normally OFF. M8161 is cleared when the PLC mode is changed from RUN to STOP.


In the following program, conversion is executed as follows:


## Devices after S.

D100 $=0 \mathrm{ABCH}$
D101 $=1234 \mathrm{H}$
D102 $=5678 \mathrm{H}$
Number of specified digits (characters) and conversion result


## Bit configuration in the case of " $\mathrm{n}=\mathrm{K} 4$ "

D $100=0 \mathrm{ABCH}$

0	0	0	0	1	0	1	0	1	0	1	1	1	1	0	0	
		0				A				B				C		

## ASCII code

$[0]=30 \mathrm{H}$	$[1]=31 \mathrm{H}$	$[5]=35 \mathrm{H}$
$[\mathrm{A}]=41 \mathrm{H}$	$[2]=32 \mathrm{H}$	$[6]=36 \mathrm{H}$
$[\mathrm{B}]=42 \mathrm{H}$	$[3]=33 \mathrm{H}$	$[7]=37 \mathrm{H}$
$[\mathrm{C}]=43 \mathrm{H}$	$[4]=34 \mathrm{H}$	$[8]=38 \mathrm{H}$



D 201

0	1	0	0	0	0	0	1	1		0	1	0		0	0	0	1		0
				] $\rightarrow$															

- When outputting data in the BCD format for a printer, for example, it is necessary to convert binary data into BCD data before executing this instruction.


## 3. 8-bit conversion mode (while M8161 is ON)

(M8161 is used also for the RS, HEX, CCD and CRC instructions.)
Each digit of hexadecimal data stored in S• and later is converted into an ASCII code, and transferred to low-order 8 bits of each device (D. and later. The number of digits (characters) to be converted is specified by " n ". " 0 " is stored in high-order 8 bits of each device $D \cdot$ and later.
M8161 is used also for the RS, HEX, CCD and CRC instructions. When using the 8-bit mode, set M8161 to normally ON. M8161 is cleared when the PLC mode is changed from RUN to STOP.


## Operation

In the following program, conversion is executed as follows:


## Devices after S.

D100 = OABCH
D101 $=1234 \mathrm{H}$
D102 $=5678 \mathrm{H}$
Number of specified digits (characters) and conversion result

n	K1	K2	K3	K4	K5	6	K7	K8	K9
(D.)									
D 200	[C]	[B]	[A]	[0]	[4]	[3]	[2]	[1]	[8]
D 201		[C]	[B]	[A]	[0]	[4]	[3]	[2]	[1]
D 202		[C]   Does not chang		[B]	[A]	[0]	[4]	[3]	[2]
D 203				[C]	[B]	[A]	[0]	[4]	[3]
D 204					[C]	[B]	[A]	[0]	[4]
D 205						[C]	[B]	[A]	[0]
D 206							[C]	[B]	[A]
D 207								[C]	[B]
D 208									[C]

## Bit configuration in the case of " $\mathrm{n}=\mathrm{K} \mathbf{2}^{\prime \prime}$

D $100=0 \mathrm{ABCH}$


D200 $=\mathrm{B} \rightarrow$ ASCII code $=42 \mathrm{H}$


ASCII codes

$[0]=30 \mathrm{H}$	$[1]=31 \mathrm{H}$	$[5]=35 \mathrm{H}$
$[\mathrm{A}]=41 \mathrm{H}$	$[2]=32 \mathrm{H}$	$[6]=36 \mathrm{H}$
$[\mathrm{B}]=42 \mathrm{H}$	$[3]=33 \mathrm{H}$	$[7]=37 \mathrm{H}$
$[\mathrm{C}]=43 \mathrm{H}$	$[4]=34 \mathrm{H}$	$[8]=38 \mathrm{H}$

D201 $=\mathrm{C} \rightarrow$ ASCII code $=43 \mathrm{H}$


- When outputting data in the BCD format for a printer, for example, it is necessary to convert binary data into BCD data before executing this instruction.


### 16.4 FNC 83 - HEX / ASCII to Hexadecimal Conversion



FX3UC
Ver. 1.00 !

## Outline

Ver. 1.00 "
This instruction converts ASCII codes into hexadecimal codes.
On the other hand, DABIN (FNC260) instruction converts ASCII codes into binary data, and EVAL (FNC117) instruction converts ASCII codes into binary floating point data.
$\rightarrow$ For DABIN (FNC260) instruction, refer to Section 29.5.
$\rightarrow$ For EVAL (FNC117) instruction, refer to Section 18.5.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Head device number storing ASCII code to be converted	Character string   (only ASCII code)
D•	Head device number storing converted hexadecimal code	16 -bit binary
n	Number of ASCII codes (bytes) to be converted [setting range: 1 to 256 ]	16 -bit binary

*1. Make sure to use only ASCII codes "0" to "9" and "A" to "F".
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square \square$	Index			Con-   stant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$	A1	-2			$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$					
n														$\checkmark$	(1)					$\checkmark$	$\checkmark$			

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
$\mathbf{\Delta}$ 2: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{PLCs}$.

## Explanation of function and operation

1. 16-bit operation (HEX and HEXP)

Among the ASCII codes stored in S. and later, "n" characters are converted into hexadecimal codes, and then stored to the devices $D \cdot$ and later.
The 16-bit mode and 8-bit mode are available for this instruction. For operation in each mode, refer to the proceeding pages.

2. 16-bit conversion mode (while M8161 is OFF) (M8161 is used also for the RS, ASCI, CCD, and CRC instructions.)
Each ASCII code stored in high-order 8 bits and low-order 8 bits of devices $S \cdot$ and later is converted into a hexadecimal code, and transferred to devices D. and later in units of 4 digits. The number of characters to be converted is specified by " n ".
M8161 is used also for the RS, ASCI, CCD and CRC instructions. When using the 16-bit mode, set M8161 to normally OFF.
M8161 is cleared when the PLC mode is changed from RUN to STOP.


## Operation

In the following program, conversion is executed as follows:


## Conversion source data

$\mathrm{S} \cdot \mathrm{BSCII}$ code	Hexadecimal code	
Low-order 8 bits of D200	30 H	0
High-order 8 bits of D200	41 H	A
Low-order 8 bits of D201	42 H	B
High-order 8 bits of D201	43 H	C
Low-order 8 bits of D202	31 H	1
High-order 8 bits of D202	32 H	2
Low-order 8 bits of D203	33 H	3
High-order 8 bits of D203	34 H	4
Low-order 8 bits of D204	35 H	5

## Number of specified characters and conversion result

" • " indicates "0".

(D.)	D 102	D 101	D 100
n			
1	Does not change		$\bullet \bullet$ OH
2			$\bullet$ •OAH
3			$\bullet$ - ${ }^{\text {ABH }}$
4			0 ABCH
5		$\bullet \bullet \bullet 0 \mathrm{H}$	ABC1H
6		$\bullet \bullet$ OAH	BC12H
7		$\bullet$ - ${ }^{\text {ABH }}$	C123H
8		OABCH	1234H
9	$\bullet \bullet \bullet 0 \mathrm{H}$	ABC1H	2345H

In the case of " $\mathrm{n}=\mathrm{K} 4$ "


- When the input data is in BCD format, it is necessary to convert BCD data into binary data after executing this instruction.
- If ASCII code is not stored in S. in the HEX instruction, an operation error occurs and conversion into hexadecimal code is disabled. Especially, note that ASCII code should be stored in high-order 8 bits of $S \cdot$ also when M8161 is OFF.

3. 8-bit conversion mode (while M8161 is ON)

## (M8161 is used also for the RS, ASCI, CCD and CRC instructions.)

Each ASCII code stored in the low-order 8 bits of each device $S \cdot$ and later is converted into a hexadecimal code, and transferred to device (D. and later in 4-digits units. The number of characters to be converted is specified by "n".
M8161 is also used for the RS, ASCI, CCD and CRC instructions. When using the 8-bit mode, set M8161 to normally ON. M8161 is cleared when the PLC mode is changed from RUN to STOP.


## Conversion source data

S•	ASCII code	Hexadecimal code
D 200	30 H	0
D 201	41 H	A
D 202	42 H	B
D 203	43 H	C
D 204	31 H	1
D 205	32 H	2
D 206	33 H	3
D 207	34 H	4
D 208	35 H	5

Number of specified characters and conversion result
" • " indicates "0".

(D.)	D 102	D 101	D 100
n			
1	Does not change		$\bullet \bullet \bullet 0 \mathrm{H}$
2			$\bullet \bullet$ OAH
3			$\bullet$ - ABH
4			OABCH
5		$\bullet \bullet 0 \mathrm{OH}$	ABC1H
6		$\bullet \bullet$ OAH	BC12H
7		-0ABH	C123H
8		OABCH	1234H
9	$\bullet \bullet \bullet 0 \mathrm{H}$	ABC1H	2345H

In the case of " $\mathrm{n}=\mathrm{K} 2$ "

- When the input data is in BCD format, it is necessary to convert BCD data into binary data after executing this instruction.


### 16.5 FNC 84 - CCD / Check Code

## Outline

# $F X_{3 S}$ 

Ver.1.00 ॥ $\Rightarrow$ F× 30
Ver.2.20 $\quad \Rightarrow$
FX3UC
Ver. 1.00 든
This instruction calculates the horizontal parity value and sum check value in the error check methods used in communication. There is another check method, CRC (cyclic redundancy check) also. For obtaining CRC value, use CRC instruction.

## 1. Instruction format


2. Set data

Operand type	Description	Data type
S•	Head device number of applicable device	16 -bit binary or   character string
D•	Head device number storing the calculated data	16 -bit binary or   character string
n	Number of data [setting range: 1 to 256 ]	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
(S.)								$\checkmark$	A1	A2			$\checkmark$											
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1				$\checkmark$					
n														$\checkmark$	$\Delta 1$					$\checkmark$	$\checkmark$			

©1: This function is supported only in FX3G/FX3GC/FX3U/FX3uc PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (CCD and CCDP)

The addition data and horizontal parity value of data stored in S. to S. $+n-1$ are calculated. The addition data is stored to $D \cdot$, and the horizontal parity value is stored to $D \cdot+1$.
The 16 -bit mode and 8 -bit mode are available in this instruction. For the operation in each mode, refer to the proceeding pages.

2. 16-bit conversion mode (while M8161 is OFF) (M8161 is also used for the RS, ASCI, HEX and CRC instructions.)
With regard to " n " data starting from $\mathrm{S}^{\cdot}$, the addition data and horizontal parity data of high-order 8 bits and loworder 8 bits are stored to $D \cdot$ and (D. +1 respectively.
M8161 is used also for the RS, ASCI, HEX and CRC instructions. When using the 16-bit mode, set M8161 to normally OFF. M8161 is cleared when the PLC mode is changed from RUN to STOP.


When the number of " 1 " is odd, the horizontal parity is "1".
When the number of " 1 " is even, the horizontal parity is " 0 ".

S•	Example of data contents	
Low-order 8 bits of D100	K100	= 01100100
High-order 8 bits of D100	K111	= 0110111 (1)
Low-order 8 bits of D101	K100	= 01100100
High-order 8 bits of D101	K 98	= 01100010
Low-order 8 bits of D102	K123	= 0111101 (1)
High-order 8 bits of D102	K 66	= 01000010
Low-order 8 bits of D103	K100	= 01100100
High-order 8 bits of D103	K 95	= 0101111 (1)
Low-order 8 bits of D104	K210	$=11010010$
High-order 8 bits of D104	K 88	$=01011000$
Total	K1091	
Horizontal parity		1000010 (1)

D 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |${ }^{2}$

## 3. 8-bit conversion mode (while M8161 is ON)

## (M8161 is used also for the RS, ASCI, HEX and CRC instructions.)

With regard to " n " data starting from S. , the addition data and horizontal parity data of only low-order 8 bits are stored to $\mathrm{D}^{-}$and $\mathrm{D} \cdot+1$ respectively.
M8161 is also used for the RS, ASCI, HEX and CRC instructions. When using the 8-bit mode, set M8161 to normally ON. M8161 is cleared when the PLC mode is changed from RUN to STOP.


## Example of 8-bit conversion

In the following program, conversion is executed as follows:


S•	Example of data contents	
D 100	K100 $=01100100$	
D 101	K111 $=0110111(1)$	
D 102	K100	$=01100100$
D 103	K 98	$=01100010$
D 104	K123	$=0111101(1)$
D 105	K 66	$=01000010$
D 106	K100	$=01100100$
D 107	K 95	$=0101111(1)$
D 108	K210	$=11010010$
D 109	K 88	$=01011000$
Total	K1091	
Horizontal parity		$1000010(1)$

When the number of "1" is odd, the horizontal parity is "1". When the number of " 1 " is even, the horizontal parity is " 0 ".

D0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

D 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

### 16.6 FNC 85 - VRRD / Volume Read

## Outline

This instruction reads the analog value of a variable analog potentiometer board attached to the PLC main unit.

1. Instruction format

	FNC 85	
	VRRD	P
VOLUME READ		


2. Set data

Operand type	Description	Data type
S.	Volume number [setting range: 0 to 7]	16 -bit binary
D.	Device to which the read analog value is transferred	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant		Real   Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	-				$\checkmark$	$\checkmark$	$\checkmark$			
D.									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-		$\checkmark$	$\checkmark$	$\checkmark$					

: This function is supported only in $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

This instruction reads the analog value of a variable analog potentiometer board attached the PLC main unit. This instruction converts the analog value of the variable analog potentiometer specified in $S$. into binary 8 -bit data, and transfers the numeric value ranging from 0 to 255 to $D \cdot$.
Command


## Program example

1. Example in which the read analog value is used as the set value of an analog timer

The analog value of the variable analog potentiometer No. 0 is converted into binary 8 -bit data, and the value ranging from 0 to 255 is transferred to D0.
The value of $D 0$ is used as the set value of a timer.


When a value larger than 255 is required as the set value of a timer, the read value multiplied by a constant using the MUL (FNC 22) instruction can be set indirectly as the timer constant.
2. Example in which the analog values of the variable analog potentiometers Nos. 0 to 7 are read in turn, and used as analog timers
K0 to K7 are specified in S• of the VRRD instruction in accordance with the values of the variable potentiometers VR0 to VR7.
Index $(Z=0$ to 7 ) is used for indexing in the sequence below, and KOZ indicates K0 to K7.


## Cautions

- In FX3s PLC, the variable analog potentiometer board can be connected to the option connector. In this case, the communication function is not available when the VRRD or VRSC instruction is used.
- In 14-point and 24-point type FX3G PLCs, the variable analog potentiometer board can be connected to the option connector 1, and occupies communication channel ch1.
In this case, the communication function using communication channel ch1 is not available when the VRRD or VRSC instruction is used.
- In 40-point and 60-point type FX3G PLCs, the variable analog potentiometer board can be connected only to the option connector 2, and occupies communication channel ch2.
In this case, the communication function using communication channel ch2 is not available when the VRRD or VRSC instruction is used.
- The communication function is not available for ch1 when the VRRD or VRSC instruction is used in the program in FX3U/FX3uc PLCs.
$\rightarrow$ For details, refer to the Data Communication Edition manual.
- $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{X}$ PLCs support the $\mathrm{FX} 3 \mathrm{G}-8 \mathrm{AV}-\mathrm{BD}$.
- FX3U/FX3UC-32MT-LT(-2) PLCs support the FX3U-8AV-BD.


### 16.7 FNC 86 - VRSC / Volume Scale

## Outline

This instruction reads the value of a variable analog potentiometer on the variable analog potentiometer board attached to the PLC main unit as a numeric value ranging from 0 to 10 .

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Volume number [setting range: 0 to 7 ]	16 -bit binary
D•	Device to which the read analog value is transferred	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
(S.)														$\checkmark$	-				$\checkmark$	$\checkmark$	$\checkmark$			
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-		$\checkmark$	$\checkmark$	$\checkmark$					

A: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

This instruction reads the value of a variable analog potentiometer on the variable analog potentiometer board attached to the main unit as a numeric value ranging from 0 to 10 .
However, the actual scale value does not always correspond to the switching position of the variable analog potentiometer scale (0 to 10).
This instruction converts into a binary value the scale value of a variable analog potentiometer specified in S• , and transfers the converted binary value to $D \cdot$.


## Program example

## 1. Example in which the scale value is used as a rotary switch

One of the auxiliary relays from M0 to M10 turns ON in accordance with the scale value ranging from 0 to 10 of the specified variable analog potentiometer.


## Cautions

- In FX3S PLC, the variable analog potentiometer board can be connected to the option connector. In this case, the communication function is not available when the VRRD or VRSC instruction is used.
- In 14-point and 24-point type FX3G PLCs, the variable analog potentiometer board can be connected to the option connector 1, and occupies communication channel ch1.
In this case, the communication function using communication channel ch1 is not available when the VRRD or VRSC instruction is used.
- In 40-point and 60-point type FX3G PLCs, the variable analog potentiometer board can be connected only to the option connector 2 , and occupies communication channel ch2.
In this case, the communication function using communication channel ch2 is not available when the VRRD or VRSC instruction is used.
- The communication function is not available for ch1 when the VRRD or VRSC instruction is used in the program in FX3u/FX3uc PLCs.
$\rightarrow$ For details, refer to the Data Communication Edition manual.
- $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{X}$ PLCs support the $\mathrm{FX} 3 \mathrm{G}-8 \mathrm{AV}-\mathrm{BD}$.
- FX3U/FX3Uc-32MT-LT(-2) PLCs support the FX3U-8AV-BD.


### 16.8 FNC 87 - RS2 / Serial Communication 2

## Outline

This instruction sends and receives data using non-protocol communication by way of serial ports in accordance with RS-232C or RS-485 provided in the main unit.
In FX3G/FX3GC PLCs, data can be sent and received using non-protocol communication by way of the standard builtin port (RS-422).

1. Instruction format

2. Set data

Operand type	Description	Data type
$\mathrm{S} \cdot$	Head device of data registers storing data to be sent	16 -bit binary or   character string
m	Number of bytes of data to be sent [setting range: 0 to 4,096 ]	16 -bit binary
D	Head device of data registers storing received data when receiving is completed	16 -bit binary or   character string
n	Number of bytes to be received [setting range: 0 to 4,096$]$	16 -bit binary
n 1	Used channel number [contents of setting: $\mathrm{K} 0=\mathrm{ch} 0, \mathrm{~K} 1=\mathrm{ch} 1, \mathrm{~K} 2=\mathrm{ch} 2]^{* 1}$	16 -bit binary

*1. Ch 0 is available only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs.
Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLC.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash G \square$	Index			Constant		Real   Number	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S.														$\checkmark$	-				$\checkmark$					
m														$\checkmark$	-					$\checkmark$	$\checkmark$			
(D.)														$\checkmark$	-				$\checkmark$					
n														$\checkmark$	-					$\checkmark$	$\checkmark$			
n1																				$\checkmark$	$\checkmark$			

©: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX}}^{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (RS2)

This instruction sends and receives data using non-protocol communication by way of serial ports in accordance with RS-232C or RS-485 provided in the main unit.
$\rightarrow$ For detailed explanation, refer to the Data Communication Edition.


## Related devices

$\rightarrow$ For detailed explanation, refer to the Data Communication Edition.

Device			Name	Device			Name
cho ${ }^{* 1}$	ch1	ch2 ${ }^{* 1}$		cho ${ }^{* 1}$	ch1	ch2*1	
M8371	M8401	M8421	Sending wait flag*2	D8370	D8400	D8420	Communication format setting
M8372	M8402	M8422	Sending request ${ }^{*}$	-	-	-	-
M8373	M8403	M8423	Receiving complete flag*2	D8372	D8402	D8422	Remaining number of data to be sent ${ }^{* 2}$
-	M8404	M8424	Carrier detection flag	D8373	D8403	D8423	Monitor for number of received data*2
-	M8405	M8425	Data Set Ready (DSR) Flag*3	-	D8405	D8425	Communication parameter display
-	-	-	-	D8379	D8409	D8429	Time-out time setting
M8379	M8409	M8429	Time-out check flag	D8380	D8410	D8430	Header 1, 2
-	-	-	-	D8381	D8411	D8431	Header 3, 4
				D8382	D8412	D8432	Terminator 1, 2
				D8383	D8413	D8433	Terminator 3, 4
				D8384	D8414	D8434	Receiving sum (received data)
				D8385	D8415	D8435	Receiving sum (calculation result)
				D8386	D8416	D8436	Sending sum
				D8389	D8419	D8439	Operation mode display
M8062	M8063	M8438	Serial communication error*4	D8062	D8063	D8438	Serial communication error code ${ }^{* 4}$

*1. Ch0 is available only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} X_{3 G C}$ PLCs.
Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLC.
*2. Cleared when the PLC mode is changed from RUN to STOP.
*3. Available in all $\mathrm{FX}_{3} /$ /FX ${ }_{3}$ Gc PLCs and $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs Ver. 2.30 or later.
*4. Cleared when PLC power supply is turned from OFF to ON.

## System configuration

For using this instruction, it is necessary to attach one of the products shown in the table below to the main unit.
$\rightarrow$ For the system configuration, refer to the respective PLC Hardware Edition manual. $\rightarrow$ For detailed explanation, refer to the Data Communication Edition manual.

PLC	Communication type	Option
FX3S	RS-232C communication	FX3G-232-BD or FX3U-232ADP(-MB) (with FX3S-CNV-ADP)
	RS-485 communication	FX3G-485-BD(-RJ) or FX3U-485ADP(-MB) (with FX3S-CNV-ADP)
FX3G	RS-232C communication	FX3G-232BD or FX3U-232ADP(-MB) (which requires FX3G-CNV-ADP) RS-232C/RS-422 converter* ${ }^{*}$   (FX-232AW, FX232AWC and FX-232AWC-H)
	RS-485 communication	FX3G-485-BD(-RJ) or FX3U-485ADP(-MB) (which requires FX3G-CNV-ADP)
FX3GC	RS-232C communication	$\begin{array}{\|l\|} \hline \text { FX3U-232ADP(-MB) } \\ \text { RS-232C/RS-422 converter*5 } \\ \text { (FX-232AW, FX232AWC and FX-232AWC-H) } \end{array}$
	RS-485 communication	FX3U-485ADP(-MB)
$\begin{aligned} & \text { FX3U, } \\ & \text { FX3UC-32MT-LT(-2) } \end{aligned}$	RS-232C communication	FX3U-232-BD or FX3U-232ADP(-MB)
	RS-485 communication	FX3U-485-BD or FX3U-485ADP(-MB)
FX3UC(D,DS,DSS)	RS-232C communication	FX3U-232ADP(-MB)
	RS-485 communication	FX3U-485ADP(-MB)

*5. Required to use ch0 (standard built-in RS-422 port) in FX3G/FX3GC PLCs.

Differences between the RS (FNC 80) instruction and RS2 (FNC 87) instruction

Item	RS2 instruction	RS instruction	Remarks
Header size	1 to 4 characters (bytes)	Up to 1 character (byte)	For the RS2 instruction, up to 4 characters (bytes) can be
specified as a header or terminator.			

## Cautions

## $\rightarrow$ For other cautions, refer to the Data Communication Edition.

- Do not drive two or more RS (FNC 80) and/or RS2 (FNC 87) instructions for the same port at the same time.
- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)" instruction and an "IVCK (FNC270) to IVMC (FNC275)", "ADPRW (FNC276)", "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.
- When using a header and terminator, set the data in the header and terminator to corresponding special data register (D) before executing the RS2 instruction. Do not change the values of the header and terminator while the RS2 instruction is being executed.


## Function Changes According to Versions

The function of the FNC 87 instruction varies depending on the PLC version shown in the table below.

Compatible Versions					Item	
FX3S	FX3G	FX3GC	FX3U	FX3UC		Function Summary
Ver. 1.00   or later	Ver. 1.00   or later	Ver. 1.40   or later	Ver. 2.30   or later	Ver. 2.30   or later	ch1   Data Set Ready (DSR) Flag	Turns M8405 ON when the DR (DSR)   signal of ch1 is ON.

### 16.9 FNC 88 - PID / PID Control Loop

## Outline

This instruction executes PID control which changes the output value according to the input variation.
$\rightarrow$ For details, refer to the Analog Control Edition.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1	Data register number storing the target value (SV)	16 -bit binary
S2	Data register number storing the measured value (PV)	16 -bit binary
S3	Data register number storing a parameter	16 -bit binary
D	Data register number storing the output value (MV)	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number   E	Character String"口"	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
S1														$\checkmark$	-1	$\triangle 2$								
(S2)														$\checkmark$	-1	-2								
(S3)														$\checkmark$	A1									
(D)														$\checkmark$	A1	A2								

41: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} / / F X_{3} \cup C$ PLCs.
42: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{PLCs}$.

## Explanation of function and operation

## 1. 16-bit operation (PID)

When the target value S1 , measured value S2, and parameters S3 to S3 +6 are set and a program is executed, the operation result (MV) is stored to the output value $D$ at every sampling time S3.

2. Set items

Set item		Description	Number of occupied points
S1	Target value (SV)	- Set the target value (SV).   - PID instruction does not change the contents of setting.   - Caution on using the auto tuning (limit cycle method)   If the target value for auto tuning is different from the target value for PID control, it is necessary to set a value including the bias value first, and then store the actual target value when the auto tuning flag turns OFF.	1
(S2)	Measured value (PV)	This is the input value in PID control loop.	1
(S3)	Parameter* ${ }^{*}$	1) Auto tuning: In the case of limit cycle method Twenty-nine devices are occupied from the head device specified in   2) Auto tuning: In the case of step response method   a) Operation setting (ACT): When bits 1, 2 and 5 are not all "0"   Twenty-five devices are occupied from the head device specified in   b) Operation setting (ACT): When bits 1, 2 and 5 are all "0"   Twenty devices are occupied from the head device specified in	29   25   20
(D)	Output value (MV)	1) In case of PID control (normal processing) Before driving PID instruction, the user should set the initial output value. After that, the operation result is stored.   2) Auto tuning: In the case of limit cycle method During auto tuning, the ULV or LLV value is output automatically. When auto tuning is finished, the specified MV value is set.   3) Auto tuning: In the case of step response method Before driving PID instruction, the user should set the initial output value. During auto tuning, PID instruction does not change the MV output.	1

*1. When auto tuning is not used, the number of points is the same as the number in the step response method are occupied.
3. List of parameters $S_{3}$ to S3 +28

Set item			Setting Value	Remarks
(S3)	Sampling time (Ts)		1 to 32767 (ms)	It cannot be shorter than the operation cycle.
(S3) +1	Operation setting (ACT)	bit0	0: Forward operation, 1: Backward operation	Operation direction
		bit1	0 : Input variation alarm is invalid.   1: Input variation alarm is valid.	
		bit2	0 : Output variation alarm is invalid.   1: Output variation alarm is valid.	Do not set to ON bit 2 and bit 5 at the same time.
		bit3	Not available	
		bit4	0 : Auto tuning is not executed.   1: Auto tuning is executed.	
		bit5	0 : Upper and lower limits of output value are not valid.   1: Upper and lower limits of output value are valid.	Do not set to ON bit 2 and bit 5 at the same time.
		bit6	0: Step response method   1: Limit cycle method	Select the auto tuning mode.
		bit7 to bit15	Not available	
(S3) +2	Input filter constant ( $\alpha$ )		0 to 99 (\%)	When "0" is set, the input filter is not provided.
(S3) +3	Proportional gain (KP)		1 to 32767 (\%)	
(S3) +4	Integral time (TI)		0 to 32767 ( $\times 100 \mathrm{~ms}$ )	When " 0 " is set, it is handled as " 1 " (no integration).
(S3) +5	Derivative gain (KD)		0 to 100 (\%)	When " 0 " is set, the derivative gain is not provided.
(S3) +6	Derivative time (TD)		0 to 32767 ( $\times 10 \mathrm{~ms}$ )	When " 0 " is set, the derivative operation is not executed.
$\begin{aligned} & \text { S3 }+7 \\ & : \\ & \text { S3 }+19 \end{aligned}$	These devices are occupied for internal processing in PID control loop. Do not change the data.			


Set item			Setting Value	Remarks
(S3) $+20^{* 1}$	Input variation (incremental) alarm set value		0 to 32767	It is valid when bit 1 is set to "1" in S3 +1 for the operation setting (ACT).
(S3) $+21^{* 1}$	Input variatio alarm set v	ecremental)	0 to 32767	It is valid when bit 1 is set to "1" in S3 +1 for the operation setting (ACT).
(S3) $+22^{* 1}$	Output variation (incremental) alarm set value		0 to 32767	It is valid when bit 2 is set to "1" and bit 5 is set to " 0 " in $\mathrm{S}_{3}+1$ for the operation setting (ACT).
	Output upper limit set value		-32768 to 32767	It is valid when bit 2 is set to " 0 " and bit 5 is set to "1" in S3 +1 for the operation setting (ACT).
(S3) $+23 * 1$	Output variation (decremental) alarm set value		0 to 32767	It is valid when bit 2 is set to " 1 " and bit 5 is set to " 0 " in S3 +1 for the operation setting (ACT).
	Output lower limit set value		-32768 to 32767	It is valid when bit 2 is set to " 0 " and bit 5 is set to "1" in S3 +1 for the operation setting (ACT).
(S3) $+24^{* 1}$	Alarm output	bit0	0 : Input variation (incremental) is not exceeded.   1: Input variation (incremental) is exceeded.	It is valid when bit 1 is set to "1" or bit 2 is set to " 1 " in S 3 +1 for the operation setting (ACT).
		bit1	0 : Input variation (decremental) is not exceeded.   1: Input variation (decremental) is exceeded.	
		bit2	0 : Output variation (incremental) is not exceeded.   1: Output variation (incremental) is exceeded.	
		bit3	0 : Output variation (decremental) is not exceeded.   1: Output variation (decremental) is exceeded.	
The setting below is required when the limit cycle method is used (when bit 6 is set to "ON" in the operation setting (ACT)).				
(S3) +25	PV value threshold (hysteresis) width (SHPV)		Set it according to the fluctuation of the measured value (PV).	They are occupied when bit 6 is set to "ON (limit cycle method)" in the operation setting (ACT).
(S3) +26	Output value upper limit (ULV)		Set the maximum value (ULV) of the output value (MV).	
(S3) +27	Output value lower limit (LLV)		Set the minimum value (LLV) of the output value (MV).	
(S3) +28	Wait setting from end of tuning cycle to start of PID control (Kw)		-50 to 32717\%	

*1. S3 +20 to $\mathrm{S}_{3}+24$ are occupied when any bit 1,2 or 5 is set to "1" in S3 +1 for operation setting (ACT).

## Cautions

## 1. When using two or more PID instructions

Two or more PID instructions can be executed at the same time. (There is no limitation in the number of loops.) However, make sure that S3, D and other operands specified in each instruction are different to each other.

## 2. Number of devices occupied for parameters starting from S3

1) In the limit cycle method

- Twenty-nine devices are occupied from the head device specified in S3.

2) In the step response method

- Operation setting (ACT): When bits 1, 2 and 5 are not all "0"

Twenty-five devices are occupied from the head device specified in S3.

- Operation setting (ACT): When bits 1,2 and 5 are all " 0 "

Twenty devices are occupied from the head device specified in S3.
3. When specifying a device in the latched area backed up against power failure

For the output value (MV) in the PID instruction, specify a data register outside the latched area.
When specifying a data register in the latched area, make sure to clear the latched (backed up) contents when the PLC mode is set to RUN using the following program.
Program example


Data register number in the latched area specified in (D)

## Error

When an operation error occurs, the special auxiliary relay M8067 turns ON, and the error code is stored in the special data register D8067.
$\rightarrow$ For the error code, refer to Section 38.4.

## 17. Data Transfer 2 - FNC100 to FNC109

FNC100 to FNC109 provide instructions for executing complicated processing for fundamental applied instructions and for executing special processing.

FNC No.	Mnemonic	Symbol	Function	Reference
100	-			
101	-			
102	ZPUSH	-1ゅ ZPUSH	Batch Store of Index Register	Section 17.1
103	ZPOP	$\begin{array}{\|l\|l\|} \hline \mathrm{ZPOP} & \mathrm{D} \\ \hline \end{array}$	Batch POP of Index Register	Section 17.2
104	-			
105	-			
160	-			
107	-			
108	-			
109	-			

### 17.1 FNC102 - ZPUSH/Batch Store of Index Register

## Outline

This instruction temporarily batch-stores the present value of the index registers V 0 to V 7 and Z 0 to Z 7 .
For restoring the present value of temporarily batch-stored index registers, use the ZPOP (FNC103) instruction.
$\rightarrow$ For the ZPOP (FNC103) instruction, refer to Section 17.2.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
(D)	Head device number batch-storing the present value of the index registers V0 to V7 and Z0 to Z7   D : Number of times of batch-storage   (D) +1 to (D) $+16 \times$ Number of times of batch-storage: Batch-stored data storage destination	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square \square$	Index			Constant		Real Number   E	Charac-   ter String   $" \square "$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D)														-	$\checkmark$									

©: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (ZPUSH/ZPUSHP)

1) The contents of the index registers V 0 to V 7 and Z 0 to $\mathrm{Z7}$ are batch-stored temporarily to D and later. When the contents of index registers are batch-stored, the number of times of batch-storage $D$ is incremented by "1".
2) For restoring the batch-stored data, use the ZPOP (FNC103) instruction.

Use the ZPUSH (FNC102) and ZPOP (FNC103) instruction as a pair.
3) By specifying the same device to D , ZPUSH (FNC102) and ZPOP (FNC103) instructions can be used in the nest structure.
In this case, the occupied points are incremented by "16" after D every time the ZPUSH (FNC102) instruction is executed. Secure sufficient area for the number of the next structure in advance.
4) The figure below shows the data structure batch-stored in $D$ and later.


## Related instruction

Instruction	Description
ZPOP (FNC103)	Restores the index registers V0 to V7 and Z0 to Z7 which were batch-stored temporarily by the ZPUSH   (FNC102) instruction.

## Cautions

- When not using the nest structure, clear the number of batch-storage times D before executing ZPUSH (FNC102) instruction.
- When using the nest structure, clear the number of batch-storage times $D$ before executing ZPUSH (FNC102) instruction the first time.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the range of points used after $D$ in ZPUSH (FNC102) instruction exceeds the corresponding device range (error code: K6706)
- When the number of batch-storage times D stores a negative value while the ZPUSH (FNC102) instruction is executed (error code: K6706)


## Program example

In the program shown below, the contents of the index registers Z 0 to Z 7 and V 0 to V 7 before execution of subroutine program are batch-stored in DO and later when index registers are used in the subroutine after the pointer P0.


### 17.2 FNC103 - ZPOP/Batch POP of Index Register

## Outline

This instruction restores the contents of the index registers V 0 to V 7 and Z 0 to Z 8 which were batch-stored temporarily by ZPUSH (FNC102) instruction.
$\rightarrow$ For ZPUSH (FNC102) instruction, refer to Section 17.1.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
D	Head device number temporarily batch-storing the contents of the index registers V0 to V7 and Z0 to Z7 : Number of times of batch-storage $\text { D }+1 \text { to }$ $\qquad$ D $+16 \times$ Number of times of batch-storage: Batch-stored data storage destination	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
(D)														A	$\checkmark$									

А: Except special data register (D)

## Explanation of function and operation

1. 16 -bit operation (ZPOP/ZPOPP)
$\rightarrow$ For the function and operation, refer also to Section 17.1.

$\substack{\text { Command } \\ \text { input }\\ }$	FNC103   ZPOP	D

1) The contents of the index registers V 0 to V 7 and Z 0 to $\mathrm{Z7}$ which were batch-stored temporarily to D and later are restored to the original index registers. When the contents of the index registers are restored, the number of times of batch-storage $D$ is decremented by "1".
2) For temporarily batch-storing the data, use ZPUSH (FNC102) instruction. Use ZPUSH (FNC102) and ZPOP (FNC103) instruction as a pair.

## Related instruction

Instruction	
ZPUSH (FNC102)	Temporarily batch-stores the present value of the index registers V0 to V7 and Z0 to Z7.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the number of times of batch-storage (D) stores "0" or a negative value while ZPOP (FNC103) instruction is executed (error code: K6706)


## Program example

## 18. Floating Point - FNC110 to FNC139

FNC110 to FNC119, FNC120 to FNC129 and FNC130 to FNC139 provide instructions for conversion, comparison, arithmetic operations, square root operation, trigonometry, etc. for floating point operations.

FNC No.	Mnemonic	Symbol	Function	Reference
110	ECMP	ECMP S1 S2 D	Floating Point Compare	Section 18.1
111	EZCP		Floating Point Zone Compare	Section 18.2
112	EMOV		Floating Point Move	Section 18.3
113	-			-
114	-			-
115	-			-
116	ESTR	ESTR S1 S2 D	Floating Point to Character String Conversion	Section 18.4
117	EVAL	$\begin{array}{\|l\|l\|l\|} \hline \text { EVAL } & \mathrm{s} & \mathrm{D} \\ \hline \end{array}$	Character String to Floating Point Conversion	Section 18.5
118	EBCD	$\begin{array}{\|l\|l\|l\|} \hline \text { EBCD } & \mathrm{s} & \mathrm{D} \\ \hline \end{array}$	Floating Point to Scientific Notation Conversion	Section 18.6
119	EBIN	$\begin{array}{\|l\|l\|l\|} \hline \text { EBIN } & \mathrm{S} & \mathrm{D} \\ \hline \end{array}$	Scientific Notation to Floating Point Conversion	Section 18.7
120	EADD		Floating Point Addition	Section 18.8
121	ESUB	Нト ESUB $\mathrm{S}^{\prime} \mid$	Floating Point Subtraction	Section 18.9
122	EMUL		Floating Point Multiplication	Section $18.10$
123	EDIV	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { EDIV } & \mathrm{S} 1 & \mathrm{~S} 2 & \mathrm{D} \\ \hline \end{array}$	Floating Point Division	Section 18.11
124	EXP	$\begin{array}{\|l\|l\|l\|} \hline \operatorname{EXP} & \mathrm{s} & \mathrm{D} \\ \hline \end{array}$	Floating Point Exponent	Section $18.12$
125	LOGE	LOGE S D	Floating Point Natural Logarithm	Section $18.13$
126	LOG10	LOG10 S D	Floating Point Common Logarithm	Section $18.14$
127	ESQR	ESQR S D	Floating Point Square Root	$\begin{gathered} \text { Section } \\ 18.15 \end{gathered}$
128	ENEG	Нト ENEG $\mathrm{D}^{\text {E }}$	Floating Point Negation	$\begin{gathered} \text { Section } \\ 18.16 \end{gathered}$


FNC No.	Mnemonic	Symbol	Function	Reference
129	INT	1 INT s D	Floating Point to Integer Conversion	$\begin{gathered} \text { Section } \\ 18.17 \end{gathered}$
130	SIN		Floating Point Sine	Section 18.18
131	COS		Floating Point Cosine	$\begin{gathered} \text { Section } \\ 18.19 \end{gathered}$
132	TAN	TAN S D	Floating Point Tangent	$\begin{gathered} \text { Section } \\ 18.20 \end{gathered}$
133	ASIN	ASIN S   D D	Floating Point Arc Sine	Section 18.21
134	ACOS	$\mathrm{H} \quad \begin{array}{\|l\|l\|l\|} \mathrm{Acos} & \mathrm{~S} & \mathrm{D} \\ \hline \end{array}$	Floating Point Arc Cosine	$\begin{gathered} \text { Section } \\ 18.22 \end{gathered}$
135	ATAN	$\begin{array}{\|l\|l\|l\|} \hline \text { ATAN } & \mathrm{S} & \mathrm{D} \\ \hline \end{array}$	Floating Point Arc Tangent	$\begin{gathered} \text { Section } \\ 18.23 \end{gathered}$
136	RAD	$\begin{array}{\|l\|l\|l\|} \hline \text { RAD } & \mathrm{S} & \mathrm{D} \\ \hline \end{array}$	Floating Point Degrees to Radians Conversion	Section 18.24
137	DEG	DEG S D	Floating Point Radians to Degrees Conversion	$\begin{gathered} \text { Section } \\ 18.25 \end{gathered}$
138	-			-
139	-			-

### 18.1 FNC110 - ECMP / Floating Point Compare

## Outline

This instruction compares two data values (binary floating point), and outputs the result (larger, same or smaller) to three consecutive bit devices.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

$-\cdots$	FNC 110	
D	ECMP	P


16-bit Instruction	Mnemonic	Operation Condition
	-	


32-bit Instruction	Mnemonic	Operation Condition	
13 steps	DECMP	$\boxed{ }$	Continuous
	Operation		
	DECMPP	$\sim$	Pulse (Single)   Operation

2. Set data

Operand Type	Description	Data Type
S1•	Device number storing binary floating point data to be compared	Real number (binary) ${ }^{* 1}$
S2•	Device number storing binary floating point data to be compared	
D•	Head bit device number to which the comparison result is output (Three devices are   occupied.)	Bit

*1. When a constant $(\mathrm{K}$ or H$)$ is specified, it is automatically converted from binary into binary floating point (real number) when the instruction is executed.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-2	$\triangle 3$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
S2.														$\checkmark$	-2	$\triangle 3$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	A1												$\checkmark$					

41: "D $\square . b$ " is available only in $F X_{3} /$ /FX3uc PLCs, and cannot be indexed with index registers ( $V$ and $Z$ ).
42: This function is supported only in $F X_{3 G} / F X_{3} G c / F X_{3} / F X_{3} U C$ PLCs.
©3: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 32-bit operation (DECMP and DECMPP)

The comparison value $\left[\mathrm{S}_{1} \cdot \cdot+1, \mathrm{~S}_{1} \cdot\right]$ is compared with the comparison source $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot$ ] as floating point data, and one of the bits among D• , D• +1 and D• +2 turns ON according to the result (smaller, same or larger).

- When a constant $(\mathrm{K}$ or H$)$ is specified as $\left[\mathrm{S} 1 \cdot \cdot+1, \mathrm{~S}_{1} \cdot\right]$ or $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot$ ], it is automatically converted from binary into binary floating point (real number) when the instruction is executed.


Even if the command input turns OFF before the DECMP instruction is fully executed, D. to D. +2 hold the status.

## Caution

1. Number of occupied devices

Three devices are occupied from (D• ( $D^{\cdot}, D^{\cdot}+1$ and $D^{\cdot}+2$ ).
Make sure that these devices are not used for any other purpose.

### 18.2 FNC111 - EZCP / Floating Point Zone Compare

## Outline

This instruction compares data (binary floating point) with two values (one zone), and outputs the comparison result to three consecutive bit devices.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition
17 steps	DEZCP	$\square \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DEZCPP	L Pulse (Single)

2. Set data

Operand Type	Description	Data Type
S1•	Data register number storing binary floating point data to be compared	
S2•	Data register number storing binary floating point data to be compared	Real number (binary) ${ }^{* 1}$
S•	Data register number storing binary floating point data to be compared	
D•	Head bit device number to which the comparison result is output (Three devices are   occupied.)	Bit

*1. When a constant ( K or H ) is specified, it is automatically converted from binary into binary floating point (real number) when the instruction is executed.

## 3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant		Real Number   E	Character String"口"	Pointer   P
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S1-															$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(S2.)															$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(S.)															$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)		$\checkmark$	$\checkmark$			$\checkmark$		-												$\checkmark$					

A: "D $\square . b$ " cannot be indexed with index registers ( $V$ and $Z$ ).

## Explanation of function and operation

## 1. 32-bit operation (DEZCP and DEZCPP)

The comparison values [ $\left.S_{1} \cdot+1, S_{1 \cdot}\right]$, $\left.S_{2 \cdot}+1, S_{2 \cdot}\right]$ ] are compared with the comparison source [ $S \cdot+1$, (S.) as floating point data, and one of the bits among D. D. ${ }^{\circ}+1$, and $D^{\cdot}+2$ turns ON according to the result (smaller, same or larger).

- When a constant $(\mathrm{K}$ or H$)$ is specified as [ $\mathrm{S} 1 \cdot \cdot+1$, $\mathrm{S}_{1} \cdot$ ], [ $\mathrm{S}_{2} \cdot+1$, $\mathrm{S}_{2 \cdot}$ ], or [ $\mathrm{S} \cdot+1$, $\mathrm{S} \cdot$ ], it is automatically converted into binary floating point when the instruction is executed.
 previous status.


## Cautions

## 1. Number of occupied devices

Three devices are occupied from (D•) (D. , D• +1 and (D• +2).
Make sure that these devices are not used for any other purpose.
2. Comparison values $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right.$ ] and $\left[\mathrm{S}_{2} \cdot\right.$ +1, $\mathrm{S}_{2} \cdot$ ]

Make sure that two comparison values have the following relationship:
$[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$ ] $[\mathrm{S} 2 \cdot+1, \mathrm{~S} \cdot \cdot]$
In the case of " $\left[\mathrm{S}_{1} \cdot \cdot+1, \mathrm{~S}_{1} \cdot\right]>\left[\mathrm{S} \cdot \cdot+1, \mathrm{~S}_{2} \cdot\right]$ ", the value $\left[\mathrm{S} 2 \cdot \cdot+1, \mathrm{~S}_{2} \cdot\right]$ is regarded as $\left[\mathrm{S}_{1} \cdot \mathrm{O}+1, \mathrm{~S} 1 \cdot \cdot\right]$ value during comparison.

### 18.3 FNC112 - EMOV / Floating Point Move

## Outline

This instruction transfers binary floating point data.


Ver.1.00 프․


FX3
Ver. $2.20 \mathrm{\prime} \mathrm{\prime} \Rightarrow$
F×3UC Ver. $1.00 \mathrm{n} \Rightarrow$
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Binary floating point data (transfer source) or device number storing data	Real number (binary)
D•	Device number receiving floating point data	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\G■	Index			Constant			Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	A1	-2			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	A1	A2			$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX}}^{3 \mathrm{GC} / \mathrm{FX}} \mathbf{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
$\mathbf{\Delta} 2$ : This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 30 \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 32 bit operation (DEMOV and DEMOPV)

The contents (binary floating point data) of the transfer source [ $S^{\cdot}+1$, $S^{\cdot}$ ] are transferred to [ D• +1, (D. ]. A real number ( E ) can be directly specified as $\mathrm{S}^{\circ}$.


## Program examples

1. In the program example shown below, a real number stored in D11 and D10 is transferred to D1 and DO when X007 turns ON

2. In the program shown below, a real number "-1.23" is transferred to D11 and D10 when X007 turns ON


### 18.4 FNC116 - ESTR / Floating Point to Character String Conversion

## Outline

This instruction converts binary floating point data into a character string (ASCII codes) having a specified number of digits.
On the other hand, STR (FNC200) instruction converts binary data into a character string (ASCII codes).
$\rightarrow$ For a character string, refer to Section 5.3. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.
$\rightarrow$ For STR (FNC200) instruction, refer to Section 26.1.

1. Instruction format



| 32-bit Instruction | Mnemonic | Operation Condition |
| :---: | :---: | :---: | :---: |
| 13 steps | DESTR | $\boxed{ }$Continuous <br> Operation <br>  <br>  <br>  <br>  <br>  <br> DESTRP$\sqrt{\text { Pulse (Single) }}$Operation |

2. Set data

Operand Type	Description	Data Type
S1•	Binary floating point data to be converted or device storing data	Real number (binary)
S2•	Head device number storing the display specification of a numeric value to be converted	$16-$ bit binary
D•	Head device number storing converted character string	Character string

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(S2.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 32-bit operation (DESTR and DESTRP)

The contents (binary floating point data) of $\left[\mathrm{S}_{1} \cdot \mathrm{+1}, \mathrm{~S} 1 \cdot \cdot\right]$ are converted into a character string according to the contents specified by $\mathrm{S}_{2 \cdot}$, $\mathrm{S}_{2 \cdot} \cdot+1$ and $\mathrm{S}_{2 \cdot}+2$, and then stored to devices $\mathrm{D} \cdot$ and later. A real number can be directly specified as $\mathrm{S}_{1} \cdot$.


- The data after conversion varies depending on the display specification stored in $\mathrm{S}_{2} \cdot$.



## 2. In the case of decimal point format



- The total number of digits which can be specified by $\mathrm{S}_{2} \cdot+1$ is as follows ( 24 digits maximum): When the number of digits of the decimal part is " 0 ", Total number of digits $\geq 2$ When the number of digits of the decimal part is any value other than " 0 ", Total number of digits $\geq$ (Number of digits of decimal part + 3)
- The number of digits of the decimal part which can be specified by $\mathrm{S}_{2} \cdot+2$ is from 0 to 7

However, the following must be satisfied, "Number of digits of decimal part $\leq$ (Total number of digits -3 )"
For example, when the total number of digits is " 8 ", the number of digits of the decimal part is " 3 ", and
" -1.23456 " is specified, data is stored in (D. and later as shown below:


- The character string data after conversion is stored in the devices $D \cdot$ and later as shown below:
- For the sign, "20H (space)" is stored when the binary floating point data is positive, and "2DH (-)" is stored when the data is negative
- If the decimal part of the binary floating point data cannot be accommodated in the number of digits of the decimal part, low-order digits of the decimal part are rounded.

- When the number of digits of the decimal part is set to any value other than " 0 ", " 2 EH (.)" is automatically stored in "specified number of digits of decimal part + 1 "th digit.
When the number of digits of the decimal part is "0", "2EH (.)" is not stored.

- When the total number of digits subtracted by the digits for sign, decimal point and decimal part is larger than the integer part of the binary floating point data, " 20 H (space)" is stored between the sign and the integer part.

- " 00 H " or " 0000 H " is automatically stored at the end of the converted character string.

3. In the case of exponent format


- The total number of digits which can be specified by $\mathrm{S}_{2 \cdot}+1$ is as follows ( 24 digits maximum):

When the number of digits of the decimal part is " 0 " Total number of digits $\geq 6$
When the number of digits of the decimal part is any value other than " 0 " Total number of digits $\geq$ (Number of digits of decimal part + 7)

- The number of digits of the decimal part which can be specified by $\mathrm{S}_{2} \cdot+2$ is from 0 to 7 .

However, the following must be satisfied, "Number of digits of decimal part $\leq$ (Total number of digits -7 )"
For example, when the total number of digits is "12", the number of digits of the decimal part is "4", and
"-12.34567" is specified, data is stored in D• and later as shown below:



- The character string data after conversion is stored in the devices D. and later as shown below:
- For the sign of the integer part, "20H (space)" is stored when the binary floating point data is positive, and "2DH $(-)$ " is stored when the data is negative.
- The integer part is fixed to 1 digit.
" 20 H (space)" is stored between the integer part and the sign.

- If the decimal part of the binary floating point data cannot be accommodated in the number of digits of the decimal part, low-order digits of the decimal part are rounded.

- When the number of digits of the decimal part is set to any value other than " 0 ", " $2 \mathrm{EH}($.$) " is automatically stored$ in "specified number of digits of decimal part +1 "th digit.
When the number of digits of the decimal part is " 0 ", "2EH (.)" is not stored.

- For the sign of the exponent part, "2BH (+)" is stored when the exponent is positive, and "2DH (-)" is stored when the exponent is negative.
- The exponent part is fixed to 2 digits.

When the exponent part is 1 digit, " $30 \mathrm{H}(0)$ " is stored after the sign of the exponent part.


- " 00 H " or " 0000 H " is automatically stored at the end of the converted character string.


## Related instructions

Instruction	Description
EVAL (FNC117)	Converts a character string (ASCII codes) into binary floating point data.
STR (FNC200)	Converts binary data into a character string (ASCII codes).
VAL (FNC201)	Converts a character string (ASCII codes) into binary data.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When $\mathrm{S}_{1 \cdot}$ is not located within the following range (error code: K6706) $0, \pm 2^{-126} \leq \mathrm{S}_{1} \cdot> \pm 2^{128}$
- When the format specified by $\mathrm{S} 2 \cdot$ is any value other than " 0 " or "1" (error code: K6706)
- When the total number of digits specified by $\mathrm{S} 2 \cdot+1$ is not located within the following range (error code: K6706) In the case of decimal point format:

When the number of digits of the decimal part is " 0 ", Total number of digits $\geq 2$
When the number of digits of the decimal part is any value other than " 0 ", Total number of digits $\geq$ (Number of digits of decimal part + 3)
In the case of exponent format:
When the number of digits of the decimal part is " 0 ", Total number of digits $\geq 6$
When the number of digits of the decimal part is any value other than " 0 ", Total number of digits $\geq$ (Number of digits of decimal part +7 )

- When the number of digits of the decimal part specified by $\mathrm{S}_{2} \cdot+2$ is not located within the following range (error code: K6706)
In the case of decimal point format: Number of digits of decimal part $\leq$ (Total number of digits -3 )
In the case of exponent format: Number of digits of decimal part $\leq$ (Total number of digits - 7)
- When the devices storing a character string specified by D. exceeds the allowable device range (error code: K6706)
- When the conversion result exceeds the specified total number of digits (error code: K6706)


## Program examples

1) In the program example shown below, the contents (binary floating point data) of R0 and R1 are converted according to the contents specified by R10 to R12, and then stored to D0 and later when X000 turns ON

2) In the program shown below, the contents (binary floating point data) of R0 and R1 are converted according to the contents specified by R10 to R12, and then stored to D10 and later when X000 turns ON


D10	20H(space)	20H(space)
D11	2EH(.)	33H(3)
D12	$37 \mathrm{H}(7)$	$32 \mathrm{H}(2)$
D13	$36 \mathrm{H}(6)$	34H(4)
D14	2DH(-)	45 H (E)
D15	$32 \mathrm{H}(2)$	$30 \mathrm{H}(0)$
D16	0000H	
	000 H is auto end of the	stored at the er string.

### 18.5 FNC117 - EVAL / Character String to Floating Point Conversion

## Outline

This instruction converts a character string (ASCII codes) into binary floating point data.
On the other hand, the VAL (FNC201) instruction converts a character string (ASCII codes) into binary data.
$\rightarrow$ For a character string, refer to Section 5.3. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.
$\rightarrow$ For VAL (FNC201) instruction, refer to Section 26.2.

## 1. Instruction format



32-bit Instruction	Mnemonic	Operation Condition	
	DEVAL	$\boxed{\square}$ steps	DEontinuous
	DEVALP	$\leftarrow$	Operation   Pulse (Single)   Operation

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing character string data to be converted into binary floating point   data	Character string
D•	Head device number storing converted binary floating point data	Real number (binary)

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$													
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DEVAL and DEVALP)

A character string stored in $S^{\cdot}$ and later is converted into binary floating point, and stored to [ $D \cdot+1, D^{\cdot}$ ].


A specified character string may be in the decimal point format or exponent format. A character string in either format can be converted into binary floating point data.

a) In the case of decimal point format

(S.)	$31 \mathrm{H}(1)$	2DH(-)	$\square$	$\text { D. }+1 \text { D. }$
(s.) +1	$30 \mathrm{H}(0)$	2EH(.)		
(s.) +2	38H(8)	37H(7)		-1.07812
(s.) +3	$32 \mathrm{H}(2)$	31 H (1)		Binary floating point (real number)
(S.) +4		00H		

b) In the case of exponent format


- When a character string to be converted into binary floating point specified by $S \cdot$ has 7 digits or more excluding the sign, decimal point and exponent part, the conversion result may contain rounding error.
a) In the case of decimal point format

b) In the case of exponent format

(s.)	20H(.)	2DH(-)
(s.) +1	2EH(.)	$31 \mathrm{H}(1)$
(S.) +2	$35 \mathrm{H}(5)$	$33 \mathrm{H}(3)$
(5.) +3	33 H (3)	$30 \mathrm{H}(0)$
(5.) +4	$31 \mathrm{H}(1)$	$34 \mathrm{H}(4)$
(S.) +5	$45 \mathrm{H}(\mathrm{E})$	$32 \mathrm{H}(2)$
(s.) +6	$30 \mathrm{H}(0)$	2DH(-)
	00H	32H(2)

$\qquad$


Rounded.

- When "2BH (+)" is specified as the sign in the floating point format or when the sign is omitted, a character string is converted into a positive value.
When "2DH (-)" is specified as the sign, a character string is converted into a negative value.
- When "2BH (+)" is specified as the sign in the exponent format or when the sign is omitted, a character string is converted into a positive exponent.
When "2DH (-)" is specified as the sign, a character string is converted into a negative exponent.
- When " 20 H (space)" or " $30 \mathrm{H}(0)$ " exists between numbers except the first " 0 " in a character string specified by
s. , " 20 H " or " 30 H " is ignored during conversion.

- When " $30 \mathrm{H}(0)$ " exists between a number and " E " in a character string in the exponent format, " 30 H " is ignored during conversion.

- A character string can consist of up to 24 characters.
" 20 H (space)" and " $30 \mathrm{H}(0)$ " in a character string are counted as one character respectively.


## Related devices

$\rightarrow$ For the use methods of the zero, borrow and carry flags, refer to Subsection 6.5.2.

Device	Name	Description	
		Operation	
M8020	Zero flag	The conversion result is true "0".   (The mantissa part is "0".)	The zero flag M8020 turns ON.
M8021	Borrow flag	The absolute value of the conversion result   is less than " $2^{-126 " . ~}$	The value of   real numbers and the borrow flag M8021 turns ON.
M8022	Carry flag	The absolute value of the conversion result   is not less than " $22^{128 " . ~}$	The value of   real numbers and the carry flag M8022 turns ON.

## Related instructions

Instruction	Description
ESTR (FNC116)	Converts binary floating point data into a character string (ASCII codes).
STR (FNC200)	Converts binary data into a character string (ASCII codes).
VAL (FNC201)	Converts a character string (ASCII codes) into binary data.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When any character other than " $30 \mathrm{H}(0)$ " to " $39 \mathrm{H}(9)$ " exists in the integer part or decimal part (error code: K6706)
- When "2EH (.)" exists in two or more positions in a character string specified by $\mathrm{S}^{-}$(error code: K6706)
- When any character other than "45H (E)", "2BH (+)" or "2DH (-)" exists in the exponent part, or when two or more exponent parts exist (error code: K6706)
- When " 00 H " does not exist in the corresponding device range starting from (S. (error code: K6706)
- When the number of characters after $S \cdot$ is " 0 " or more than "24" (error code: K6706)


## Program examples

1) In the program example shown below, a character string stored in $R 0$ and later is converted into binary floating point, and stored to D0 and D1 when X000 turns ON


R0	20H(space)	2DH(-)	D1	D0
R1	$31 \mathrm{H}(1)$	$30 \mathrm{H}(0)$		
R2	$32 \mathrm{H}(2)$	2EH(.)		
R3	$34 \mathrm{H}(4)$	33H(3)		
R4	$32 \mathrm{H}(2)$	$35 \mathrm{H}(5)$		
R5	OOH	31H(1)		
	$\begin{gathered} \text { al } \\ \text { Ignore } \end{gathered}$	$\begin{gathered} 51 \\ \stackrel{21}{\pi} \\ \text { Rour } \end{gathered}$		

2) In the program shown below, a character string stored in D10 and later is converted into binary floating point, and stored to D100 and D101 when X000 turns ON


D10	20H(space)	20H(space)
D11	$2 \mathrm{EH}($.	$31 \mathrm{H}(1)$
D12	33H(3)	$32 \mathrm{H}(2)$
D13	$35 \mathrm{H}(5)$	34H(4)
D14	2DH(-)	45 H (E)
D15	$32 \mathrm{H}(2)$	$30 \mathrm{H}(0)$
D16		OOH



Operations at overflow, underflow and zero

Condition	Operation
The absolute value of the conversion result is less than " 2 -126".	The value of D. $\qquad$ is the minimum value $\left(2^{-126}\right)$ of 32 -bit real numbers and the borrow flag M8021 turns ON.
The absolute value of the conversion result is not less than " $2{ }^{128}$ ".	The value of (D. is the maximum value $\left(2^{128}\right)$ of 32 -bit real numbers and the carry flag M8022 turns ON.
The conversion result is true " 0 ". (The mantissa part is " 0 ".)	The zero flag M8020 turns ON.

### 18.6 FNC118 - EBCD / Floating Point to Scientific Notation Conversion

Outline
This instruction converts binary floating point into scientific notation.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition	
	DEBCD	$\boxed{L}$ steps	Continuous   Operation  
	DEBCDP	$\boxed{\square}$	Pulse (Single)   Operation

2. Set data

Operand Type	Description	Data Type
S•	Data register number storing binary floating point	Real number (binary)
D•	Data register number storing converted scientific notation	Real number (decimal)

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIG $\square$	Index			Constant		Real Number E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(5.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DEBCD and DEBCDP)

Binary floating point stored in $\left[S \cdot+1, S^{\cdot}\right]$ is converted into scientific notation, and transferred to [ $D \cdot+1$, (D.).


## Caution

1. Handling of floating point

In floating point operations, all data is handled in binary floating point.
Because binary floating point is difficult to understand (requiring a dedicated monitoring method), it is converted into scientific notation so that monitoring can be easily executed by peripheral equipment.
GX Works2, GX Developer and GOT have the function to directly monitor and display binary floating point.

### 18.7 FNC119 - EBIN / Scientific Notation to Floating Point Conversion

## Outline

This instruction converts scientific notation stored in devices into binary floating point.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
S•	Data register number storing scientific notation data	Real number   (decimal)
D•	Data register number storing converted binary floating point.	Real number (binary)

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	Character String	$\frac{\text { Pointer }}{}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DEBIN and DEBINP)

Scientific notation stored in [ $S^{\cdot}+1, S^{\cdot}$ ] is converted into binary floating point, and transferred to [ $D \cdot+1$,
(D.)].



Scientific notation Binary floating point


## Program example

By DEBIN instruction, a numeric value containing the decimal point can be directly converted into binary floating point.
Example: Converting " 3.14 " into binary floating point
$3.14=314 \times 10^{-2}$ (scientific notation)

$\rightarrow$ For program examples of floating point operations, refer to Section 12.10.

### 18.8 FNC120 - EADD / Floating Point Addition

## Outline



Ver. $1.00 \mathrm{~m} \Rightarrow$

FX 3UC Ver. $1.00 \mathrm{n} \Rightarrow$

This instruction executes addition of two binary floating point data.
$\rightarrow$ For program examples of floating point operations, refer to Section 12.10. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3. $\rightarrow$ For flag operations, refer to Subsection 6.5.2.

## 1. Instruction format




32-bit Instruction	Mnemonic	Operation Condition
13 steps	DEADD	Continuous   - Operation
	DEADDP	$\left\llcorner\begin{array}{l}\text { Pulse (Single) } \\ \text { Operation }\end{array}\right.$

2. Set data

Operand Type	Description	Data Type
$\mathrm{S}_{1} \cdot$	Word device number storing binary floating point data used in addition	
$\mathrm{~S}_{2} \cdot$	Word device number storing binary floating point data used in addition	
S.	Data register number storing the addition result	

*1. When a constant ( K or H ) is specified, it is automatically converted into binary floating point (real number) when the instruction is executed.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \mathrm{U} \square \mathrm{G} \square \\ \hline \end{array}$	Index			Constant		Real Number	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
S2-														$\checkmark$	A1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)														$\checkmark$	-1	A2			$\checkmark$					

©1: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} / F X_{3} \cup c ~ P L C s$.
$\mathbf{\Delta}$ 2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 32-bit operation (DEADD and DEADDP)

Binary floating point data $\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2 \cdot}\right]$ is added to binary floating point data $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]$, and the addition result in the binary floating point format is transferred to [ $D^{\cdot}+1, D^{\cdot}$ ].
Command


When a constant ( K or H ) is specified as $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right.$ ] or $\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2} \cdot\right.$ ], it is automatically converted into binary floating point.


## Caution

1. When the same device is specified
 In this case, note that the addition result changes in every operation cycle when the continuous operation type instruction (DEADD) is used.

### 18.9 FNC121 - ESUB / Floating Point Subtraction

## Outline

F×3S	FX3G	FXX3GC	FX3U	FX3UC
Ver.1.00" ${ }^{\text {at }}$	Ver.1.10 $n$	Ver.1.40 $n \rightarrow$	Ver.2.20ı"	Ver.1.00ı

This instruction executes subtraction of two binary floating point data.
$\rightarrow$ For program examples of floating point operations, refer to Section 12.10. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3. $\rightarrow$ For flag operations, refer to Subsection 6.5.2.

## 1. Instruction format




32-bit Instruction	Mnemonic	Operation Condition
13 steps	DESUB	Continuous
	DESUBP	Pulse (Single)

2. Set data

Operand Type	Description	Data Type
S1•	Word device number storing binary floating point data used in subtraction	
S2•	Word device number storing binary floating point data used in subtraction	Real number (binary) ${ }^{* 1}$
D•	Data register number storing the subtraction result	

*1. When a constant ( K or H ) is specified, it is automatically converted into binary floating point (real number) when the instruction is executed.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash \end{gathered}$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
S2.)														$\checkmark$	A1	$\Delta 2$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)														$\checkmark$	A1	-2			$\checkmark$					

11: This function is supported only in FX3G/FX3Gc/FX3U/FX3Uc PLCs.
A2: This function is supported only in FX3U/FX3UC PLCs.

## Explanation of function and operation

1. 32-bit operation (DESUB and DESUBP)

Binary floating point data [ $\mathrm{S}_{2 \cdot} \cdot+1, \mathrm{~S}_{2} \cdot$ ] is subtracted from binary floating point data $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]$ ], and the subtraction result in the binary floating point format is transferred to [ $D^{\cdot}+1, D^{\cdot}$ ].


When a constant $\left(\mathrm{K}\right.$ or H ) is specified as $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right.$ ] or $[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$, it is automatically converted into binary floating point.


## Caution

1. When the same device is specified
 In this case, note that the subtraction result changes in every operation cycle when the continuous operation type instruction (DESUB) is used.

### 18.10 FNC122 - EMUL / Floating Point Multiplication

## Outline



This instruction executes multiplication of two binary floating point data.
$\rightarrow$ For program examples of floating point operations, refer to Section 12.10. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition
13 steps	DEMUL	Continuous   - Operation
	DEMULP	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
S1•	Word device number storing binary floating point data used in multiplication	
S2•	Word device number storing binary floating point data used in multiplication	Real number (binary) ${ }^{* 1}$
D•	Data register number storing the multiplication result	

*1. When a constant ( K or H ) is specified, it is automatically converted into binary floating point (real number) when the instruction is executed.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square \square$	Index			Con-   stant		Real Number   E	Character String" "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
S2.)														$\checkmark$	A1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)														$\checkmark$	-1	-2			$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX}}^{3 \mathrm{GC} / \mathrm{FX}} \mathbf{3}$ /FX3UC PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{CLCs}$.

## Explanation of function and operation

## 1. 32-bit operation (DEMUL and DEMULP)

 multiplication result in the binary floating point format is transferred to [ $D \cdot+1, D^{-}$].



When a constant $(\mathrm{K}$ or H$)$ is specified as $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1} \cdot\right.$ ] or $[\mathrm{S} 2 \cdot+1, \mathrm{~S} \cdot \cdot$ ], it is automatically converted into binary floating point.

	FNC122 DEMUL	S1.	S2.	
				(D)



### 18.11 FNC123 - EDIV / Floating Point Division

## Outline



Ver. 1.00 펼
$F X_{3}$
Ver.2.20 $\mathrm{\prime} \mathrm{\prime} \Rightarrow$
F×3UC Ver. $1.00 \mathrm{H} \Rightarrow$

This instruction executes division of two binary floating point.
$\rightarrow$ For program examples of floating point operations, refer to Section 12.10. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3. $\rightarrow$ For flag operations, refer to Subsection 6.5.2.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Word device number storing binary floating point data used in division	
S2•	Word device number storing binary floating point data used in division	Real number (binary) ${ }^{* 1}$
D•	Data register number storing binary floating point data obtained by division	

*1. When a constant ( K or H ) is specified, it is automatically converted into binary floating point (real number) when the instruction is executed.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ \G $\square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
S2.														$\checkmark$	A1	42			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)														$\checkmark$	-1	-2			$\checkmark$					

©1: This function is supported only in $F^{2 G} / F X_{3 G C} / F X_{3} / F X_{3} \cup c$ PLCs.
42: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 32-bit operation (DEDIV and DESDIVP)

Binary floating point data [ $\mathrm{S}_{1 \cdot} \cdot+1, \mathrm{~S}_{1 \cdot} \cdot$ ] is divided by binary floating point data $\left[\mathrm{S} \cdot \cdot+1, \mathrm{~S}_{2 \cdot}\right.$ ], and the division result in the binary floating point format is transferred to [ D• +1, D. ].



When a constant $(\mathrm{K}$ or H$)$ is specified as $[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$ or $[\mathrm{S} 2 \cdot+1, \mathrm{~S} \cdot \cdot]$, it is automatically converted into binary floating point.

$\substack{\text { Command } \\ \text { input } \\ \text { IH }}$	FNC123   DEDIV	S1 *	K100



### 18.12 FNC124 - EXP / Floating Point Exponent

## Outline

This instruction executes exponential operation whose base is "e (2.71828)".
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
S•	Head device number storing binary floating point data used in exponential operation.	Real number (binary)
D•	Head device number storing the operation result.	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUपIG口	Index			Con-   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DEXP and DEXPP)

The exponent of $\left[S^{\cdot}+1, S^{\cdot}\right.$ ] is calculated, and the operation result is stored to [ $\left.D^{\cdot}+1, D^{\cdot}\right]$. A real number can be directly specified as $S \cdot$.

$\substack{\text { Command } \\ \text { input }}$		
$1 \longmapsto$	FNC124   DEXP	S •

- In the exponential operation, the base (e) is set to "2.71828".



## Error

An operation error occurs in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the operation result is outside the following range (error code: K6706) $2^{-126} \leq \mid$ Operation result $\mid<2^{128}$


## Program example

In the program example shown below, the exponential operation is executed for a value set in the 2-digit BCD format in X020 to X027, and the operation result is stored in the binary floating point format to D0 and D1 when X000 turns ON.


## Operation when "13" is specified in X020 to X027



## Points

1) The operation result becomes less than " $22^{128 "}$ when the BCD value set in X020 to $X 027$ is " 88 " or less because of $" \operatorname{loge} 2^{128}=88.7 "$.
If a value "89" or more is set, an operation error occurs. To prevent this operation error, when a value more than " 89 " is set, M0 is set to ON so that the exponential operation is not executed.
2) Conversion from natural logarithm into common logarithm

In the CPU, operations are executed in natural logarithm.
For obtaining a value in common logarithm, specify a common logarithm value divided by " 0.4342945 " in [s• +1, s•].
$10^{X}=e^{\frac{X}{0.4342945}}$

### 18.13 FNC125 - LOGE / Floating Point Natural Logarithm

## Outline

This instruction executes the natural logarithm operation.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

## 1. Instruction format



16 -bit Instruction	Mnemonic	Operation Condition
	-	


2. Set data

Operand Type	Description	Data Type
(S.	Head device number storing binary floating point data used in the natural logarithm   operation	Real number (binary)
(D.	Head device number storing the operation result	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square$ IG $\square$	Index			Constant		Real Number E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DLOGE and DLOGEP)

Natural logarithm [logarithm whose base is "e (2.71828)"] of [S• +1, S• ] is calculated, and the operation result is stored to [ $\left.D^{\cdot}+1, D^{-}\right]$. A real number can be directly specified as $S^{\circ}$.


- Only a positive value can be set in [S•+1, S•]. (The natural logarithm operation cannot be executed for a negative value.)


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a negative value is specified in S• (error code: K6706)
- When " 0 " is specified in S• (error code: K6706)


## Program example

In the program example shown below, natural logarithm of "10" set in D50 is calculated, and stored to D30 and D31 when X000 turns ON.


### 18.14 FNC126 - LOG10 / Floating Point Common Logarithm

## Outline

This instruction executes the common logarithm operation.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
(S•	Head device number storing binary floating point data used in the common logarithm   operation	Real number (binary)
D•	Head device number storing the operation result	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con-   stant		Real   Number	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DLOG10 and DLOG10P)

Common logarithm [logarithm whose base is "10"] of [ $S \cdot+1, S \cdot$ ] is calculated, and the operation result is stored to [ $\left.D^{\cdot}+1, D^{\cdot}\right]$. A real number can be directly specified as $S^{\circ}$.


- Only a positive value can be set in [ $S \cdot+1, S^{\cdot}$ ]. (The common logarithm operation cannot be executed for a negative value.)


## Errors

An operation error occurs in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a negative value is specified in S. (error code: K6706)
- When " 0 " is specified in S• (error code: K6706)


## Program example

In the program example shown below, common logarithm of "15" set in D50 is calculated, and stored to D30 and D31 when X000 turns ON.


### 18.15 FNC127 - ESQR / Floating Point Square Root

## Outline



Ver.1.00 ı


This instruction obtains the square root of binary floating point.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
S•	Word device number storing binary floating point data whose square root is calculated	Real number (binary) ${ }^{*}$
D•	Data register number storing the square root of binary floating point data	

*1. When a constant ( K or H ) is specified, it is automatically converted into binary floating point (real number) when the instruction is executed.
3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant		Real   Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
(D.)														$\checkmark$	-1	-2			$\checkmark$					

41: This function is supported only in $F_{3} \mathrm{~F}_{3} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
2: This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{P}$ PLCs.

## Explanation of function and operation

1. 32-bit operation (DESQR and DESQRP)

The square root of $\left[S 1 \cdot+1, \mathrm{~S}^{-} \cdot\right]$ is calculated (in the binary floating point operation), and the result is transferred to [ D• +1, D•].

Command input	FNC127DESQR		
		(S -	(D)



## Related device

$\rightarrow$ For the zero flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8020	Zero flag	Turns ON when the operation result is true "0".

## Error

The contents of $\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}^{-}\right]$] are valid only when a positive value is set. When a negative value is set, the operation error flag M8067 turns ON, and the instruction is not executed.

### 18.16 FNC128 - ENEG / Floating Point Negation

Outline
This instruction inverts the sign of binary floating point (real number) data.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
D•	Head device number storing binary floating data whose sign is to be inverted	Real number (binary)

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant		Real Number	Charac-   ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DENEG and DENEGP)

The sign of binary floating point stored in [ $D \cdot+1, D^{\cdot}$ ] is inverted, and the negation result is stored to [ $D^{\cdot}+1$, (D.)].

$\substack{\text { Command } \\ \text { input } \\ l}$	FNC128   DENEG	$\mathrm{D} \cdot$

## Program example

In the program example shown below, the sign of floating point data stored in D100 and D101 is inverted, and the negation result is stored to D100 and D101 when X000 turns ON.


### 18.17 FNC129 - INT / Floating Point to Integer Conversion

F× ${ }^{\text {FS }}$	F× ${ }^{\text {FG }}$	F) ${ }^{\text {FGG }}$	F×3U
Ver. $1.00 \mathrm{\prime} \mathrm{\prime}$,	Ver.1.10 ॥	Ver.1.40 $\quad \mathrm{m}$	Ver.2.20 1 ,

## Outline

This instruction converts binary floating point data into a binary integer which is a normal data format inside PLCs (binary floating point $\rightarrow$ binary integer).
$\rightarrow$ For program examples of floating point operations, refer to Section 12.10. $\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DINT	Continuous   - Operation
	DINTP	L Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
$\left(S^{\cdot}\right.$	Data register number storing binary floating point data to be converted into a binary   integer	Real number (binary)
$\left(D^{\cdot}\right.$	Data register number storing a converted binary integer	16 - or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square \backslash \mathrm{G} \square$	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	-1	$\triangle 2$			$\checkmark$					
(D.)														$\checkmark$	-1	-2			$\checkmark$					

$\mathbf{4} 1$ : This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{H} / \mathrm{FX} 30 c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (INT and INTP)

Binary floating point stored in [ $\left.S^{\cdot}+1, S^{\cdot}\right]$ is converted into a binary integer, and transferred to $D^{\cdot}$.


S. $+1, S \cdot$	
Binary floating   point	$=\left(\begin{array}{l}\text { 16-bit binary integer } \\ \text { The decimal part is cut. }\end{array}\right.$

## Instruction for inverse conversion

The inverse conversion is executed by FLT (FNC 49) instruction.
$\rightarrow$ For FLT (FNC 49) instruction, refer to Section 12.10.

## 2. 32-bit operation (DINT and DINTP)

Binary floating point stored in [S•+1, S•] is converted into a binary integer, and transferred to [ $D \cdot+1$, (D.)].


## Instruction for inverse conversion

The inverse conversion is executed by DFLT (FNC 49) instruction
$\rightarrow$ For FLT (FNC 49) instruction, refer to Section 12.10.

## Related devices

$\rightarrow$ For the methods of zero, borrow and carry flags, refer to Subsection 6.5.2.

Device	Name	Description
M8020	Zero flag	Turns ON when the operation result is 0
M8021	Borrow flag	Turns ON when the conversion result is cut in the decimal part.
M8022	Carry flag	Turns ON when the operation result is outside the range from -32768 to 32767   (in 16-bit operation) or from -2,147,483,583 to 2,147,483,583 (in 32-bit operation) and overflow   occurs. (The operation result is not reflected.)

## Caution

## 1. Caution in the operation

- Values after the decimal point are rounded.


### 18.18 FNC130 - SIN / Floating Point Sine

Outline

This instruction obtains the sine value of an angle (in radians).
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Device number storing an angle (in radians) in binary floating point	Real number (binary)
D•	Device number storing the sine value in binary floating point	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DSIN and DSINP)

A value of angle (binary floating point) specified in [S•+1, S• ] is converted into the sine value, and transferred
to $\left[D \cdot+1, D^{\cdot}\right]$.


(1).


Sine value
Binary floating point

## Program example

X001	FNC 12 MOVP	K 45	D 0	$(\mathrm{K} 45) \rightarrow(\mathrm{D} 0)$		An angle is selected by the inputs X001 and X002.	
X002	FNC 12 MOVP	K 90	D 0	$(\mathrm{K90}) \rightarrow$ (D 0)			
$\xrightarrow[\text { M8000 }]{\text { RUN }}$	$\begin{gathered} \text { FNC } 49 \\ \text { FLTP } \\ \hline \end{gathered}$	D 0	D 4	(D 0) $\rightarrow$ (D5, D4) Binary floating point value			
RUN monitor	FNC123 DEDIV	K31415926	K1800000000		D 20	$(\pi / 180) \rightarrow(\mathrm{D} 21, \mathrm{D} 20)$   Binary floating point	
	FNC122 DEMUL	D 4	D 20	D 30	(D5, Binary	Degrees $\times(\pi / 180) \rightarrow$ (D31, D30) Radians ating point	
	(S.) (D.)			(D31, D30) RAD $\rightarrow$ (D101, D100) SIN Binary floating point			
	$\begin{aligned} & \text { FNC130 } \\ & \text { DSIN } \end{aligned}$	D 30	D100				

### 18.19 FNC131 - COS / Floating Point Cosine

## Outline

This instruction obtains the cosine value of an angle (in radians).
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Device number storing an angle (in radians) in binary floating point	Real number (binary)
D•	Device number storing the cosine value in binary floating point	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant			Character String " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(5.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

## 1. 32-bit operation (DCOS and DCOSP)

A value of angle (binary floating point) specified in [ $S^{\cdot}+1, S^{\cdot}$ ] is converted into the cosine value, and transferred to [D•+1, (D•)].


Value in radians (Value in degrees $\times \pi / 180$ ) Binary floating point
(D.)


Cosine value
Binary floating point

### 18.20 FNC132 - TAN / Floating Point Tangent

## Outline

This instruction obtains the tangent value of an angle (in radians).

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
S•	Device number storing an angle (in radians) in binary floating point	Real number (binary)
D•	Device number storing the tangent value in binary floating point	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUपIG口	Index			Con-   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DTAN and DTANP)

A value of angle (binary floating point) specified in $[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$ is converted into the tangent value, and transferred to [ D• +1, D•)].

S.

Value in radians (Value in degrees $\times \pi / 180$ )
Binary floating point
(D.)
$\square$ Tangent value Binary floating point

### 18.21 FNC133 - ASIN / Floating Point Arc Sine

## Outline

This instruction executes $\mathrm{SIN}^{-1}$ (arc sine) operation.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a sine value used in $\mathrm{SIN}^{-1}$ (arc sine) operation.	Real number (binary)
D•	Head device number storing the operation result	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Con-   stant			Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DASIN and DASINP)

An angle is obtained from the sine value stored in [ $S^{\cdot}+1$, $S^{\cdot}$ ], and stored to [ $D^{\cdot}+1, D^{-}$].
A real number can be directly specified as $S \cdot$.


- The sine value stored in $\left[S^{\cdot}+1, S^{\cdot}\right]$ can be set ranging from -1.0 to +1.0 .
- The angle (operation result) stored in [ $\left.D^{\cdot} \cdot+1, D^{\circ}\right]$ is expressed in radians (from $-\pi / 2$ to $\pi / 2$ ).

For conversion between radians and degrees, refer to the RAD (FNC136) and DEG (FNC137) instructions.
$\rightarrow$ For the RAD (FNC136) instruction, refer to Section 18.24.
$\rightarrow$ For the DEG (FNC137) instruction, refer to Section 18.25.

## Error

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a value specified in $S \cdot$ is outside the range from -1.0 to +1.0 (error code: K6706)


## Program example

In the program example shown below, the $\mathrm{SIN}^{-1}$ value of data (binary floating point) stored in D 0 and D 1 is calculated, and the angle is output in 4-digit BCD to Y 040 to Y 057 when X 000 turns ON .


The angle (in radians) is calculated by the $\mathrm{SIN}^{-1}$ operation ([1]).

The value in radians is converted into the value in degrees ([2]).

The angle expressed in binary floating point (real number) is converted into an integer (binary) ([3]).

The angle expressed in integer (binary) is output to the display unit ([4]).
[2] Conversion into degrees


### 18.22 FNC134 - ACOS / Floating Point Arc Cosine

## Outline

This instruction executes $\operatorname{COS}^{-1}$ (arc cosine) operation.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a cosine value used in $\cos ^{-1}$ (arc cosine) operation	Real number (binary)
D•	Head device number storing the operation result	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Con-   stant			Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DACOS and DACOSP)

An angle is obtained from the cosine value stored in [ $S^{\cdot}+1, S^{\cdot}$ ], and stored to [ $D^{\cdot}+1, D^{\cdot}$ ].
A real number can be directly specified as S.


- The cosine value stored in $\left[S^{\cdot}+1, S^{\cdot}\right]$ can be set ranging from -1.0 to +1.0 .
- The angle (operation result) stored in [ $D^{\cdot}+1, D^{\cdot}$ ] is expressed in radians (from 0 to $\pi$ ).

For conversion between radians and degrees, refer to the RAD (FNC136) and DEG (FNC137) instructions.
$\rightarrow$ For the RAD (FNC136) instruction, refer to Section 18.24.
$\rightarrow$ For the DEG (FNC137) instruction, refer to Section 18.25.

## Error

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a value specified in $S \cdot$ is outside the range from -1.0 to +1.0 (error code: K6706)


## Program example

In the program example shown below, the $\operatorname{COS}^{-1}$ value of data (binary floating point) stored in D0 and D1 is calculated, and the angle is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.


The angle (in radians) is calculated by the $\mathrm{COS}^{-1}$ operation ([1]).

The value in radians is converted into the value in degrees ([2]).

The angle expressed in the binary floating point (real number) is converted into an integer (binary) ([3]).

The angle expressed in integer (binary) is output to the display unit ([4]).

### 18.23 FNC135 - ATAN / Floating Point Arc Tangent

## Outline

This instruction executes the $\mathrm{TAN}^{-1}$ (arc tangent) operation.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a tangent value used in the $\operatorname{TAN}^{-1}$ (arc tangent) operation	Real number (binary)
D•	Head device number storing the operation result	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash G \square \end{gathered}$	Index			Constant			Charac-   ter String   $" \square "$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DATAN and DATANP)

An angle is obtained from the tangent value stored in [ $S^{\cdot}+1$, $S^{\cdot}$ ], and stored to [ $D^{\cdot}+1, D^{\cdot}$ ]. A real number can be directly specified as S.


- The angle (operation result) stored in [ $D \cdot+1$, $\left.D^{\cdot}\right]$ is expressed in radians (from $-\pi / 2$ to $+\pi / 2$ ).

For conversion between radians and degrees, refer to RAD (FNC136) and DEG (FNC137) instructions.
$\rightarrow$ For RAD (FNC136) instruction, refer to Section 18.24.
$\rightarrow$ For DEG (FNC137) instruction, refer to Section 18.25.

## Program example

In the program example shown below, the TAN $^{-1}$ value of data (binary floating point) stored in D0 and D1 is calculated, and the angle is output in 4-digit BCD to Y040 to Y 057 when X 000 turns ON .


The angle (in radians) is calculated by the TAN ${ }^{-1}$ operation ([1]).

The value in radians is converted into the value in degrees ([2]).

The angle expressed in binary floating point (real number) is converted into an integer (binary) ([3]).

The angle expressed in integer (binary) is output to the display unit ([4]).
[2] Conversion into degrees


### 18.24 FNC136 - RAD / Floating Point Degrees to Radians Conversion

## Outline

This instruction converts a value in degrees into a value in radians.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a value in degrees to be converted into a value in radians	Real number (binary)
D•	Head device number storing a value in radians acquired by conversion	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIG■	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(5.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

## 1. 32-bit operation (DRAD and DRADP)

The unit of $\left[S \cdot+1, S^{\cdot}\right]$ is converted from degrees into radians, and the operation result is stored to [ $D \cdot+1$, (D.)].

A real number can be directly specified as $S \cdot$.


- The conversion from degrees into radians is executed as follows:

$$
\text { Radians }=\text { Degrees } \times \frac{\pi}{180}
$$

## Program example

In the program example shown below, a 4-digit BCD value set in degrees in X020 to X037 is converted into a binary floating point value in radians, and stored to D20 and D21 when X000 turns ON.


Operation when "120" is specified in X020 to X037


### 18.25 FNC137 - DEG / Floating Point Radians to Degrees Conversion

## Outline

This instruction converts a value in radians into a value in degrees.
$\rightarrow$ For handling of floating point, refer to Subsection 5.1.3.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a value in radians to be converted into a value in degrees	Real number (binary)
D•	Head device number storing a value in degrees acquired by conversion	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square \square$	Index			Constant		Real   Number   E	Charac-ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$			$\checkmark$		
(D.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

## Explanation of function and operation

1. 32-bit operation (DDEG and DDEGP)

The unit of $\left[S \cdot+1, S^{\cdot}\right]$ is converted from radians into degrees, and the operation result is stored to [ $D \cdot+1$, (D.)].


(real number)

(real number)

- The conversion from radians into degrees is executed as follows:

Degrees $=$ Radians $\times \frac{180}{\pi}$

## Program example

In the program example shown below, a binary floating point value set in radians in D20 and D21 is converted into a BCD value in degrees, and stored to Y 040 and Y 057 when X 000 turns ON .


A value in radians is converted into a value in degrees ([1]).

The angle in binary floating point (real number) is converted into an integer ([2]).

The converted integer is output to the display unit ([3]).

Operation when "1.435792" is specified in D20 and D21
[2]


## 19. Data Operation 2 - FNC140 to FNC149

FNC140 to FNC149 provide instructions for executing complicated processing for fundamental applied instructions and for executing special processing.

FNC No.	Mnemonic	Symbol	Function	Reference
140	wSUM	WSUM S D n	Sum of Word Data	Section 19.1
141	WTOB	WTOB S D n	WORD to BYTE	Section 19.2
142	BTOW	BTOW S D n	BYTE to WORD	Section 19.3
143	UNI	UNI S D n	4-bit Linking of Word Data	Section 19.4
144	DIS	$-1 \longmapsto$ DIS S D   n	4-bit Grouping of Word Data	Section 19.5
145	-			
146	-			
147	SWAP	SWAP	Byte Swap	Section 19.6
148	-			
149	SORT2		Sort Tabulated Data 2	Section 19.7

### 19.1 FNC140 - WSUM / Sum of Word Data

## Outline

This instruction calculates the sum of consecutive 16-bit or 32-bit data.
When calculating the addition data (sum value) in units of byte ( 8 bits), use the CCD (FNC 84) instruction.
$\rightarrow$ For CCD (FNC 84) instruction, refer to Section 16.5.

1. Instruction format

	FNC 140 WSUM	P	$\frac{16 \text {-bit Instruction }}{7 \text { steps }}$	Mnemonic	Operation Condition
D			7 steps	WSUM	Continuous Operation
				WSUMP	$\uparrow$ L $\begin{aligned} & \text { Pulse (Single) } \\ & \text { Operation }\end{aligned}$


2. Set data

Operand type	Description	Data type
S•	Head device number storing data whose sum is calculated	16 - or 32-bit binary
$\mathrm{D} \cdot$	Head device number storing sum	32- or 64-bit binary
n	Number of data $(0<\mathrm{n})$	16 - or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (WSUM and WSUMP)

The sum of " n " 16-bit data starting from $\mathrm{S}^{\cdot}$ is stored as 32-bit data in [ D•+1, D•].

$\substack{\text { Command } \\ \text { input } \\ \longmapsto}$	FNC140   WSUM	S.	(D.	$n$


(S.) +0	K4444
+1	K3333
+2	K1234
+3	K-5426
+4	K326
+5	K10000


"n"	Sum of "n" data	(D.) +1 (D.)
( $\mathrm{n}=6$ )	$\square$	K13911

2. 32-bit operation (DWSUM and DWSUMP)

The sum of "n" 32-bit data starting from [ $S^{\cdot}+1, S^{\cdot}$ ] is stored as 64-bit data in [ $D^{\cdot}+3, D^{\cdot}+2, D^{\cdot}+1$, (D.)].


$[\mathrm{S} \cdot \mathrm{S}+1, \mathrm{~S} \cdot]$	K 32767000
$\mathrm{~S} \cdot+3, \mathrm{~S} \cdot+2]$	K 6000
$\mathrm{~S} \cdot+5, \mathrm{~S} \cdot+4]$	K 35392000
$\mathrm{~S} \cdot+7, \mathrm{~S} \cdot+6]$	$\mathrm{K}-11870000$
$\mathrm{~S} \cdot \mathrm{~S} \cdot+9, \mathrm{~S} \cdot+8]$	K 12345000

$\uparrow$
"n"
points

$(n=5)$$\quad$| Sum of |
| :---: |
| "n" data |

$\frac{[\mathrm{D} \cdot+3, \mathrm{D} \cdot+2, \mathrm{D} \cdot+1, \mathrm{D} \cdot]}{\mathrm{K} 68640000}$

## Related instruction

Instruction	Description
CCD (FNC 84)	Check code   Calculates the sum of 16-bit data in units of byte (8 bits) and the horizontal parity.

## Caution

- In the 32-bit operation, the acquired sum is 64-bit data. FX3U and FX3Uc PLCs cannot handle 64-bit data. When the sum is within the numeric range of 32 -bit data ( $\mathrm{K}-2,147,483,648$ to $\mathrm{K} 2,147,483,647$ ), however, FX3U and FX3UC PLCs can handle the low-order 32 bits of 32-bit data as the sum while ignoring the high-order 32 bits.
- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DWSUM D0 D100 R0", "n" is [R1, R0].


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " n " points starting from $S \cdot$ are outside the specified device range (error code: K6706)
- When " n " is smaller than or equivalent to "0" (error code: K6706)
- When D• are outside the specified device range. (error code: K6706)


## Program example

In the program shown below, the sum of 16-bit data stored in D10 to D14 is stored in [D101, D100].


### 19.2 FNC141 - WTOB / WORD to BYTE

Outline
This instruction separates consecutive 16-bit data in byte units ( 8 bits).

1. Instruction format

	FNC 141	
	WTOB	P


16-bit Instruction	Mnemonic	Operation Condition
7 steps	WTOB	Continuous   - Operation
	WTOBP	Pulse (Single)

32-bit Instructio Mnemonic
Operation Condition
-
2. Set data

Operand type	Description	Data type
S•	Head device number storing data to be separated in byte units	16-bit binary
$\mathrm{D} \cdot$	Head device number storing result of separation in byte units	
n	Number of byte data to be separated $(0 \leq \mathrm{n})$	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \mathrm{U} \square \backslash \square \square \end{gathered}$	Index			Con-   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	$\frac{\text { Pointer }}{}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (WTOB and WTOBP)
1) " $\mathrm{n} / 2$ " 16 -bit data stored in $\mathrm{S} \cdot$ and later is separated into " n " bytes, and stored in " n " devices starting from (D.) as shown below.

b15-------b8 b7------ - b0

2) " 00 H " is stored in the high-order byte ( 8 bits) of each device ( $\mathrm{D} \cdot$ and later) storing the separated byte data.

3）When＂ n ＂is an odd number，only the low－order byte（ 8 bits）of the final separation source device is regarded as the target data as shown in the figure below．
For example，when＂ n ＂is＂ 5 ＂，the data from $S \cdot$ to the low－order byte（8 bits）of $S^{\cdot}+2$ is stored in $D \cdot$ to （D．）+4 ．

b15－－－－－－－b8 b7－－－－－－				b15－－－－－－－b8 b7－－－－－－－b0		不
（5．）+0	12H	39 H	（D．）+0	00H	39H	
＋1	56H	78 H	＋1	00 H	12H	
＋2	FEH	DCH	＋2	00 H	78 H	
			＋3	00H	56H	
	$\begin{aligned} & \text { - It is is } \\ & \text { " } \mathrm{n} \text { " } \end{aligned}$		＋4	00H	DCH	$\downarrow$

4）When＂$n$＂is＂ 0 ＂，WTOB instruction is not executed．

## Related instruction

Instruction	Description
BTOW（FNC142）	Combines the low－order 8 bits（low－order byte）of consecutive 16－bit data．

## Caution

Devices storing the separation source data can overlap devices storing the separated data．
When＂ n ＂is an odd number，however，the high－order byte（ 8 bits）of the final separation source device is overwritten and erased．


## Errors

An operation error is caused in the following cases；The error flag M8067 turns ON，and the error code is stored in D8067．
－When the separation source devices $S \cdot$ to $S^{-}+n / 2$ are outside the specified device range（error code： K6706）
When＂ n ＂is an odd number，the number of a rounded up value decides the number of devices．（error code：K6706）
－When the separated data destination devices（D．to D．$+\mathrm{n}-1$ are outside the specified device range（error code：K6706）

## Program example

In the program shown below，the data stored in D10 to D12 is separated in byte units，and stored in D20 to D25．


### 19.3 FNC142 - BTOW / BYTE to WORD

Outline
This instruction combines the low-order 8 bits (low-order byte) of consecutive 16-bit data.

1. Instruction format

$\text { FNC } 142$BTOW	P	16-bit Instruction   7 steps	Mnemonic	Operation Condition	32-bit Instruction		Operation Condition
			BTOW	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$			
			BTOWP	Pulse (Single) Operation			

2. Set data

Operand type	Description	Data type
S•	Head device number storing data to be combined in byte units	16-bit binary
$\mathrm{D} \cdot$	Head device number storing data acquired by combination in byte units	
n	Number of byte data to be combined $(0 \leq \mathrm{n})$	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash G \square \end{gathered}$	Index			Constant			Character String$\square$	$\begin{gathered} \text { Pointer } \\ P \end{gathered}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (BTOW and BTOWP)
1) The low-order byte ( 8 bits) of " n " 16 -bit data starting from $S \cdot$ is combined, and stored in " $\mathrm{n} / 2$ " devices starting from (D. as shown below.

2) The high-order byte ( 8 bits) of each combination source 16 -bit data ( $S^{\cdot}$ ) and later) is ignored.
3) When " n " is an odd number, " 00 H " is stored in the high-order byte ( 8 bits) of the final one among the combination result destination devices as shown below.
For example, when " n " is " 5 ", the low-order byte ( 8 bits) of $\mathrm{S}^{\circ}$ to $\mathrm{S}^{\circ}+4$ is stored in $\mathrm{D}^{\circ}$ to $D \cdot+2$, and " 00 H " is stored in the high-order byte ( 8 bits ) of $\mathrm{D} \cdot+2$

4) When " $n$ " is " 0 ", the BTOW instruction is not executed.

## Related instruction

Instruction	
WTOB (FNC141)	Separates consecutive 16-bit data in byte units (8 bits).

## Caution

Devices storing the combination source data may be equivalent to devices storing the combined data.
After combination, however, the high-order byte ( 8 bits) of the combination source data stored in the devices used for the combination destination data is erased and overwritten with the data acquired by combining the high-order byte (8 bits).
 also used for the combination destination, "ABH" and "CDH" are erased and overwritten.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the combination source devices $S^{\cdot}$ to $S^{\cdot}+n-1$ are outside the specified device range (error code: K6706)
- When the combined data destination devices (D. to D. $+\mathrm{n} / 2$ are outside the specified device range (error code: K6706)
When " n " is an odd number, the number of a rounded up value decides the number of devices. (error code: K6706)


## Program example

In the program shown below, the low-order byte (8 bits) data stored in D20 to D25 is combined, and stored in D10 to D12.


### 19.4 FNC143 - UNI / 4-bit Linking of Word Data

## Outline

This instruction combines the low-order 4 bits of consecutive 16-bit data.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
7 steps	UNI	Continuous
	UNIP	Pulse (Single)


32-bit Instruction	Mnemonic	Operation Condition
	-	
	-	

2. Set data

Operand type	Description	Data type
$\mathrm{S} \cdot$	Head device number storing data to be combined	16-bit binary
$\mathrm{D} \cdot$	Device number storing combined data	
n	Number of data to be combined $(0$ to 4, When " n " is " 0 ", UNI instruction is not executed. $)$	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   UपIG■	Index			Con-   stant		Real Number   E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (UNI/UNIP)
1) The low-order 4 bits of "n" 16-bit data starting from S• are combined, and stored in $\mathrm{D}^{-}$as shown below.

2) Specify a number 1 to 4 in " $n$ ".

In the case of " $\mathrm{n}=0$ ", UNI instruction is not executed.
3) In the case of " $1 \leq n \leq 3$ ", the high-order $\{4 \times(4-n)\}$ bits of $D \cdot$ are set to " 0 ".

For example, when "n" is " 3 ", the low-order 4 bits of $S^{\cdot}$ to $S^{\cdot}+2$ are stored in b0 to b11 of $D \cdot$, and the high-order 4 bits of $\mathrm{D} \cdot$ are set to " 0 ".


## Related instruction

Instruction	
DIS (FNC144)	Separates 16-bit data in 4-bit units.

## Errors

An operation error occurs in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When S• to S•+n are outside the specified device range (error code: K6706)
- When " n " is outside the range from " 0 to 4" (error code: K6706)


## Program example

In the program below, the low-order 4 bits of D0 to D2 are combined and stored in D10 when X000 turns ON.


### 19.5 FNC144 - DIS / 4-bit Grouping of Word Data

## Outline

This instruction separates 16 -bit data into 4 bit units.

1. Instruction format


32-bit Instruction		Mnemonic
	Operation Condition	
	-	

2. Set data

Operand type	Description	Data type
S•	Device number storing data to be separated	16-bit binary
D•	Head device number storing separated data	
n	Number of data to be separated $(0$ to 4$)$ (When " n " is "0", DIS instruction is not executed.)	

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square \backslash \square \square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T		C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)													$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)													$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n															$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (DIS and DISP)

1) 16-bit data stored in $S^{\cdot}$ is separated in 4-bit units, and stored in $D^{-}$as shown below.

(s.)

2) Specify a number 1 to 4 in "n".

In the case of " $\mathrm{n}=0$ ", DIS instruction is not executed.
3) High-order 12 bits of " $n$ " devices starting from (D• are set to " 0 ".

## Related instruction

Instruction		Description
UNI (FNC143)	Combines low-order 4 bits of 16-bit data.	

## Errors

An operation error occurs in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When D• to D•+n are outside the specified device range (error code: K6706)
- When " n " is outside the range from "0 to 4" (error code: K6706)


## Program example

In the program below, D0 is separated into 4 bit units and stored in D10 to D13 when X000 turns ON.


### 19.6 FNC147 - SWAP / Byte Swap

Outline
This instruction swaps the high-order 8 bits and low-order 8 bits of a word device.

1. Instruction format


Mnemonic	Operation Condition
SWAP	$\square \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
SWAPP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
5 steps	AP	Continuous _ Operation
	DSW	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
$\mathrm{S} \cdot$	Word device whose high-order 8 bits and low-order 8 bits are swapped for each other	16- or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ \G $\square$	Index			Constant		Real Number   E	Charac-   ter String   $" \square "$	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)									$\checkmark$															

## Explanation of function and operation

1. 16-bit operation (SWAP and SWAPP)

High-order 8 bits and low-order 8 bits are swapped for each other.


## 2. 32-bit operation (DSWAP and DSWAPP)

High-order 8 bits and low-order 8 bits are swapped for each other in each word device.


## Caution

When the continuous operation type instruction is used, swapping is executed in each operation cycle. This instruction works in the same way as the extension function of the XCH (FNC 17) instruction.

### 19.7 FNC149 - SORT2 / Sort Tabulated Data 2

## Outline

This instruction sorts a data table consisting of data (lines) and group data (columns) based on a specified group data (column) sorted by line in either ascending or descending order. This instruction stores the data (lines) in serial devices facilitating the addition of data (lines).
On the other hand, the SORT (FNC 69) instruction stores the group data (columns) in serial devices, and sorts a table in ascending order only.
$\rightarrow$ For SORT (FNC 69) instruction, refer to Section 14.10.

1. Instruction format

2. Set data

Operand type	Description	Data type
S	Head device number storing the data table [which occupies $\mathrm{m} 1 \times \mathrm{m} 2 \mathrm{points}]$	
m 1	Number of data (lines) [1 to 32]	
m 2	Number of group data (columns) [1 to 6]	16- or 32-bit binary
D	Head device number storing the operation result [which occupies $\mathrm{m} 1 \times \mathrm{m} 2$ points]	
n	Column number of group data (column) used as the basis of sorting [1 to m 2$]$	

3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   UnitUप\G■	Index			Constant		Real Number E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C		S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S)															$\checkmark$	$\checkmark$									
m1															$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
m2																					$\checkmark$	$\checkmark$			
(D)															$\checkmark$	$\checkmark$									
n															$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (SORT2)

In the data table (sorting source) having ( $\mathrm{m} 1 \times \mathrm{m} 2$ ) points from S , data lines are sorted in the ascending or descending order based on the group data in column No. " n ", and the result is stored in the data table (occupying m 1 $x \mathrm{~m} 2$ points) from $D$.
$\rightarrow$ For operation examples, refer to Page 545.
Command


Instruction execution complete flag M8029

The data table configuration is explained in an example in which the sorting source data table has 3 lines and 4 columns ( $m 1=K 3, m 2=K 4$ ). For the sorting result data table, understand $S$ as $D$.

Column No.		Number of groups (m2 = K4)			
		1	2	3	4
Line No.		Control number	Height	Weight	Age
$\begin{aligned} & \text { Number of } \\ & \text { data } \\ & \text { m1 } 1=\mathrm{K} 3 \end{aligned}$	1	(S)	(S)+1	(S) +2	(S)+3
	2	(S) +4	(S)+5	(S) +6	(S)+7
	3	(S)+8	(S)+9	(S)+10	(S)+11

- Set the sorting order by setting M8165 to ON or OFF.

	Sorting order
M8165=ON	Descending order
M8165=OFF	Ascending order

- When the command input turns ON, data sorting is started. Data sorting is completed after "m1" scans, and the instruction execution complete flag M8029 is set to ON.
$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.


## 2. 32-bit operation (DSORT2)

In the data table (sorting source) having ( $\mathrm{m} 1 \times \mathrm{m} 2$ ) points from $[S+1, S$ ], data lines are sorted in the ascending or descending order based on the group data in the column No. "n", and the result is stored in the data table (sorting result) having ( $\mathrm{m} 1 \times \mathrm{m} 2$ ) points from $[\mathrm{D}+1, \mathrm{D}]$.
$\rightarrow$ For operation examples, refer to next page.


Instruction execution complete flag M8029

The data table configuration is explained in an example in which the sorting source data table has 3 lines and 4 columns ( $m 1=K 3, m 2=K 4$ ). For the sorting result data table, understand $S$ as $D$.

Column No.		Number of groups (m2 = K4)			
Line No.		1	2	3	4
		Control number	Height	Weight	Age
Number of data $\mathrm{m} 1=\mathrm{K} 3$	1	[ S +1, S ]	[ S +3, S +2]	[ S +5, S +4]	[ S +7, S +6]
	2	[ S +9, S +8]	[ S +11, S +10]	[ S +13, S +12]	[ S +15, S +14]
	3	[ S +17, S +16]	[ S +19, S +18]	[ S +21, S +20]	[ $\mathrm{S}+23,(\mathrm{~S}+22]$

- Set the sorting order by setting M8165 to ON or OFF.

	Sorting order
M8165=ON	Descending order
M8165=OFF	Ascending order

- When a data register $D$ or extension register $(R)$ is used for " m 1 ", the data length is 32 bits.

For example, when " m 1 " is specified in D0, " m 1 " is 32 -bit data stored in [D1, D0]

- When the command input turns ON, data sorting is started. Data sorting is completed after "m1" scans, and the instruction execution complete flag M8029 is set to ON.
$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.


## 3. Operation examples

When the instruction is executed with " $\mathrm{n}=\mathrm{K} 2$ (column No. 2)" and " $\mathrm{n}=\mathrm{K} 3$ (column No. 3)" for the following sorting source data, the operations shown below result.
The operation examples below indicate 16 -bit operations. In the case of 32 -bit operation, construct the data table with 32-bit binary data.
It is recommended to put a serial number such as a control number in the first column so that the original line number can be estimated based on the contents.

## Sorting source data

Column No.		Number of groups (m2 = K4)			
Line No.		1	2	3	4
		Control number	Height	Weight	Age
Number of data m1 $=\mathrm{K} 5$	1	(S)	(S) +1	(S)+2	(S)+3
		1	150	45	20
	2	(S) +4	(S) +5	(S)+6	(S)+7
		2	180	50	40
	3	(S)+8	(S) +9	(S) +10	(S)+11
		3	160	70	30
	4	(S) +12	(S)+13	(S)+14	(S)+15
		4	100	20	8
	5	(S)+16	S +17	(S)+18	(S)+19
		5	150	50	45

1) Sorting result when the instruction is executed with " $n=K 2$ (column No. 2)"
(in the case of ascending order)

Column No.Line No.	1	2	3	4
	Control number	Height	Weight	Age
1	(D)	(D)+1	(D)+2	(D) +3
	4	100	20	8
2	(D) +4	(D)+5	(D) +6	(D)+7
	1	150	45	20
3	(D) +8	(D) +9	(D) +10	(D)+11
	5	150	50	45
4	(D) +12	(D) +13	(D) +14	(D)+15
	3	160	70	30
5	(D) +16	(D) +17	(D) +18	(D) +19
	2	180	50	40

2) Sorting result when the instruction is executed with " $n=K 3$ (column No. 3)" (in the case of descending order)

Column No. Line No.	1	2	3	4
	Control number	Height	Weight	Age
1	(D)	(D) +1	(D) +2	(D) +3
	3	160	70	30
2	(D) +4	(D) +5	(D) +6	(D)+7
	2	180	50	40
3	(D) +8	(D)+9	(D) +10	(D) +11
	5	150	50	45
4	(D) +12	(D) +13	(D) +14	(D) +15
	1	150	45	20
5	(D) +16	(D) +17	(D) +18	(D) +19
	4	100	20	8

## Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8029	Instruction execution complete	Turns ON when data sorting is completed.
M8165	Descending order	Sorts data in the descending order when set to ON.   Sorts data in the ascending order when set to OFF.

## Related instruction

Instruction	Description
SORT (FNC 69)	Sort tabulated data   This instruction sorts a data table consisting of data (lines) and group data (columns) based on a specified   group data (column) sorted by line in ascending order. This instruction stores the group data (columns) in   serial devices.

## Cautions

- Do not change the contents of operands and data during operation.
- To execute SORT2 instruction again, set the command input to OFF once, then ON again.
- Limitation in number of SORT2 instructions

Up to two SORT2 instructions can be simultaneously driven in a program.

- Writing during RUN is disabled for a circuit block including SORT2 instruction.
- When the same device is specified in $S$ and $D$

The source data is overwritten with the data acquired by sorting.
Pay close attention not to change the contents of S until execution of SORT2 instruction is completed.

- Ensure that the sorted data does not overlap with the source data.

- Note that the 32 -bit values $[m 1+1, m 1]$ and $[n+1, n]$ are valid when $D$ or $R$ is specified as "m1" or " $n$ " in a 32-bit instruction.
In the case of "DSORT2 D0 D50 K4 D100 R0", "m1" is [D51, D50], and "n" is [R1, R0].


## 20. Positioning Control - FNC150 to FNC159

FNC150 to FNC159 provide positioning instructions using the built-in pulse output function of the PLC.
$\rightarrow$ For details, refer to the Positioning Control Edition manual.

FNC No.	Mnemonic	Symbol	Function	Reference
150	DSZR	DSZR S 1 S 2 D 1 D 2	DOG Search Zero Return	Section 20.1
151	DVIT		Interrupt Positioning	Section 20.2
152	TBL	TBL D n	Batch Data Positioning Mode	Section 20.3
153	-			-
154	-			-
155	ABS	ABS S D 1 D 2	Absolute Current Value Read	Section 20.4
156	ZRN		Zero Return	Section 20.5
157	PLSV	PLSV S D 1 D 2	Variable Speed Pulse Output	Section 20.6
158	DRVI	DRVI S 1 S 2 D 1 D 2	Drive to Increment	Section 20.7
159	DRVA	DRVA S 1 S 2 D 1 D 2	Drive to Absolute	Section 20.8

## Caution on writing during RUN

During RUN, avoid writing while any positioning control instruction (FNC150, FNC151, or FNC156 to
FNC159) is executed (that is, while pulses are output).
If program write is executed during RUN to a circuit block including a target instruction below while pulses are being output, the PLC executes the operation shown below.

\left.| Target instruction | PLC operation when writing executed during RUN while instruction is |
| :--- | :--- |
| executed |  |$\right]$. Decelerates and stops pulse output..

### 20.1 FNC150 - DSZR / Dog Search Zero Return

$F^{\prime} X_{3}$
Ver.2.20 $\mathrm{\prime} \mathrm{\prime} \Rightarrow$

## Outline

This instruction executes a zero return, and aligns the mechanical position with a present value register inside the PLC.
In addition, this instruction enables the following functions not supported by the ZRN (FNC156) instruction:

- DOG search function
- Zero return by the near-point (dog) signal and zero-phase signal It is not possible, however, to count the zero-phase signal and then determine the zero point.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual. $\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
9 steps	DSZR	$\boxed{ } \|$Continuous   Operation

$\qquad$
2. Set data

Operand type	Description	Data type
S1•	Device number for near-point signal (dog)	
S2•	Input number for zero-phase signal	Bit
D1•	Device number (Y) from which pulses are to be output	
D2•	Device number to which rotation direction signal is output	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \square \square \backslash G \square \end{gathered}$	Index			Constant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1.	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					
S2.)	$\begin{array}{\|l\|} \hline \mathbf{A} \\ 2 \end{array}$																		$\checkmark$					
(D1.)		$\stackrel{4}{3}$																	$\checkmark$					
(D2.)		$\pm$	$\checkmark$			$\checkmark$	©1												$\checkmark$					

$\mathbf{\Delta} 1$ : "D $\square . b$ " is available only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 304$ PLCs. However, index modifiers ( V and Z ) are not available.
42 : In the case of $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 34 \mathrm{C}}$ PLCs, specify X000 to X007. In the case of FX 3 P PLC, specify X000 to X005.
А3 : Specify Y000, Y001 or Y002*1 transistor output from the main unit, or specify Y000, Y001, Y002 ${ }^{* 3}$ or Y003*3 from a high-speed output special adapter ${ }^{*}$.
*1. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3s/FX3GC PLCs.
*2. High-speed output special adapters can be connected only to FX3u PLC.
*3. To use Y002 and Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.
Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.
©4 : When using a special high-speed output adapter for the pulse output destination in an FX3U PLC, the rotation direction signal must be used by the following table output.
When using a built-in transistor output for the pulse output destination in an $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs, the rotation direction signal must use transistor output.

Special high-speed output adapter No.	Pulse output	Rotation direction output
No. 1 (1st unit)	(D1. $=\mathrm{Y} 000$	(D2.) $=\mathrm{Y} 004$
	(D1. $=$ Y001	(D2.) $=\mathrm{Y} 005$
No. 2 (2nd unit)	(D1.) $=$ Y002	(D2.) $=\mathrm{Y} 006$
	(D1.) $=\mathrm{Y} 003$	(D2.) $=\mathrm{Y} 007$

Explanation of function and operation


## Caution on writing during RUN

During RUN, avoid writing while the DSZR (FNC150) instruction is executed (that is, while a pulse is output).
Note that if writing is executed during RUN to a circuit block including the FNC150 instruction while pulses are output, the PLC decelerates and stops pulse output.

## Function change depending on the version

The function of FNC150 instruction is changed depending on the version as shown in the table below.
$\rightarrow$ For explanation of the instruction and the contents of function change, refer to the Positioning Control Edition.

Applicable version					Item	Outline of function
FX3S	FX3G	FX3GC	FX3U	FX3UC		
Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.40 or later	Ver. 2.20 or later	Ver. 2.20 or later	Clear signal output destination specification function	When a special auxiliary relay corresponding to (D1• is set to ON, the clear signal output destination is changed to an output number specified by a special data register corresponding to (D.).

### 20.2 FNC151 - DVIT / Interrupt Positioning

## Outline

This instruction executes one-speed interrupt constant quantity feed.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual. $\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1-	Number of output pulses (incremental address) after interrupt ${ }^{* 1}$	16- or 32-bit binary
S2.	Output pulse frequency ${ }^{*}{ }^{2}$	
(D1-)	Device number (Y) from which pulses are to be output	Bit
(D2.)	Device number to which rotation direction signal is output	

*1. Setting range: -32768 to +32767 (except 0 ) in 16-bit operation

$$
-999,999 \text { to }+999,999 \text { (except } 0 \text { ) in } 32 \text {-bit operation }
$$

*2. Setting range: 10 to 32767 Hz in 16-bit operation
Following range in 32-bit operation

Pulse output destination		Setting range
FX3U PLC	Special high-speed output adapter	10 to $200,000(\mathrm{~Hz})$
FX3U/FX3UC PLC	Main unit (transistor output)	10 to $100,000(\mathrm{~Hz})$

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real   Number   E	Charac-   ter String" $\square$ "	$\frac{\text { Pointer }}{}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \mathrm{G} \square$	V	Z	Modify	K	H			
S1•								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(S2-)								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(1)		A   1																	$\checkmark$					
(D2•		A   2	$\checkmark$			$\checkmark$	A3												$\checkmark$					

©1 : Specify Y000, Y001 or Y002 transistor output from the main unit, or specify Y000, Y001, Y002*4 or Y003 ${ }^{* 4}$ from a high-speed output special adapter ${ }^{* 3}$.
*3. High-speed output special adapters can be connected only to FX3u PLC.
*4. To use Y002 and Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.

## Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.
$\mathbf{\Delta} 2$ : When using a special high-speed output adapter for the pulse output destination in an FX3U PLC, the rotation direction signal must be used by the following table output.
When using a built-in transistor output for the pulse output destination in an FX3U/FX3UC PLC, the rotation direction signal must use transistor output.

Special high-speed output adapter No.	Pulse output	Rotation direction output
No. 1 (1st unit)	D1• = Y000	(D2.) = Y004
	(D1- = Y001	(D2.) $=\mathrm{Y} 005$
No. 2 (2nd unit)	(D1- $=$ Y002	(D2.) $=\mathrm{Y} 006$
	(1-) = Y003	(D2.) $=\mathrm{Y} 007$

A3 : "D $\square . b$ " cannot be indexed with index registers (V and $Z$ ).

## Explanation of function and operation

$\substack{\text { Command } \\ \text { input } \\ \rightarrow}$	FNC151   DVIT	$\mathrm{S}_{1}{ }^{-}$	$\mathrm{S}_{2}-$	$\mathrm{D})^{-}$
	(2)			

## Caution on writing during RUN

During RUN, avoid writing while the DVIT (FNC151) instruction is executed (that is, while a pulse is output).
Note that if writing is executed during RUN to a circuit block including the FNC151 instruction while pulses are output, the PLC decelerates and stops pulse output.

## Function change depending on the version

The functions of FNC151 instruction are changed depending on the version as shown in the table below.
$\rightarrow$ For explanation of the instruction and the contents of function change, refer to the Positioning Control Edition.

Applicable version		Item	
FX3U	FX3UC	Outline of function	
Ver. 2.20 or later	Ver. 1.30 or later	Interrupt input signal   specification function	When M8336 is set to ON, the interrupt input signal corresponding to Y000   to Y003 is changed to an input number (X000 to X007) specified by D8336.   When using a transistor output in the main unit, Y003 cannot be specified.
Ver. 2.20 or later	Ver. 2.20 or later	User interrupt mode	When "8" is specified by D8336 to the interrupt input signal corresponding   to Y000 to Y003 and M8336 is set to ON, the interrupt input signal is   changed to a special auxiliary relay. When this changed special auxiliary   relay is set to from OFF to ON in an input interrupt program, the PLC starts   the interrupt operation. When this function is used, however, the logic of   the interrupt input cannot be inverted.   In addition, when using a transistor output in the main unit, Y003 cannot be   specified.

### 20.3 FNC152 - TBL / Batch Data Positioning Mode

## Outline

 F×Ver.2.20 $\quad \Rightarrow$

This instruction executes one specified table operation from the data table set in GX Works2 etc.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual. $\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

Instruction	Description
DVIT (FNC151) ${ }^{* 1}$	Interrupt positioning
PLSV (FNC157)	Variable speed pulse output
DRVI (FNC158)	Drive to increment
DRVA (FNC159)	Drive to absolute

*1. This function is supported only in FX3U/FX3UC PLCs.

1. Instruction format

2. Set data

Operand type	Description	Data type
D	Device number $(\mathrm{Y})$ from which pulses are to be output	Bit
n	Table entry number [1 to 100] to be executed	$32-$ bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	$\begin{array}{\|c} \hline \text { Pointer } \\ \hline P \\ \hline \end{array}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D)		-																						
n																				$\checkmark$	$\checkmark$			

©1 : Specify Y000, Y001 or Y002*2 transistor output from the main unit, or specify Y000, Y001, Y002*4 or Y003*4 from a high-speed output special adapter ${ }^{* 3}$.
*2. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3Gc PLC.
*3. High-speed output special adapters can be connected only to FX3U PLC.
*4. To use Y002 and Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.
Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.


## Explanation of function and operation

Commandinput	$\begin{gathered} \text { FNC152 } \\ \text { DTBL } \end{gathered}$	(D)	
			n

## Caution on writing during RUN

Writing is disabled to a circuit block including the TBL (FNC152) instruction during RUN.

### 20.4 FNC155 - ABS / Absolute Current Value Read

## Outline

This instruction reads the absolute position (ABS) data when the servo amplifier (equipped with the absolute position detection function) MR-J4 $\square A, ~ M R-J 3 \square A, ~ M R-J 2(S) ~ \square A$, or MR-H $\square A$ is connected. The data is converted into a pulse when being read.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition.

1. Instruction format

2. Set data

Operand type	Description	Data type
(S•)	Head device number inputting absolute (ABS) data output signal sent from servo amplifier Three points are occupied from (S.). .	Bit
(D1-	Head device number outputting absolute (ABS) data control signal to servo amplifier Three points are occupied from (D1•).	
(D2.)	Device number storing absolute (ABS) data (32-bit value)	32-bit binary

## 3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number E	Character String   " $\square$ "	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
(S.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	-2												$\checkmark$					
(D1-)		$\mathbf{A}$   1	$\checkmark$			$\checkmark$	-2												$\checkmark$					
(D2.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-3	-4		$\checkmark$	$\checkmark$					

41: Specify a transistor output.
42: "D $\square . b$ " is available only in $F X_{3} \cup$ and $F X_{3} \cup c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
©3: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} \mathrm{X}_{3 \mathrm{C}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
44: This function is supported only in $F_{3} \mathrm{U} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs.

## Explanation of function and operation



### 20.5 FNC156 - ZRN / Zero Return

## Outline

This instruction executes a zero return, and aligns the mechanical position with a present value register inside the PLC.
When the dog search function is required, use DSZR (FNC150) instruction.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual. $\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

## 1. Instruction format



## 2. Set data

Operand type	Description	Data type
S1•	Initial zero return speed ${ }^{* 1}$	16- or 32-bit binary
S2•	Creep speed [10 to 32767 Hz$]$	Bit
S3•	Device number for near-point signal (dog)	
D•	Device number (Y) from which pulses are to be output	

*1. Setting range: 10 to 32767 Hz for 16 -bit operation
Following range for 32-bit operation

Pulse output destination		Setting range
FX3U PLC	Special high-speed output adapter	10 to $200,000(\mathrm{~Hz})$
FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs	Main unit (transistor output)	10 to $100,000(\mathrm{~Hz})$

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square$ IG $\square$	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	$\triangle 3$	$\triangle 4$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	-3	-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S3-	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	A1												$\checkmark$					
(D.)		- 2																	$\checkmark$					

©1 : "D $\square . b$ " is available only in $F X_{3}$ and $\mathrm{FX}_{3} \cup c$ PLCs. However, index modifiers ( V and Z ) are not available.
©2 : Specify Y000, Y001 or Y002*2 transistor output from the main unit, or specify Y000, Y001, Y002*4 or Y003*4 from a high-speed output special adapter*3.
*2. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3s/FX3GC PLCs.
*3. High-speed output special adapters can be connected only to FX3U PLC.
*4. To use Y002 and Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.

## Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.

43 : This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX} 3 \cup C$ PLCs.
$\mathbf{\Delta 4}$ : This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

$\substack{\text { Command } \\ \text { input } \\ \rightarrow}$				
	FNC156   ZRN	S1*	S2•	S3•

## Caution on writing during RUN

During RUN, avoid writing while the ZRN (FNC156) instruction is executed (that is, while pulses are output). Note that if writing is executed during RUN to a circuit block including the FNC156 instruction while pulses are output, the PLC decelerates and stops pulse output.

## Function change depending on the version

The function of FNC156 instruction is changed depending on the version as shown in the table below.
$\rightarrow$ For explanation of the instruction and the contents of function change, refer to the Positioning Control Edition.

Applicable version					Item	Outline of function	
FX3S	FX3G	FX3GC	FX3U	FX3UC			
Ver. 1.00   or later	Ver. 1.00   or later	Ver. 1.40   or later	Ver. 2.20   or later	Ver. 2.20   or later	Clear signal output   destination   specification function	When a special auxiliary relay corresponding to   set to ON, the clear signal output destination is changed   to an output number specified by a special data register   corresponding to (D•).	

### 20.6 FNC157 - PLSV / Variable Speed Pulse Output

## Outline



Ver.1.00 II
$F X_{3}$
Ver.2.20 " $\Rightarrow$
F×3UC

This instruction outputs variable speed pulses with an assigned rotation direction.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual. $\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

## 1. Instruction format



## 2. Set data

Operand type	Description	Data type
S1•	Device number for output pulse frequency ${ }^{* 1}$	16- or 32-bit binary
(D1•	Device number (Y) from which pulses are to be output	Bit
D2•	Device number to which rotation direction signal is output	

*1. Setting range: -32768 to $-1,+1$ to +32767 (except 0 ) $\mathrm{Hz}^{* 2}$ for 16 -bit operation
Following range for 32-bit operation

Pulse output destination		Setting range
FX3U PLC	Special high-speed output adapter	$-200,000$ to $-1,+1$ to $200,000(\mathrm{~Hz})$
FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs	Main unit (transistor output)	$-100,000$ to $-1,+1$ to $100,000(\mathrm{~Hz})^{* 3}$

*2. When operation without acceleration/deceleration (M8338 = OFF), setting range of $F X_{3 S} / F X_{3 G} / F X_{3 G C} P L C$ is $-32,768$ to $-10 \mathrm{~Hz},+10$ to $32,767 \mathrm{~Hz}$.
*3. When operation without acceleration/deceleration (M8338 = OFF), setting range of FX3S/FX3G/FX3GC PLC is $-100,000$ to $-10 \mathrm{~Hz},+10$ to $100,000 \mathrm{~Hz}$.
3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit	Index			Constant		Real   Number	Character String " $\square$ "	Pointer   P
	X	Y	M	T	C	S		D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \mathrm{G} \square$	V	Z	Modify	K	H			
S1-									$\checkmark$	-4	-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D1.)		-																		$\checkmark$					
(D2.)		-	$\checkmark$			$\checkmark$		-3												$\checkmark$					

$\mathbf{\Delta 1}$ : Specify Y000, Y001 or Y002*4 transistor output from the main unit, or specify Y000, Y001, Y002 ${ }^{* 6}$ or Y003*6 from a high-speed output special adapter ${ }^{*}$.
*4. 002 is not available in FX3G PLC (14-point and 24-point type) and FX3s/FX3GC PLC.
*5. High-speed output special adapters can be connected only to FX3U PLC.
*6. To use Y002 or Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.

## Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.
$\mathbf{\Delta} 2$ : When using a special high-speed output adapter for the pulse output destination in an FX3U PLC, the rotation direction signal must be used by the following table output.
When using a built-in transistor output for the pulse output destination in an FX3s/FX3G/FX3GC/FX3U/FX3uc PLCs, the rotation direction signal must use transistor output.

Special high-speed output adapter No.	Pulse output	Rotation direction output
No. 1 (1st unit)	(D1- = Y000	(D2.) $=\mathrm{Y} 004$
	(D1. $=\mathrm{Y} 001$	(D2.) $=\mathrm{Y} 005$
No. 2 (2nd unit)	(D1.) $=\mathrm{Y} 002$	(D2.) $=\mathrm{Y} 006$
	(D1- $=\mathrm{Y} 003$	(D2.) $=\mathrm{Y} 007$

A3 : "D $\square . b$ " is available only in $F X_{3} U$ and $F X_{3}$ ( PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
$\Delta 4$ : This function is supported only in FX3G/FX3GC/FX3U/FX3UC PLCs.
$\Delta 5$ : This function is supported only in FX3U/FX3Uc PLCs.

## Explanation of function and operation



## Caution on writing during RUN

During RUN, avoid writing while PLSV (FNC157) instruction is executed (that is, while pulses are output).
Note that if writing is executed during RUN to a circuit block including FNC157 instruction while pulses are output, the PLC executes the operation shown below.

	PLC operation when writing is executed during RUN while instruction is   executed
During operation with acceleration/deceleration ${ }^{* 1}$	Decelerates and stops pulse output.
During operation without acceleration/deceleration	Immediately stops pulse output.

*1. Only available for $\mathrm{FX}_{3} \cup \mathrm{C}$ PLC Ver. 2.20 or later and $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} X_{3 G} / F X_{3} \mathrm{PLCs}$.
Function change depending on the version
The function of the FNC157 instruction is changed depending on the version as shown in the table below.
$\rightarrow$ For explanation of the instruction and the contents of function change, refer to the Positioning Control Edition.

Applicable version					Item	Outline of function
FX3S	FX3G	FX3GC	FX3U	FX3UC		
Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.40 or later	Ver. 2.20 or later	Ver. 2.20 or later	Acceleration/ deceleration operation function	When M8338 is set to ON, the PLC accelerates or decelerates up to $\mathrm{S} 1 \cdot$ in the acceleration or deceleration time corresponding to D1• $\square$ if $\mathrm{S}_{1} \cdot$ changes.

### 20.7 FNC158 - DRVI / Drive to Increment

## Outline

# $F X_{3 S}$ 

Ver.1.00 $\quad$ п

F× $3 U$
Ver.2.20 $\quad \Rightarrow$

This instruction executes one-speed positioning by incremental drive. The movement distance from the present position can be specified, positive or negative.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual.
$\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

## 1. Instruction format



## 2. Set data

Operand type	Description	Data type
S1•	Number of output pulses (relative address) ${ }^{* 1}$	16- or 32-bit binary
S2•	Output pulse frequency $^{*}{ }^{2}$	
D1•	Device number (Y) from which pulses are to be output	Bit
D2•	Device number to which rotation direction signal is output	

*1. Setting range: -32768 to +32767 (except 0 ) for 16 -bit operation
-999,999 to +999,999 (except 0) for 32-bit operation
*2. Setting range: 10 to 32767 Hz for 16-bit operation
Following range for 32-bit operation

Pulse output destination		Setting range
FX3U PLC	Special high-speed output adapter	10 to $200,000(\mathrm{~Hz})$
FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs	Main unit (transistor output)	10 to $100,000(\mathrm{~Hz})$

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \square \square$	V	Z	Modify	K	H			
S1-								$\checkmark$	-4	45	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(S2.)								$\checkmark$	-4	A5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D1-)		A																	$\checkmark$					
(D2.)		- 2	$\checkmark$			$\checkmark$	-3												$\checkmark$					

$\boldsymbol{\Delta} 1$ : Specify Y000, Y001 or Y002*3 transistor output from the main unit, or specify Y000, Y001, Y002*5, or Y003*5 from a high-speed output special adapter ${ }^{*} 4$.
*3. YOO2 is not available in FX3G PLC (14-point and 24-point type) and FX3S/FX3GC PLC.
*4. High-speed output special adapters can be connected only to FX3U PLC.
*5. To use Y002 or Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.
Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.
$\mathbf{\Delta} 2$ :When using a special high-speed output adapter for the pulse output destination in an FX3U PLC, the rotation direction signal must be used by the following table output.
When using a built-in transistor output for the pulse output destination in an FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs, the rotation direction signal must use transistor output.

Special high-speed output adapter No.	Pulse output	Rotation direction output
No. 1 (1st unit)	(D1•) $=\mathrm{Y} 000$	(D2.) $=\mathrm{Y} 004$
	( $1^{-} \cdot{ }^{\text {a }}=\mathrm{Y} 001$	(D2.) $=\mathrm{Y} 005$
No. 2 (2nd unit)	(D1- = Y002	(D2.) $=\mathrm{Y} 006$
	(D1• = Y003	(D2.) $=\mathrm{Y} 007$

$\Delta 3$ : "D $\square . b$ " is available only in $F X_{3}$ and $F X_{3} \cup c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
$\Delta 4$ : This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} U / F X_{3} \cup C$ PLCs.
$\Delta 5$ : This function is supported only in FX3U/FX3UC PLCs.

## Explanation of function and operation

Command					
input	$\begin{gathered} \text { FNC158 } \\ \text { DRVI } \end{gathered}$	S1-	S2-	(21-	(22-

## Caution on writing during RUN

During RUN, avoid writing while DRVI (FNC158) instruction is executed (that is, while pulses are output).
Note that if writing is executed during RUN to a circuit block including FNC158 instruction while pulses are output, the PLC decelerates and stops pulse output.

### 20.8 FNC159 - DRVA / Drive to Absolute

## Outline

# X 

Ver. 1.00 " $\Rightarrow$

This instruction executes one-speed positioning by absolute drive. The movement distance from the zero point can be specified.
$\rightarrow$ For explanation of the instruction, refer to the Positioning Control Edition manual. $\rightarrow$ For cautions on using special high-speed output adapters, refer to the Positioning Control Edition manual.

## 1. Instruction format



## 2. Set data

Operand type	Description	Data type
S1•	Number of output pulses (absolute address) ${ }^{* 1}$	16- or 32-bit binary
S2•	Output pulse frequency ${ }^{*}{ }^{2}$	
D1•	Device number (Y) from which pulses are to be output	Bit
D2•	Device number to which rotation direction signal is output	

*1. Setting range: -32768 to +32767 for 16 -bit operation
-999,999 to +999,999 for 32-bit operation
*2. Setting range: 10 to 32767 Hz for 16 -bit operation
Following range for 32-bit operation

Pulse output destination		Setting range
FX3U PLC	Special high-speed output adapter	10 to $200,000(\mathrm{~Hz})$
FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs	Main unit (transistor output)	10 to $100,000(\mathrm{~Hz})$

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \square \square$	V	Z	Modify	K	H			
S1-								$\checkmark$	-4	45	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(S2.)								$\checkmark$	-4	A5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D1-)		A																	$\checkmark$					
(D2.)		- 2	$\checkmark$			$\checkmark$	-3												$\checkmark$					

©1 : Specify Y000, Y001 or Y002 ${ }^{* 3}$ transistor output from main unit, or specify Y000, Y001, Y002 ${ }^{* 5}$ or Y003*5 from a high-speed output special adapter ${ }^{* 4}$.
*3. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3S/FX3GC PLC.
*4. High-speed output special adapters can be connected only to FX3U PLC.
*5. To use Y002 or Y003 with a high-speed output special adapter, connected a second high-speed output special adapter.
Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- Outputs of special high-speed output adapters work as differential line drivers.
$\mathbf{\Delta} 2$ : When using a special high-speed output adapter for the pulse output destination in an FX3U PLC, the rotation direction signal must be used by the following table output.
When using a built-in transistor output for the pulse output destination in an FX3S/FX3G/FX3GC/FX3U/FX3uc PLCs, the rotation direction signal must use transistor output.

Special high-speed output adapter No.	Pulse output	Rotation direction output
No. 1 (1st unit)	(D1.) $=\mathrm{Y} 000$	(D2.) $=\mathrm{Y} 004$
	(D1.) $=\mathrm{Y} 001$	(D2.) $=Y 005$
No. 2 (2nd unit)	(11.) $=\mathrm{Y} 002$	(D2.) $=\mathrm{Y} 006$
	(D1.) $=\mathrm{Y} 003$	(D2.) $=\mathrm{Y} 007$



©5 : This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{U}$ PLCs.

## Explanation of function and operation

$\substack{\text { Command } \\ \text { input } \\ \sim}$	FNC159   DRVA	S1-	S2*	(D1*
	(D2-			

## Caution on writing during RUN

During RUN, avoid writing while DRVA (FNC159) instruction is executed (that is, while pulses are output).
Note that if writing is executed during RUN to a circuit block including FNC159 instruction while pulses are output, the PLC decelerates and stops pulse output.

## 21. Real Time Clock Control - FNC160 to FNC169

FNC160 to FNC169 provide operation and comparison instructions for the time data.
These instructions can set the time of the built-in PLC real time clock, and converts the format of the time data.

FNC No.	Mnemonic	Symbol	Function	Reference
160	TCMP	TCMP S S S3 S D	RTC data compare	Section 21.1
161	TZCP	TZCP S 1 S 2 S D	RTC data zone compare	Section 21.2
162	TADD		RTC data addition	Section 21.3
163	TSUB		RTC data subtraction	Section 21.4
164	HTOS	$H \longmapsto$   $H T O S$	Hour to second conversion	Section 21.5
165	STOH	STOH S D	Second to hour conversion	Section 21.6
166	TRD	Н⺊ TRD $\mathrm{D}^{\text {a }}$	Read RTC data	Section 21.7
167	TWR	TWR s	Set RTC data	Section 21.8
168	-			-
169	HOUR	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { HOUR } & \mathrm{S} & \mathrm{D} 1 & \mathrm{D} 2 \\ \hline \end{array}$	Hour Meter	Section 21.9

### 21.1 FNC160 - TCMP / RTC Data Compare

## Outline



This instruction compares the comparison time with the time data, and turns ON or OFF bit devices according to the comparison result.

1. Instruction format

	FNC 160	
	TCMP	P


16-bit Instruction	Mnemonic	Operation Condition
11 steps	TCMP	Continuous
	TCMPP	L $\begin{aligned} & \text { Pulse (Single) } \\ & \text { Operation }\end{aligned}$


32 -bit Instruction	Mnemonic	Operation Condition
-		
-		

2. Set data

Operand type	Description	Data type
S1•	Specifies "hour" of the comparison time [setting range: 0 to 23].	16-bit binary
S2•	Specifies "minute" of the comparison time [setting range: 0 to 59].	16-bit binary
S3•	Specifies "second" of the comparison time [setting range: 0 to 59].	16-bit binary
S•	Specifies "hour" of the time data (hour, minute, and second).   (Three devices are occupied.)	16-bit binary
D•	Turns ON or OFF according to the comparison result.   (Three devices are occupied.)	Bit

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \mathrm{G} \square$	V	Z	Modify	K	H	E	" $\square$ "	P
(S1*								$\checkmark$	A2	-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.								$\checkmark$	A2	A3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(S3.)								$\checkmark$	A2	A3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(5.)												$\checkmark$	$\checkmark$	$\checkmark$	A2	$\Delta 3$			$\checkmark$					
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	A1												$\checkmark$					

41: "D $\square . b$ " is available only in $F X_{3} 3$ and $F X_{3} \cup c$ PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.

43: This function is supported only in $F X_{3} U / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

## 1. 16-bit operation (TCMP)

The comparison time (hour, minute, and second) stored in $\mathrm{S}_{1 \cdot}, \mathrm{~S}_{2 \cdot}$, and $\mathrm{S}_{3 \cdot}$ is compared with the time data (hour, minute, and second) stored in $\mathrm{S}^{\circ}$. $\mathrm{S} \cdot+1$, and $\mathrm{S} \cdot+2$. Three devices starting from D . turn ON or OFF according to the comparison result.


## Cautions

## 1. Number of occupied devices

Three devices are occupied respectively by (S. and (D.).
Make sure that these devices are not used in other controls for the machine.
2. When utilizing the time (hour, minute, and second) of the built-in PLC real time clock

Read the values of special data registers by TRD (FNC166) instruction, and then specify those word devices as the operands.

## Program example



### 21.2 FNC161 - TZCP / RTC Data Zone Compare

## Outline



This instruction compares two comparison time (comparison time zone) with the time data, and turns ON or OFF the specified bit devices according to the comparison results.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
9 steps	TZCP	Continuous   Operation
	TZCPP	L Pulse (Single)


2. Set data

Operand type	Description	Data type
S1•	Specifies "hour" of the lower limit comparison time (hour, minute, and second).   (Three devices are occupied.)	16-bit binary
S2•	Specifies "hour" of the upper limit comparison time (hour, minute, and second).   (Three devices are occupied.)	16 -bit binary
S•	Specifies "hour" of the time data (hour, minute, and second).   (Three devices are occupied.)	16-bit binary
D•	Turns ON or OFF according to the comparison result.   (Three devices are occupied.)	Bit

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real Number	Character String	Pointer
	$X$	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \mathrm{G} \square$	V	Z	Modify	K	H	E	" $\square$ "	P
S1-												$\checkmark$	$\checkmark$	$\checkmark$	A2	$\Delta 3$			$\checkmark$					
S2•												$\checkmark$	$\checkmark$	$\checkmark$	A2	$\Delta 3$			$\checkmark$					
S•												$\checkmark$	$\checkmark$	$\checkmark$	A2	$\Delta 3$			$\checkmark$					
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	-1												$\checkmark$					

©1: "D口.b" is available only in FX3U and FX3UC PLCs. However, index modifiers ( $V$ and $Z$ ) are not available.
42: This function is supported only in FX3G/FX3GC/FX3U/FX3uc PLCs.
43: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (TZCP)

The lower limit and upper limit comparison time (hour, minute, and second) are compared with the time data (hour, minute, and second) stored in three devices $\mathrm{S}^{\cdot}$, $\mathrm{S}^{\cdot}+1$, and $\mathrm{S}^{\circ}$ +2 . Three devices starting from m• ON or OFF according to the comparison result.


This instruction compares the comparison time zone specified by two points with the time data.

## Cautions

## 1. Number of occupied devices

Three devices are occupied respectively by $\mathrm{S}_{1 \cdot}$, $\mathrm{S}_{2} \cdot$, $\mathrm{S}_{3} \cdot$, and $\mathrm{D}^{\cdot}$.
Make sure that these devices are not used in other controls for the machine.
2. When utilizing the time (hour, minute, and second) of the built-in PLC real time clock

Read the values of special data registers by TRD (FNC166) instruction, and then specify those word devices as the operands.

## Program example


 S2- S2. +1 and S2- +2 : Specify the upper limit of the comparison time zone in "hour", "minute" and "second.
(S.) (S.) +1 and (S.) +2 : Specify the time data in "hour", "minute" and "second.
(D.). (D. +1 and (D. +2 : Turn ON or OFF according to the comparison result.

The setting range of "hour" is from 0 to 23.
The setting range of "minute" is from 0 to 59 .
The setting range of "second" is from 0 to 59 .

### 21.3 FNC162 - TADD / RTC Data Addition

## Outline



This instruction executes addition of two time data, and stores the addition result to word devices.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
7 steps	TADD	Continuous Operation
	TADDP	Pulse (Single) Operation


2. Set data

Operand type	Description	Data type
S1•	Specifies "hour" of the first time data (hour, minute, and second) used in addition.   (Three devices are occupied.)	16-bit binary
S2•	Specifies "hour" of the second time data (hour, minute, and second) used in addition.   (Three devices are occupied.)	16-bit binary
D•	Stores the addition result (hour, minute, and second) of two time data.   (Three devices are occupied.)	16-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
S2.)												$\checkmark$	$\checkmark$	$\checkmark$	-1	$\triangle 2$			$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	A1	-2			$\checkmark$					

©1: This function is supported only in FX3G/FX3GC/FX3U/FX3UC PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{CLCs}$.

## Explanation of function and operation

1. 16-bit operation (TADD)

The time data (hour, minute, and second) stored in $\mathrm{S} 2 \cdot, \mathrm{~S} 2 \cdot+1$, and $\mathrm{S} 2 \cdot+2$ is added to the time data (hour, minute, and second) stored in $\mathrm{S} 1 \cdot, \mathrm{~S} 1 \cdot+1$, and $\mathrm{S} 1 \cdot+2$, and the addition result (hour, minute, and second) is stored in $D^{\cdot}, D^{\cdot}+1$, and $D^{\cdot}+2$.


- When the operation result exceeds 24 hours, the carry flag turns ON, and the value simply acquired by addition subtracted by 24 hours is stored as the operation result.
- When the operation result becomes "0" (0:0:0), the zero flag turns ON.


## Cautions

## 1. Number of occupied devices

Three devices are occupied by $\mathrm{S}_{1-}$, S2• and $\mathrm{D}^{-}$respectively.
Make sure that these devices are not used in other controls for the machine.
2. When utilizing the time (hour, minute, and second) of the built-in PLC real time clock

Read the values of special data registers using the TRD (FNC166) instruction, and then specify those word devices as the operands.

## Program example


(D10, D11, D12)+(D20, D21, D22)
$\rightarrow$ (D30, D31, D32)


When the operation result exceeds 24 hours


### 21.4 FNC163 - TSUB / RTC Data Subtraction

## Outline



This instruction executes subtraction of two time data, and stores the subtraction result to word devices.

1. Instruction format

2. Set data

Operand type	Description	Data type
S1•	Specifies "hour" of the time data (hour, minute, and second) used in subtraction.   (Three devices are occupied.)	16 -bit binary
S2•	Specifies "hour" of the time data (hour, minute, and second) used in subtraction.   (Three devices are occupied.)	16 -bit binary
(D•	Stores the subtraction result (hour, minute, and second) of two time data.   (Three devices are occupied.)	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					
S2.)												$\checkmark$	$\checkmark$	$\checkmark$	-1	$\triangle 2$			$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	A1	-2			$\checkmark$					

41: This function is supported only in FX3G/FX3GC/FX3U/FX3UC PLCs.
©2: This function is supported only in $F X_{3} U / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (TSUB)

The time data (hour, minute, and second) stored in $\mathrm{S} 2 \cdot$, $\mathrm{S} 2 \cdot+1$, and $\mathrm{S} 2 \cdot+2$ is subtracted from the time data (hour, minute, and second) stored in $\mathrm{S}_{1} \cdot, \mathrm{~S} 1 \cdot \cdot+1$, and $\mathrm{S} 1 \cdot+2$, and the subtraction result (hour, minute, and second) is stored in $D^{\cdot}, D^{\cdot}+1$, and $D^{\cdot}+2$.


When the operation result is smaller than 0 hour, the borrow flag turns ON , and the value simply acquired by subtraction added by 24 hours is stored as the operation result.
When the operation result becomes "0" (0:0:0), the zero flag turns ON.

## Cautions

## 1. Number of occupied devices

Three devices are occupied by $\mathrm{S}_{1-}$, S2• and $\mathrm{D}^{-}$respectively.
Make sure that these devices are not used in other controls for the machine.
2. When utilizing the time (hour, minute, and second) of the built-in PLC real time clock

Read the values of special data registers using the TRD (FNC166) instruction, and then specify those word devices as the operands.

## Program example




When the operation result is smaller than "00:00:00"

S1-.
5 (hour)
20 (minute)
40 (second)
:---:
10 (minute)
5 (second)
:---:
10 (minute)
35 (second)

5:20:40
18:10:5
11:10:35

### 21.5 FNC164 - HTOS / Hour to Second Conversion

## Outline



This instruction converts the time data in units of "hour, minute, and second" into data in units of "second".

1. Instruction format

	FNC 164 HTOS	P	16-bit Instruction	Mnemonic	Operation Condition
D			5 steps	HTOS	Continuous Operation
				HTOSP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DHTOS	Continuous Operation
	DHTOSP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
S•	Head device number storing the time data (hour, minute and second) before conversion	16-bit binary
D•	Device number storing the time data (second) after conversion	16 - or 32-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U口IG	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (HTOS and HTOSP)

The time data (hour, minute, and second) stored in $S \cdot(S \cdot+1$, and $S \cdot+2$ is converted into data in units of "second", and stored to D. .


For example, when " 4 hours 29 minutes 31 seconds" is specified, the operation is as follows:


## 2. 32-bit operation (DHTOS and DHTOSP)

The time data (hour, minute, and second) stored in $S \cdot S^{-} \cdot+1$, and $S^{-}+2$ is converted into data in units of "second", and stored to D• +1, D•


For example, when " 35 hours 10 minutes 58 seconds" is specified, the operation is as follows:


## Error

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the data of $S^{\bullet}$, S•+1 or $S^{\bullet}+2$ is outside the allowable range (error code: K6706)


## Program example

In the program shown below, the time data read from the built-in PLC real time clock is converted into data in units of "second", and stored to D100 and D101 when X020 turns ON.


## Operation

- Clock data reading operation by TRD (FNC166) instruction

- Conversion operation into "second" by DHTOS (FNC164) instruction

D13	20		D101,D100
D14	21	$\square$	73283
D15	23		

### 21.6 FNC165 - STOH / Second to Hour Conversion

## Outline



This instruction converts the time data in units of "second" into data in units of "hour, minute, and second".

1. Instruction format

	FNC 165 STOH	P	16-bit Instruction	Mnemonic	Operation Condition
D			5 steps	STOH	Continuous   - Operation
				STOHP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DSTOH	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DSTOHP	Pulse (Single) Operation

2. Set data

Operand type	Description	Data type
S•	Device number storing the time data (second) before conversion	16- or 32-bit binary
D•	Head device number storing the time data (hour, minute and second) after conversion	16-bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U口IG	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (STOH and STOHP)

The time data in units of "second" stored in S. is converted into data in units of "hour, minute, and second", and stored to $D^{\cdot}, D^{\cdot}+1$, and $D^{\cdot}+2$ (hour, minute, and second).


For example, when " 29,011 seconds" is specified, the operation is as follows:


## 2. 32-bit operation (DSTOH and DSTOHP)

The time data in units of "second" stored in $S_{\cdot}+1$ and $S_{\cdot}$ is converted into data in units of "hour, minute, and second", and stored to three devices (D•), D•+1, and D• +2 (hour, minute, and second).


For example, when " 45,325 seconds" is specified, the operation is as follows:


## Error

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is store in D8067.

- When the data of $S \cdot$ is outside the allowable range (error code: K6706)


## Program example

In the program shown below, the time data in units of "second" stored in D0 and D1 is converted into data in units of "hour, minute, and second", and stored to D100, D101, and D102 when X020 turns ON.


## Operation

- Converting the data in second into the data in hour, minute and second using STOHP instruction (when "40,000 seconds" is specified by D1 and D0)



### 21.7 FNC166 - TRD / Read RTC data

## Outline



This instruction reads the clock data of the built-in PLC real time clock.

1. Instruction format


32-bit Instruction Mnemonic

Operation Condition
2. Set data

Operand type	Description	Data type
D.	Specifies the head device number storing the clock data.   (Seven devices are occupied.)	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant			Character String	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z	Modify	K	H			
(D•)												$\checkmark$	$\checkmark$	$\checkmark$	A1	-2			$\checkmark$					

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (TRD)

The clock data stored in D8013 to D8019 of the built-in PLC real time clock is read in the following format, and stored to $D \cdot$ to $D \cdot+6$.


This instruction reads the real time clock data in a PLC, and transfers it to seven data registers.

	Device	Item	Clock data	Device	Item
	D8018	Year	0 to 99 (lower two digits)	D 0	Year
	D8017	Month	1 to 12	D 1	Month
	D8016	Day	1 to 31	D 2	Day
	D8015	Hour	0 to 23	D 3	Hour
	D8014	Minute	0 to 59	D 4	Minute
	D8013	Second	0 to 59	D 5	Second
	D8019	Day of week	0 (Sunday) to   6 (Saturday)	D 6	Day of week

## Caution

1. Number of occupied devices

Seven devices are occupied by (D.).
Make sure that these devices are not used in other controls for the machine.

### 21.8 FNC167 - TWR / Set RTC data

## Outline



This instruction writes the clock data to the built-in PLC real time clock.

1. Instruction format

2. Set data

Operand type	Description	Data type
$\mathrm{S} \cdot$	Specifies the head device number to which the clock data is written.   (Seven devices are occupied.)	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Con-   stant		Real   Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	-1	-2			$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{U}} \mathrm{PLCs}$.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

The clock data stored in $\mathrm{S}^{-}$to $\mathrm{S}^{-}+6$ is written to D8013 to D8019 for the built-in PLC real time clock.


- D8018 (year data) can be converted into the 4-digit mode. (Refer to the program example shown later.)

	Device	Item	Clock data	Device	Item	
	D 10	Year	0 to 99 (lower two digits)	D8018	Year	
	D 11	Month	1 to 12	D8017	Month	
	D 12	Day	1 to 31	D8016	Day	
	D 13	Hour	0 to 23	D8015	Hour	
	D 14	Minute	0 to 59	D8014	Minute	
	D 15	Second	o to 59	D8013	Second	
	D 16	Day of week	0 (Sunday) to   6 (Saturday)	D8019	Day of week	

- When TWR (FNC167) instruction is executed, the clock data of the real time clock is immediately changed.

Accordingly, transfer the clock data several minutes ahead to $S \cdot$ to $S \cdot+6$ in advance, and then execute FNC167 instruction when the accurate time has come.

- When setting the clock data (time) using this instruction, it is not necessary to control the special auxiliary relay M8015 (time stop and time setting).
- If a numeric value indicating impossible date/time is set, the clock data is not changed. Set the correct clock data, and then write it.
- The day of the week (D8019) is automatically corrected in accordance with the date without regard to the written numeric value.


## Caution

## 1. Number of occupied devices

Seven devices are occupied by $S \cdot$
Make sure that these devices are not used in other controls for the machine.

## Program example

## 1. Example of setting the clock data (time)

In the program example shown below, the real time clock is set (to 15:20:30 on Tuesday, April 25, 2001).


- The shaded area indicates the set value of each item.
- When setting the time, it is recommended to set the time to several minutes ahead in advance, and then set X000 to ON when the accurate time is reached. The set time is then immediately written to the real time clock, and the clock data is updated.
- Every time X001 is set to ON, the current time can be corrected by $\pm 30$ seconds.
- When handling the year in the 4 -digit mode, add the following program.

D8018 will specify the 4-digit year mode in the second scan and later after the PLC mode is changed to RUN.

M8002	FNC 12   MOV	K2000	D8018
	Initial pulse		

- A PLC is normally operating in the 2-digit year mode. When the above instruction is executed and "K2000 (fixed value)" is transferred to D8018 (year) in only one operation cycle after the PLC mode was changed to RUN, the year mode is switched to the 4-digit mode.
- Execute this program every time the PLC mode is changed to RUN. Even if "K2000" is transferred, only the display format is changed to the 4-digit year mode. The current date and time are not affected.
- In the 4-digit year mode, the set values " 80 to 99 " correspond to "1980 to 1999", and "00 to 79 " correspond to "2000 to 2079".
Examples:
" 80 " indicates 1980. "99" indicates 1999. "00" indicates 2000. "79" indicates 2079.
- When the data access unit FX-10DU-E/20DU-E/25DU-E is connected, select the 2-digit year mode. If the 4-digit year mode is selected, the year is not correctly displayed in the current version of the FX-10DU-E/20DU-E/25DU-E. Note that the clock is changed to the 2-digit year mode when the clock is set from the FX-10DU-E/20DU-E/25DU-E while the PLC is operating in the 4 -digit year mode.


### 21.9 FNC169 - HOUR / Hour Meter

## Outline



This instruction measures the ON time of the input contact in units of hour.

1. Instruction format

2. Set data

Operand type	Description	Data type
S•	Time after which (D2• is set to ON (unit: hour)	16- or 32-bit binary
D1•	Current value (unit: hour) (latched (battery backed) type data register latched (battery   backed))	16- or 32-bit binary
D2•	Head device number to which alarm is output	Bit

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit	Index			Constant		Real   Number   E	Character String$\text { " } \square \text { " }$	Pointer   $P$
	X	Y	M	T	C	S		D. $\square$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
(S.)									$\checkmark$	42	-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D1-)															$\checkmark$	-2				$\checkmark$					
(D2.)		$\checkmark$	$\checkmark$			$\checkmark$		-1												$\checkmark$					

©1: $D \square . b$ is available only in $F X_{3} U$ and $F X_{3} \cup c$ PLCs. However, index modifiers $(V$ and $Z)$ are not available.
42: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.
43: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation

S. : Time after which (D2• is set to ON Specify a value in units of hour.
D1.) : Current value in units of hour
(D1. + 1 : Current value less than one hour (unit: second)
(D2.) : Alarm output destination It turns ON when the current value (D1- reaches or exceeds the time specified in $\mathrm{S}^{\cdot}$.

- Specify a latched (battery backed) type data register as (D1. so that the current value data can be continuously used even after the PLC turns OFF.
If a general type data register is used, the current value data is cleared when the power to the PLC is turned OFF or when the PLC mode switches from STOP to RUN.
- Even after the alarm output (D2• turns ON, the measurement is continued.

To begin measuring the ON time again, clear the current value stored in $\mathrm{D}_{1 \cdot}$ and $\mathrm{D}_{1 \cdot}+1$.
When the current value is cleared, alarm output is turned OFF.

- When the current value (D1• reaches the maximum value of 16 -bit data, the measurement is stopped.

For continuing the measurement, clear the current value stored in (D1• and D1• +1.

## 2. 32-bit operation


[ $\mathrm{S}^{\cdot}+1, \mathrm{~S} \cdot$ ]: Time after which (D2• is set to ON
Specify the high-order side in $\mathrm{S} 1 \cdot^{\cdot}+1$, and the low-order side in $\mathrm{S}_{1} \cdot$.
[ D1• +1, D1•] : Current value in units of hour The high-order side is stored in $\mathrm{D} 1 \cdot+1$, and the low-order side is stored in (D1•).
(D1-) +2 : Current value less than one hour (unit: second)
(D2.) : Alarm output destination
It turns ON when the current value $(\mathrm{D} 1 \cdot$ and $(\mathrm{D} 1 \cdot+1$ reaches or exceeds the time specified in (s.).

- Specify a latched (battery backed) type data register as D1- so that the current value data can be continuously used even after the PLC turns OFF.
If a general data type register is used, the current value data is cleared when the power to the PLC is turned OFF or when the PLC mode switches from STOP to RUN.
- Even after the alarm output (D2• turns ON, the measurement is continued.

When measures the ON time beginning again, clear the current value stored in (D1- to D1• +2. When the current value is clear, alarm output is turned OFF.

- When the current value $[\mathrm{D} 1 \cdot+1, \mathrm{D} 1 \cdot]$ reaches the maximum value of 32 -bit data, the measurement is stopped. For continuing the measurement, clear the current value stored in $D 1^{\bullet}$ to $D 1^{-}+2$.


## Caution

## 1. Number of occupied devices

Two (16-bit operation) or three (32-bit operation) devices are occupied by (D1.).
Make sure that these devices are not used in other controls for the machine.

## Program example

In the program example shown below, when the accumulated X000 ON time exceeds 300 hours, Y005 turns ON. The current value less than one hour is stored in D201 in units of second.


## 22. External Device - FNC170 to FNC179

FNC170 to FNC179 provide conversion instructions for gray codes used in absolute type rotary encoders and instructions dedicated to analog blocks.

FNC No.	Mnemonic	Symbol	Function	Reference
170	GRY	GRY S D	Decimal to Gray Code Conversion	Section 22.1
171	GBIN	GBIN S D	Gray Code to Decimal Conversion	Section 22.2
172	-			-
173	-			-
174	-			-
175	-			-
176	RD3A	$\begin{array}{\|l\|l\|l\|l\|} \hline-1 \longmapsto & \text { RD3A } & \mathrm{m} 1 & \mathrm{~m} 2 \\ \hline \end{array}$	Read form Dedicated Analog Block	Section 22.3
177	WR3A	$\left.\mathrm{H}^{W} \quad \begin{array}{l\|l\|l\|} \hline W R 3 A & \mathrm{~m} 1 & \mathrm{~m} 2 \\ \mathrm{~s} \end{array} \right\rvert\,$	Write to Dedicated Analog Block	Section 22.4
178	-			-
179	-			-

### 22.1 FNC170 - GRY / Decimal to Gray Code Conversion

## Outline

This instruction converts a binary value into a gray code, and transfers it.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Conversion source data or word device storing conversion source data	16 - or 32-bit binary
D•	Word device storing data after conversion	16 - or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \mathrm{U} \square \mathrm{G} \square \end{gathered}$	Index			Constant			Character String$\square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$	-1	$\pm 2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	A1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
A2: This function is supported only in $F X_{3} / F X_{3} \cup c$ PLCs.
Explanation of function and operation

1. 16-bit operation (GRY and GRYP)

Command

input					
inp					
	FNC170   GRY	S*	D•		This instruction converts and transfers data from
:---					
the source (binary) to the destination (gray code).					

When (S is K1234 and (D. is K3Y10

2. 32-bit operation (DGRY and DGRYP)

- A binary value can be converted into a gray code of up to 32 bits.
- S. can store a value from 0 to $2,147,483,647$.


## Caution

The data conversion speed depends on the scan time of the PLC.

### 22.2 FNC171 - GBIN / Gray Code to Decimal Conversion

Outline
This instruction converts a gray code into a binary value, and transfers it.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Conversion source data or word device storing conversion source data	16- or 32-bit binary
D•	Word device storing data after conversion	16- or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant			Character String$\square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$	-1	$\pm 2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
(D.)									$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$					

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{GC}} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
A2: This function is supported only in $F X_{3} / F X_{3} \cup c$ PLCs.

## Explanation of function and operation

1. 16-bit operation (GBIN and GBINP)

Command

| input | FNC171 <br> GBIN | S* | D. |
| :---: | :---: | :---: | :---: | | This instruction converts and transfers data from |
| :--- |
| the source (gray code) to the destination (binary). |

When (S. is K3X000 and (D. is D10

GRY 1234

b15 1

D10 BIN 1234 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- This instruction can be used for detecting an absolute position by a gray code type encoder.
- S. can store a value from 0 to 32,767 .

2. 32-bit operation (DGBIN and DGBINP)

- A gray code can be converted into a binary value of up to 32 bits.
- S. can store a value from 0 to $2,147,483,647$.


## Caution

When an input relay $(X)$ is specified as $S \cdot$, the response relay will be "Scan time of PLC + Input filter constant". The input filter value in X000 to X017*1 can be converted using the REFF (FNC51) instruction or D8020 (filter adjustment) so that the delay caused by the filter constant is eliminated.
*1. X000 to X007 in FX3G/FX3GC PLCs

## 22．3 FNC176－RD3A／Read form Dedicated Analog Block

## Outline

This instruction reads an analog input value from the analog block FXon－3A＊1 or FX2N－2AD．
1．Instruction format

	FNC 176	
	RD3A	P


16－bit Instruction	Mnemonic	Operation Condition
7 steps	RD3A	$\left\llcorner\begin{array}{l}\text { Continuous } \\ \text { Operation }\end{array}\right.$
	RD3AP	Pulse（Single）   －Operation


32 －bit Instruction Mnemonic	Operation Condition
-	

2．Set data

Operand Type	Description	Data Type
$\mathrm{m} 1 \cdot$	Special block number   - FX3G／FX3GC／FX3U／FX3UC（D，DS，DSS）PLCs：K0 to K7   - FX3UC－32MT－LT（－2）：K1 to K7	16－bit binary
$\mathrm{m} 2 \cdot$	Analog input channel number	Word device storing the read data

3．Applicable devices

Oper－ and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Con－ stant		Real   Number   E	Charac－ ter String"口"	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
m1－								$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$										
m2－								$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$										
（D．）									$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$											

## Explanation of function and operation

1．16－bit operation（RD3A）
Command

input			
	FNC176   RD3A	$\mathrm{m} 1 \cdot$	$\mathrm{~m} 2 \cdot$

m1＊：Special block number
FX3G／FX3GC／FX3U／FX3uc（D，DS，DSS）PLCs ：K0 to K7
FX3uc－32MT－LT（－2）：K1 to K7（K0 indicates the built－in CC－Link／LT master．）
m 2 • ：Analog input channel number
FXon－3A＊1 ：K1（ch 1）or K2（ch 2）
FX2N－2AD ：K21（ch 1）or K22（ch 2）
（D．）
Read data
A value read from the analog block is stored．
FXON－3A ${ }^{* 1}: 0$ to 255 （8 bits）
FX2N－2AD ： 0 to 4095 （12 bits）
＊1．The FXon－3A is available only for the FX3U and FX3UC PLCs．

### 22.4 FNC177 - WR3A / Write to Dedicated Analog Block

## Outline

 $F X_{3 U}$Ver.2.20 " $\Rightarrow$
F×3UC

This instruction writes a digital value to the analog block FXON-3A ${ }^{* 1}$ or FX2N-2DA.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
7 steps	WR3A   WR3AP	Continuous Operation Pulse (Single) Operation


32 -bit Instruction Mnemonic	Operation Condition

2. Set data

Operand Type	Description	Data Type
$\mathrm{m} 1 \cdot$	Special block number   - FX3G/FX3GC/FX3U/FX3UC (D, DS, DSS) PLCs: K0 to K7   - FX3UC-32MT-LT(-2) : K1 to K7	16-bit binary
$\mathrm{m} 2 \cdot$	Analog output channel number	$16-$ bit binary
$\mathrm{S} \cdot$	Data to be written or word device storing data to be written	16 -bit binary

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Constant		Real   Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
m1 *								$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$										
m2								$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$										
(S.)									$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$											

## Explanation of function and operation

1. 16-bit operation (WR3A)
Command

input			
	FNC177   WR3A	$\mathrm{m} 1 \cdot$	$\mathrm{~m} 2 \cdot$

$\mathrm{m}^{\text {• }}$ : Special block number
FX3G/FX3GC/FX3U/FX3uc (D, DS, DSS) PLCs : K0 to K7
FX3uc-32MT-LT(-2) : K1 to K7 (K0 indicates the built-in CC-Link/LT master.)
$\mathrm{m} 2^{\text {• }}$ : Analog output channel number
FXon-3A*1 : K1 (ch 1)
FX2N-2DA : K21 (ch 1) or K22 (ch 2)
S. : Data to be written

Specify a value output to the analog block.
FXon-3A ${ }^{* 1}$ : 0 to 255 (8 bits)
FX2N-2DA : 0 to 4095 (12 bits)
*1. The FXon-3A is available only for the FX3U and FX3uc PLCs.

## 23. Introduction of Alternate Instructions - FNC180

### 23.1 Instruction correspondence table

## Outline

EXTR instruction is provided for FX2N/FX2NC PLCs.
For $F X_{3 S} / F X_{3 G} / F X_{3 G C} / F X_{3} / F X_{3} U C$ PLCs equipped with the built-in inverter communication function, dedicated instructions shown below are provided. (EXTR instruction is not provided.)

Instruction correspondence table

FX2N/FX2NC		FX3S/FX3G/FX3GC/FX3U/FX3UC		Description
EXTR K10	$\rightarrow$	FNC270	IVCK	Inverter status check
EXTR K11	$\rightarrow$	FNC271	IVDR	Inverter drive
EXTR K12	$\rightarrow$	FNC272	IVRD	Inverter parameter read
EXTR K13	$\rightarrow$	FNC273	IVWR	Inverter parameter write
-	-	FNC274	IVBWR"1	Inverter parameter block write
-	-	FNC275	IVMC	Inverter multi command

*1. This function is supported only in $F X_{3} \cup / F X_{3} \cup c$ PLCs.

## 24. Others - FNC181 to FNC189

FNC181 to FNC189 provide instructions for generating random numbers, executing CRC data operations, and processing data in high-speed counter operations.

FNC No.	Mnemonic	Symbol	Function	Reference
181	-			-
182	COMRD	COMRD S D	Read device comment data	Section 24.1
183	-			-
184	RND	Нト RND $\quad$ D	Random Number Generation	Section 24.2
185	-			-
186	DUTY	$\mathrm{H}^{-} \quad \begin{array}{\|l\|l\|l\|l\|} \text { DUTY } & \mathrm{n} 1 & \mathrm{n} 2 & \mathrm{D} \\ \hline \end{array}$	Timing pulse generation	Section 24.3
187	-			-
188	CRC	$-\operatorname{CRC}$ S D n	Cyclic Redundancy Check	Section 24.4
189	HCMOV	HCMOV S D n	High-speed counter move	Section 24.5

### 24.1 FNC182 - COMRD / Read Device Comment Data

## Outline

This instruction reads the comment data for registered devices written to the PLC by programming software such as GX Works2.

1. Instruction format

FNC 182		16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
COMRD	$P$	5 steps	COMRD	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation } \end{aligned}$		-	
			COMRD	Pulse (Single) Operation		-	

2. Set data

Operand Type	Description	Data Type
S•	Device number for which comment to be read is registered	Device name
D•	Head device number storing read comment	Character string

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real   Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D. B	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (COMRD and COMRDP)
1) The comment registered for device $S^{\circ}$ is read, and stored in ASCII code in $D^{\cdot}$ and later.


- When M8091 is OFF, " 0000 H " is written to the device following the final character.
- When M8091 is ON, the device following the final character does not change. For example, when the comment of $\mathrm{S}^{-}$is "LineNo.1Start", it is stored in $\mathrm{D}^{-}$and later as shown below.

Comment of S.	(1) +0		- - - -
		69H(i)	$4 \mathrm{CH}(\mathrm{L})$
	$\square \begin{aligned} & \text { ¢ }\end{aligned} \begin{aligned} & +1 \\ & +2 \\ & +3 \\ & +4 \\ & +4 \\ & +5 \\ & +6 \\ & \\ & \\ & +7 \\ & +8\end{aligned}$	65H(e)	6EH(n)
LineNo.1Start		6FH(o)	4EH(N)
		$31 \mathrm{H}(1)$	$2 \mathrm{EH}($.
		74H(t)	53H(S)
		$72 \mathrm{H}(\mathrm{r})$	61H(a)
		20H(space)	74H(t)
		20H(space)	20H(space)

- When M8091 is OFF, "0000H" is written to the next device following the final character. - When M8091 is ON, the device following the final character does not change.

2) The final device of $\overline{D \cdot}$ is as follows depending on the ON/OFF status of M8091.

ON/OFF status	Contents of processing
M8091 = OFF	When M8091 is OFF, "0000H" is written to in the device following the final character.
M8091 = ON	When M8091 is ON, the device following the final character does not change.

## Related device

Device	Name	Description
M8091	Output character number selector signal	Refer to the above explanation.

## Caution

- Specify a device number in device S. for which a comment is registered in the PLC.

If a comment is not registered for the device $S_{\cdot}$, " 20 H " (space) is stored in $\mathrm{D}^{-}$and later for the number of characters in the comment ( 16 half-width characters).

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a comment is not registered for the device $S \cdot$ (error code: K6706)
- When the range of points used from (D. for the comment exceeds the corresponding device range (error code: K6706)


## Program example

In the program shown below, the comment "Target Line A" registered to D100 is stored in ASCII code in D0 and later when X010 is set to ON. And since M8091 is OFF " 0000 H " is written to the device following the last character.


### 24.2 FNC184 - RND / Random Number Generation

## Outline



This instruction generates random numbers.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
3 steps		Continuous Operation
	RNDP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
	-	

2. Set data

Operand Type	Description	Data Type
D•	Head device number storing a random number	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (RND and RNDP)

This instruction generates a pseudo-random number ranging from 0 to 32767 , and stores it as a random number to (D.).

In the pseudo-random number sequence, the source value of a random number is calculated at every time, and this instruction calculates a pseudo-random number using the source value.
Command


Pseudo-random number calculation equation:
$($ D8311, D 8310$)=(\mathrm{D} 8311, \mathrm{D} 8310){ }^{* 1} \times 1103515245+12345 \ldots . .(1)$
(D. = "([D8311, D8310]>>16)\&<logical product>00007FFFh"
*1. To (D8311, D8310), write a non-negative value ( 0 to $2,147,483,647$ ) only once when the PLC mode switches from STOP to RUN.
[K1 is written to (D8311, D8310) as the initial value when the power is restored.]

## Program example

In the program example shown below, a random number is stored to D100 every time X010 turns ON.
When the PLC mode switches from STOP to RUN, the time data converted into seconds and added by the value
"(Year + Month) $\times$ Day" is written to D8311 and D8310.


The clock data is read.

Data in hour, minute and second $\rightarrow$ Data in second

The data in second is added by the value "(Year + Month) $\times$ Day", and written to D8311 and D8310.

### 24.3 FNC186 - DUTY / Timing Pulse Generation

Outline
This instruction generates the timing signal whose one cycle corresponds to the specified number of operation cycles.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
n 1	Number of scans (operation cycles) to remain ON $[\mathrm{n} 1>0]$	16 -bit binary
n 2	Number of scans (operation cycles) to remain OFF $[\mathrm{n} 2>0]$	
$\mathrm{D} \cdot$	Timing clock output destination	

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIGロ	Index			Con-   stant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
n1												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
n2												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
D.			$\Delta$																$\checkmark$					

A: Specify either one among M8330 to M8334.

## Explanation of function and operation

1. 16-bit operation (DUTY)
1) The timing clock output destination $\mathrm{D} \cdot$ is set to ON and OFF with the ON duration for " n 1 " scans and OFF duration for "n2" scans.

2) Specify either one among M8330 to M8334 as the timing clock output destination device D. .
3) The counted number of scans is stored among D8330 to D8334 in accordance with the timing clock output destination device $D \cdot$.
The counted number of scans stored among D8330 to D8334 is reset when the counted value reaches "n1+n2" or when the command input (instruction) is set to ON.

Timing clock output destination device D•	Scan counting device
M8330	D8330
M8331	D8331
M8332	D8332
M8333	D8333
M8334	D8334

4) When the command input is set to ON, the operation is started. The timing clock output destination device D. is set to ON or OFF by the END instruction.
Even if the command input is set to OFF, the operation is not stopped.
In the STOP mode, the operation is suspended. When the power to the PLC is turned OFF, the operation is stopped.
5) When " n 1 " and " n 2 " are set to " 0 ", the device $\mathrm{D} \cdot$ is set to the following status:

$\mathbf{n} 1 / \mathbf{n} 2$ status	D• ON/OFF status
$\mathrm{n} 1=0, \mathrm{n} 2 \geq 0$	D• Fixed to OFF
$\mathrm{n} 1>0, \mathrm{n} 2=0$	D• Fixed to ON

Related devices

Device	Name	Description
M8330	Timing clock output 1	Timing clock output in the DUTY (FNC186) instruction
M8331	Timing clock output 2	
M8332	Timing clock output 3	
M8333	Timing clock output 4	
M8334	Timing clock output 5	
D8330	Counted number of scans for timing clock output 1	Counted number of scans for timing clock output 1 in the DUTY (FNC186) instruction
D8331	Counted number of scans for timing clock output 2	Counted number of scans for timing clock output 2 in the DUTY (FNC186) instruction
D8332	Counted number of scans for timing clock output 3	Counted number of scans for timing clock output 3 in the DUTY (FNC186) instruction
D8333	Counted number of scans for timing clock output 4	Counted number of scans for timing clock output 4 in the DUTY (FNC186) instruction
D8334	Counted number of scans for timing clock output 5	Counted number of scans for timing clock output 5 in the DUTY (FNC186) instruction

## Caution

- The DUTY (FNC186) instruction can be used up to 5 times (points).

It is not permitted, however, to use the same timing clock output destination device D. for two or more DUTY (FNC186) instructions.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When "n1" and/or "n2" is less than "0" (error code: K6706)
- When any device other than M8330 to M8334 is set to (D. (error code: K6705)


## Program example

In the program shown below, when X000 is set to ON, M8330 is set to ON for 1 scan and OFF for 3 scans.



### 24.4 FNC188 - CRC / Cyclic Redundancy Check

## Outline

This CRC instruction calculates the CRC (cyclic redundancy check) value which is an error check method used in communication.
In addition to CRC value, there are other error check methods such as parity check and sum check. For obtaining the horizontal parity value and sum check value, CCD (FNC 84) instruction is available.
For the generation of CRC value (CRC-16), the CRC instruction uses " $X^{16}+X^{15}+X^{2}+1$ " as a polynomial and uses "FFFFH" as a default value.
$\rightarrow$ For CCD instruction (check code), refer to Section 16.5.

## 1. Instruction format

	FNC 188	
CRC		


16-bit Instruction	Mnemonic	Operation Condition
7 steps		Continuous   Operation
	CRCP	$\longleftarrow \begin{aligned} & \text { Operation } \\ & \text { Pulse Single) } \\ & \text { Operation } \end{aligned}$


32-bit Instruction		Mnemonic
	Operation Condition	

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing data for which the CRC value is generated	
D•	Device number storing the generated CRC value	16-bit binary
n	Number of 8-bit (1-byte) data for which the CRC value is generated or the device number   storing the number of data	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con-   stant		Real   Number   E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline \text { " } \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S•)								A	A	-	A	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
(D.)									-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

: Make sure to specify four digits $(\mathrm{K} 4 \square \bigcirc \bigcirc \bigcirc)$ when specifying the digits of a bit device.

## Explanation of function and operation

1. 16-bit operation

CRC value is generated for " n " 8 -bit data (unit: byte) starting from a device specified in $\mathrm{S}^{\cdot}$, and stored to (D.
The 8-bit conversion mode and 16 -bit conversion mode are available in this instruction, and the mode can be switched by turning ON or OFF M8161. For the operation in each mode, refer to the following pages.

Command

input	FNC188   CRC	S :	D :	$n$

16-bit conversion mode (while M8161 is OFF)
In this mode, the operation is executed for high-order 8 bits ( 1 byte) and low-order 8 bits ( 1 byte) of a device specified in $\mathrm{S}^{\circ}$.
The operation result is stored to one 16-bit device specified in $D \cdot$.


			Example:$\begin{aligned} & \text { S• }=\text { D100 } \\ & \text { D• }=\text { D0 } \\ & n=6 \end{aligned}$				
			Device	Contents of target data			
			8 bits	16 bits			
Device storing data for which the CRC value is generated	(s.)	Low-order byte		Low-order bits of D100	01H	0301H	
		High-order byte	High-order bits of D100	03H			
	S•+1	Low-order byte	Low-order bits of D101	03H	0203H		
		High-order byte	High-order bits of D101	02H			
	S•+2	Low-order byte	Low-order bits of D102	00H	1400H		
		High-order byte	High-order bits of D102	14H			
	:	:	-				
	S. $+\mathrm{n} / 2-1$	Low-order byte	-				
		High-order byte					
Device storing the generated CRC value	(D.	Low-order byte	Low-order bits of D0	E4H	41E4H		
		High-order byte	High-order bits of D0	41H			

## 8 -bit conversion mode (while M8161 is ON)

In this mode, the operation is executed only for low-order 8 bits (low-order 1 byte) of a device specified by S. .
With regard to the operation result, low-order 8 bits ( 1 byte) are stored to a device specified by $D^{\cdot}$, and high-order 8 bits (1 byte) are stored to a device specified by D. +1.


			$\text { Example: } \begin{aligned} & S \cdot \\ & =D 100 \\ D \cdot & =D 0 \\ n= & 6 \end{aligned}$	
			Device	Contents of target data
Device storing data for which the CRC value is generated	(S•)	Low-order byte	Low-order bits of D100	01H
	(S•)+1	Low-order byte	Low-order bits of D101	03H
	(S.) +2	Low-order byte	Low-order bits of D102	03H
	(s.) +3	Low-order byte	Low-order bits of D103	02H
	(S.) +4	Low-order byte	Low-order bits of D104	OOH
	(S.) +5	Low-order byte	Low-order bits of D105	14H
	:			
	S• $+\mathrm{n}-1$	Low-order byte		
Device storing the generated CRC value	(D.)	Low-order byte	Low-order bits of D0	E4H
	(D.) +1	Low-order byte	Low-order bits of D1	41H

## 2. Related device

Related device	Description	
M8161* $^{* 1}$	ON	CRC instruction operates in the 8-bit mode.
	OFF	CRC instruction operates in the 16-bit mode.

*1. Cleared when the PLC mode is changed from RUN to STOP.

## Caution

In this instruction, " $X^{16}+X^{15}+X^{2}+1$ " is used as a polynomial for generating the CRC value (CRC-16). There are many other standard polynomials for generating the CRC value. Note that the CRC value completely differs if an adopted polynomial is different.

## Reference: Major polynomials for generating the CRC value

Name	Polynomial
CRC-12	$\mathrm{X}^{12}+\mathrm{x}^{11}+\mathrm{X}^{3}+\mathrm{X}^{2}+\mathrm{X}+1$
CRC-16	$x^{16}+x^{15}+x^{2}+1$
CRC-32	$\mathrm{X}^{32}+\mathrm{X}^{26}+\mathrm{X}^{23}+\mathrm{X}^{22}+\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{11}+\mathrm{X}^{10}+\mathrm{X}^{8}+\mathrm{X}^{7}+\mathrm{X}^{5}+\mathrm{X}^{4}+\mathrm{X}^{2}+\mathrm{X}+1$
CRC-CCITT	$x^{16}+x^{12}+x^{5}+1$

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When any digits other than 4 digits are specified as $S^{-}$or $D^{-}$in digit specification of bit device (error code: K6706)
- When n is outside the allowable range (1 to 256) (error code: K6706)
- When a device specified by $S^{\cdot}+n-1$ or $D^{\cdot}+1$ is outside the allowable range (error code: K6706)


## Program example

In the program example shown below, the CRC value of the ASCII code " 0123456 " stored in D100 to D106 is generated and stored to D0 when M0 turns ON.

1. In the case of $\mathbf{1 6 - b i t}$ mode


			data	
Device storing data for which CRC value is generated	D100	3130 H	Low-order byte	30 H
			High-order byte	31H
	D101	3332 H	Low-order byte	32 H
			High-order byte	33 H
	D102	3534H	Low-order byte	34 H
			High-order byte	35H
	D103	3736H	Low-order byte	36 H
			-	-
Device storing generated CRC value	D0	2ACFH	Low-order byte	CFH
			High-order byte	2AH

2. In the case of 8-bit mode

M8000	M8161					8-bit conversion mode
$\begin{gathered} \text { M0 } \\ -1 \uparrow \vdash \end{gathered}$	FNC188 CRC	D100	D0	K7		


	Contents of target data		
Device storing data for which the CRC value is generated	D100	Low-order byte	30 H
	D101	Low-order byte	31 H
	D102	Low-order byte	32H
	D103	Low-order byte	33H
	D104	Low-order byte	34H
	D105	Low-order byte	35 H
	D106	Low-order byte	36 H
Device storing the generated CRC	D0	Low-order byte	CFH
value	D1	Low-order byte	2AH

### 24.5 FNC189 - HCMOV / High-Speed Counter Move

## Outline

This instruction updates the current value of a specified high-speed counter or ring counter.
The function of this instruction varies depending on the PLC version.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S	Device number of high-speed counter or ring counter*1 handled as transfer source	32-bit binary
D	Device number handled as transfer destination	
n	16 -bit binary	

*1. Ring counters (D8099 and D8398) cannot be specified in FX3UC PLCs before Ver. 2.20.
3. Applicable devices

Operand   Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square \backslash G \square$	Index			Con-   stant		Real   Number   E	Charac-   ter String   " $\square$ "	Pointer   P
	X	Y	M		T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S)														$\triangle$	-										
(D)															$\checkmark$	$\checkmark$									
n																					$\checkmark$	$\checkmark$			

А: Only high-speed counters (C235 to C255) and ring counters (D8099 and D8398) can be specified.

## Explanation of function and operation

## 1. 32-bit operation (DHCMOV)

Command

input	FNC189   DHCMOV	(S)	D	n

- The current value of a high-speed counter or ring counter specified in $S$ is transferred to [ $D+1, D$ ].

Device S		[ D +1, D ] after instruction is executed
High-speed counter	C235 to C255	Current value of high-speed counter $\mathrm{S} \rightarrow$ (D)+1, D]
Ring counter	D8099	$\begin{aligned} & \text { D8099 } \rightarrow \text { D } \\ & \text { " } 0 \text { " is stored in D+1. } \end{aligned}$
	D8398	Current value of [D8399, D8398] $\rightarrow$ D D (1, D]

- After transfer, the current value of the high-speed counter or ring counter is processed as shown in the table below depending on the set value of " $n$ ":

"n" set value	Operation
K0 $(\mathrm{H} 0)$	Does not clear the current value (no processing).
K1 (H1)	Clears the current value to "0".

2. High-speed counter current value update timing and the effect of DHCMOV instruction
1) High-speed counter current value update timing When a pulse is input to an input terminal for a high-speed counter (C235 to C255), the high-speed counter executes up-counting or down-counting.
If the current value of a high-speed counter is handled in an applied instruction such as the normal MOV instruction, the current value is updated at the timing shown in the table below. As a result, it is affected by the program scan time.

	Current value update timing
Hardware counter	When OUT instruction for the counter is executed
Software counter	Every time a pulse is input

By using DHCMOV instruction, the current value can be updated and transferred when it is executed.
2) Effect of DHCMOV instruction

- By using both input interrupt and DHCMOV instruction, the current value of a high-speed counter can be received at the rising edge or falling edge of an external input (at reception of input interrupt).
$\rightarrow$ Refer to the Program example 2.
- When DHCMOV instruction is used just before a comparison instruction (CMP, ZCP or comparison contact instruction), the latest value of a high-speed counter is used in comparison. The following points must be kept in mind when using the DHCMOV command.
- When the current value of a high-speed counter is compared using CMP, ZCP or comparison contact instruction (not using a designated high-speed counter comparison instruction), a hardware counter does not change into a software counter.
$\rightarrow$ For the condition in which a hardware counter is handled as a software counter, refer to Subsection 4.8.9.
- When the number of high-speed software counter comparison instructions is reduced, the total frequency limitation is decreased.
$\rightarrow$ For the limitation in software counters by the total frequency, refer to Subsection 4.8.10.
- When it is necessary to execute comparison and change an output contact ( Y ) as soon as the current value of a high-speed counter changes, use a designated high-speed counter comparison instruction (HSCS, HSCR or HSZ).
- DHCMOV instruction can be used as many times as necessary.


## Cautions

When programming DHCMOV instruction in an input interrupt program, the following points should be observed. For assignment of pointers for input interrupt and inputs, refer to the table shown in 5) below.

1) Program El (FNC 04) and FEND (FNC 06) instructions in the main program. They are necessary to execute an input interrupt program.
$\rightarrow$ For EI (FNC 04) and FEND (FNC 06) instructions, refer to Section 8.5 and Section 8.7.
2) When programming DHCMOV instruction in the 1st line in an input interrupt program, make sure to use the pattern program shown below. Make sure to use the command contact M8394. Do not add, change, or delete this pattern program when writing during RUN. Interrupt programs may not operate normally.


Pattern program for using the DHCMOV instruction in an interrupt program

Program to be processed as input interrupt
3) If two or more DHCMOV instructions are used in one input interrupt program, only the first instruction (just after the interrupt pointer) is executed when the interrupt is generated.
The rest of the interrupt, including additional DHCMOV instructions, is executed according to normal interrupt processing
Do not use M8394 as the command contact for the DHCMOV instructions following the first.


When the input X003 turns from OFF to ON (that is, when input interrupt is accepted):
(S) $\rightarrow$ [D +1 , D]

When this instruction is executed in interrupt program:
(S) ${ }^{\prime} \rightarrow\left[D^{\prime}+1,(D)^{\prime}\right]$
4) It is not permitted to use DHCMOV instruction for the same counter in two or more input interrupt programs.

5) While input interrupts are disabled by the interrupt disable flags (shown in the table below), DHCMOV instructions are not executed when they are placed inside a corresponding interrupt.

Interrupt disable flag	Corresponding interrupt pointer	Input number corresponding to interrupt pointer
M8050*1	1000,1001	X 000
M8051*1	$\mathrm{I} 100, \mathrm{I} 101$	X 001
M8052*1	$\mathrm{I} 200, \mathrm{I} 201$	X 002
M8053*1	1300,1301	X 003
M8054*1	1400,1401	X 004
M8055*1	1500,1501	X 005

*1. Cleared when the PLC mode is changed from RUN to STOP.
6) If an input interrupt is generated while input interrupts are disabled by something other than the interrupt disable flags M8050 to M8055 (after execution of DI instruction and before execution of El instruction), DHCMOV instruction is immediately executed, but execution of the interrupt program is held. The interrupt program will be executed after El instruction is executed and interrupts are enabled.

## Function change depending on the version

The function of FNC189 instruction changes depending on the version as shown in the table below.

Applicable version		Item	Outline of function
FX3U	FX3UC		Ring counter (D8099 and D8398) can be specified in $S$..
Ver. 2.20 or   later	Ver. 2.20 or   later	Target device	

## Error

An operation error occurs in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a device specified in (S•) or $\left[D \cdot+1, D^{\cdot}\right]$ is outside the allowable range (error code: K6705)


## Program examples

## 1. Program example 1

In the program example below, the current value of the high-speed counter C235 is compared in each operation cycle, and then the output Y000 is set to ON if the current value is "K500" or more (when the current value of C235 is not cleared).


The current value of C235 is transferred to D1 and D0. (The current value of C235 is not cleared.)

In the case of "(D1, D0) $\geq \mathrm{K} 500$ ", Y000 is set to ON.
*1. K0: The current value of the high-speed counter is not cleared when DHCMOV instruction is executed. K1: The current value of the high-speed counter is cleared when DHCMOV instruction is executed.

## 2. Program example 2

In the program example shown below, the current value of C235 is transferred to D201 and D200, and the current value of C235 is cleared when X001 turns from OFF to ON.


- When X001 turns from OFF to ON, the interrupt program from I101 to IRET is executed.
- The current value of C235 is transferred to D201 and D200. (The current value of C235 is cleared to "0".)
*2. K0: The current value of the high-speed counter is not cleared when DHCMOV instruction is executed. K1: The current value of the high-speed counter is cleared when DHCMOV instruction is executed.


## 25. Block Data Operation - FNC190 to FNC199

FNC190 to FNC199 provide instructions for adding, subtracting and comparing block data.


### 25.1 FNC192 - BK+ / Block Data Addition

## Outline

This instruction adds binary block data.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition
17 steps		$_\begin{array}{l}\text { Continuous } \\ \text { Operation }\end{array}$
	DBK+P	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
S1•	Head device number storing addition data	
S2•	Added constant or head device number storing addition data	16- or 32-bit binary
$\mathrm{D} \cdot$	Head device number storing operation result	
n	Number of data	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   Uप\G $\square$	Index			Con-   stant		Real Number   E	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
S2.												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation ( $B K+$ and $B K+P$ )

${ }^{\text {Command }}$ input					
$\xrightarrow{\text { input }}$	$\begin{gathered} \text { FNC192 } \\ \text { BK+ } \end{gathered}$	S1-	S2.	(D)	n

1) " n " 16 -bit binary data starting from $\mathrm{S} 2 \cdot$ are added to " n " 16 -bit binary data starting from $\mathrm{S}_{1} \cdot$, and the operation result is stored in " n " points starting from (D.

	b15---- b0	
(51.) +0	K1234	不
+1	K4567	
+2	K-2000	"n"
+(n-2)	K-1234	
+(n-1)	K4000	$\downarrow$


2) A (16-bit) constant from -32768 to +32767 can be directly specified in $\mathrm{S}_{2} \cdot$.

(S2.) K4321
$\square$

2. 32-bit operation (DBK+ and DBK+P)

Command					
$\stackrel{\text { input }}{ }$	FNC192	S1 ${ }^{-}$	S2-	( ${ }^{\text {- }}$	n

1) " 2 n " 32 -bit binary data starting from $[\mathrm{S} 2 \cdot \mathrm{C}+\mathrm{S} 2 \cdot$ ] are added to " 2 n " 32 -bit binary data starting from [ $\left.S 1 \cdot+1, S_{1 \cdot}\right]$, and the operation result is stored in " $2 n$ " points starting from $\left[D \cdot+1, D^{\circ}\right]$.


2) A (32-bit) constant from $-2,147,483,648$ to $+2,147,483,647$ can be directly specified in [ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot$ ].


## Related instruction

Instruction		Description
BK- (FNC193)	Subtracts binary block data.	

## Caution

- When underflow or overflow occurs in the operation result, the following processing is executed. At this time, the carry flag does not turn ON.
- In the case of 16-bit operation

```
K32767(H7FFF) + K2(H0002) }->\mathrm{ K-32767(H8001)
K-32768(H8000) + K-2(HFFFE) }->\mathrm{ K32766(H7FFE)
```

- In the case of 32-bit operation

```
K2,147,483,647(H7FFFFFFF) + K2(H00000002) }->\mathrm{ K-2,147,483,647(H80000001)
K-2,147,483,648(H80000000)
+K-2(HFFFFFFFE) }->\mathrm{ K2,147,483,646(H7FFFFFFE)
```

- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DBK+ D0 D100 D200 R0", "n" is [R1, R0].


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When "n" ("2n" in 32-bit operation) devices starting from S1• , S2• , and/or D• exceed the corresponding device range (error code: K6706)
- When " n " ("2n" in 32-bit operation) devices starting from S1• overlap " n " (" 2 n " in 32-bit operation) devices starting from (D• (error code: K6706)
- When " n " (" 2 n " in 32-bit operation) devices starting from S2• overlap " n " (" 2 n " in 32-bit operation) devices starting from (D• (error code: K6706)


## Program example

In the program shown below, the specified number of data stored in D150 to D0 are added to the specified number of data stored in D100 to D0 when X020 is set to ON, and the operation result is stored in D200 and later.



### 25.2 NFC193 - BK- / Block Data Subtraction

Outline
This instruction subtracts binary block data.

1. Instruction format

	FNC 193	
	BK-	P


16-bit Instruction	Mnemonic	Operation Condition
9 steps	BK-   BK-P	Continuous Operation Pulse (Single) Operation


2. Set data

Operand Type	Description	Data Type
S1•	Head device number storing subtraction data	
S2•	Subtracted constant or head device number storing subtraction data	16- or 32-bit binary
D•	Head device number storing operation result	
n	Number of data	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\Gロ	Index			Con-   stant		Real   Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(S2.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (BK- and BK-P)

\|Command					
input	FNC193	S1.	S2-	(D.)	n

1) "n" 16-bit binary data starting from S2• are subtracted from "n" 16-bit binary data starting from $\mathrm{S}_{1-}{ }^{-}$, and the operation result is stored in " n " points starting from D.

2) A (16-bit) constant from -32768 to +32767 can be directly specified in $\mathrm{S}_{2}$.

b15--- b0		
(S1.) +0	K8765	不
+1	K8888	
+2	K9325	"n"
$+(\mathrm{n}-2)$	K5000	
+(n-1)	K4352	$\downarrow$

(S2.) K8880 $\quad \square$

2. 32-bit operation (DBK- and DBK-P)
 $\left[S 1 \cdot+1, S_{1 \cdot}\right]$, and the operation result is stored in "2n" points starting from $[D \cdot+1, D \cdot]$.


2) A (32-bit) constant from $-2,147,483,648$ to $+2,147,483,647$ can be directly specified in [ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$.


## Related instruction

Instruction	
BK+ (FNC192)	Adds binary block data.

## Caution

- When underflow or overflow occurs in the operation result, the following processing is executed. At this time, the carry flag does not turn ON.
- In the case of 16 -bit operation

$$
\begin{array}{lllll}
\text { K-32768(H8000) } & - & \text { K2(H0002) } & \rightarrow & \text { K32766(H7FFE) } \\
\text { K32767(H7FFF) } & - & \text { K-2(HFFFE) } & \rightarrow & \text { K-32767(H8001) }
\end{array}
$$

- In the case of 32-bit operation

$\mathrm{K}-2,147,483,648(H 80000000)$	-	$\rightarrow$	$\mathrm{K} 2(\mathrm{H} 00000002)$
$\mathrm{K} 2,147,483,647(\mathrm{H} 7 \mathrm{FFFFFFF})$	$-\mathrm{K}-2(\mathrm{HFFFFFFFE})$	$\rightarrow$	$\mathrm{K}-2,147,483,647(\mathrm{H} 80000001)$

- Note that the 32-bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DBK - D0 D100 D200 R0", "n" is [R1, R0].


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " n " ("2n" in 32-bit operation) devices starting from $\mathrm{S} 1^{\bullet}, \mathrm{S} 2 \cdot$, and/or $\mathrm{D}^{\bullet}$ exceed the corresponding device range (error code: K6706)
- When " n " ("2n" in 32-bit operation) devices starting from S1• overlap " n " (" 2 n " in 32-bit operation) devices starting from (D. (error code: K6706)
- When " n " (" 2 n " in 32-bit operation) devices starting from S2• overlap " n " (" 2 n " in 32-bit operation) devices starting from D• (error code: K6706)


## Program example

In the program shown below, the constant " 8765 " is subtracted from the data stored in D100 to D102 when X010 is set to ON, and the operation result is stored in D200 and later.


### 25.3 FNC194~199 - BKCMP=, >, <, <>, <=, >= / Block Data Compare

## Outline

These instructions compare block data in the comparison condition set in each instruction.

1. Instruction format


	FNC 196	
$\square$	BKCMP $<$	P


2. Set data (common among FNC194 to FNC199)

Operand Type	Description	Data Type
S1•	Comparison value of device number storing comparison value	16- or 32-bit binary
S2•	Head device number storing comparison source data	
D•	Head device number storing comparison result	Bit
n	Number of compared data	$16-$ or 32-bit binary

3. Applicable devices (common among FNC194 to FNC199)

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\G口	Index			Con-   stant		Real   Number   E	Character String"口"	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
S2.												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)		$\checkmark$	$\checkmark$			$\checkmark$	-												$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

A: "D $\square . b$ cannot be indexed with index registers ( $V$ and $Z$ ).

## Explanation of function and operation

## 1. 16-bit operation (BKCMP=, >, <, <>, <=, >= / BKCMP=P, >P, <P, <>P, <=P, and >=P)

1) " n " 16 -bit binary data starting from $\mathrm{S}_{1 \cdot}$ are compared with " n " 16 -bit binary data starting from $\mathrm{S}_{2} \cdot$, and the comparison result is stored in "n" points starting from (D. .


*3 An operation example of BKCMP> (FNC195) instruction is shown here.
2) A constant can be directly specified in $\mathrm{S}_{1-}{ }^{-}$.

3) The table below shows the comparison result in each instruction:

Instruction	Comparison result ON (1) condition	Comparison result OFF (0) condition
BKCMP= (FNC194)	S1- $=\mathrm{S} 2 \cdot^{-}$	S1- $<>\mathrm{S}_{2}{ }^{-}$
BKCMP> (FNC195)	S1- $\mathrm{S} 2 \cdot^{-}$	S1- $<=\mathrm{S} 2 \cdot$
BKCMP< (FNC196)	S1- $<\mathrm{S} 2 \cdot^{\circ}$	
BKCMP<> (FNC197)	(S1.) <> S2.	$\mathrm{S} 1 \cdot$ = $\mathrm{S}^{-}$
BKCMP<= (FNC198)	(S1-) <= S2-	S1- $\mathrm{S}^{-} \mathrm{S}^{-}$
BKCMP>= (FNC199)	$\mathrm{S}_{1} \cdot{ }^{-} \mathrm{S} 2 \cdot$	S1- $<\mathrm{S} 2 \cdot^{-}$

4) When the comparison result is $\mathrm{ON}(1)$ in all of " n " points starting from (D. M8090 (block comparison signal) turns ON.
2. 32-bit operation (DBKCMP=, >, <, <>, <=, >=/ DBKCMP=P, >P, <P, <>P, <=P, and >=P)
1) "n" 32-bit binary data starting from [ $\mathrm{S} 1 \cdot+1$, $\mathrm{S} 1 \cdot$ ] are compared with "n" 32-bit binary data starting from [S2• +1, S2•], and the comparison result is stored in "n" points starting from [ $D \cdot+1, D^{-}$].

$\xrightarrow{\text { Command }}$	FNCOOO* ${ }^{1}$		.	.							
	DBKCMP $\square^{*}$	(51.)	(32.)	(D.)	n						


2) A constant can be directly specified in $[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]$.


3) The table below shows the comparison result for each instruction:

Instruction	Comparison result ON (1) condition	Comparison result OFF (0) condition
DBKCMP= (FNC194)	[ $\left.\mathrm{S} 1 \cdot^{-}+1, \mathrm{~S}_{1 \cdot}\right]=\left[\mathrm{S}^{\circ} \cdot+1, \mathrm{~S} 2 \cdot\right]$	
DBKCMP> (FNC195)	[ $\left.\mathrm{S} 1 \cdot^{-}+1, \mathrm{~S}_{1 \cdot}\right]>$ [ $\left.\mathrm{S} 2 \cdot^{-}+1, \mathrm{~S}_{2 \cdot}\right]$	[ $\left.\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1 \cdot}\right]<=\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}^{-} \cdot\right]$
DBKCMP< (FNC196)	$\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]<\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2} \cdot\right.$ ]	[ $\left.\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1 \cdot}\right]>=\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2 \cdot}\right]$
DBKCMP<> (FNC197)		$\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S} 1 \cdot^{-}\right]=\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}^{-} \cdot\right]$
DBKCMP<= (FNC198)	$\left[\mathrm{S}_{1 \cdot}+1, \mathrm{~S}_{1 \cdot}\right]<=\left[\mathrm{S} 2 \cdot^{+1, \mathrm{~S}^{\circ} \cdot}\right]$	$\left[\mathrm{S} 1 \cdot+1, \mathrm{~S}_{1 \cdot}\right]>\left[\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2 \cdot}\right]$
DBKCMP>= (FNC199)	[ $\left.\mathrm{S} 1 \cdot^{-}+1, \mathrm{~S} 1 \cdot\right]>=\left[\mathrm{S}^{\bullet} \cdot+1, \mathrm{~S}^{\circ} \cdot\right]$	[ $\mathrm{S} 1 \cdot^{-}+1, \mathrm{~S} 1 \cdot^{-}<$[ $\left.\mathrm{S} 2 \cdot^{-}+1, \mathrm{~S}_{2 \cdot}\right]$

4) When the comparison result is ON (1) in all of " n " points starting from [ $\mathrm{D} \cdot+1$, $\mathrm{D} \cdot$ ], the M8090 (block comparison signal) turns ON.

## Related device

$\rightarrow$ For the block comparison signal use method, refer to Subsection 6.5.2.

Device	Name	Description
M8090	Block comparison signal	Turns ON when all comparison results are "ON (1)" in a block data instruction.   DBKCMP= (FNC194), DBKCMP> (FNC195), DBKCMP< (FNC196), DBKCMP<> (FNC197),   DBKCMP<= (FNC198), and DBKCMP>= (FNC199)

## Caution

- When using 32-bit counters (including 32-bit high-speed counters)

For comparing 32-bit counters and 32-bit high-speed counters (C200 to C255), make sure to use an instruction for 32-bit operation (DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, or DBKCMP>=).
If an instruction for 16-bit operation (BKCMP=, BKCMP>, BKCMP<, BKCMP<>, BKCMP<=, or BKCMP>=) is used, an operation error is caused (error code: K6705).

- Note that the 32 -bit value $[n+1, n]$ is valid when $D$ or $R$ is specified as " $n$ " in a 32-bit instruction. In the case of "DBKCMP = D0 D100 M0 R0", "n" is [R1, R0].


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the range of " n " ("2n" in 32-bit operation) points starting from $\mathrm{S}_{1} \cdot$ and/or $\mathrm{S}_{2} \cdot$ exceeds the corresponding device range (error code: K6706)
- When the range of " n " points starting from (D• exceeds the corresponding device range (error code: K6706)
- When data registers starting from D. specified as "D $\square . b$ " overlap " n " ("2n" in 32-bit operation) points starting from S1• (error code: K6706)
- When data registers starting from $\mathrm{D} \cdot$ specified as "D $\square . b$ " overlap "n" ("2n" in 32-bit operation) points starting from S2• (error code: K6706)
- When a 32-bit counter (C200 to C255) is specified in $\mathrm{S}_{1} \cdot$ and/or $\mathrm{S}_{2} \cdot$ in 16-bit operation (error code: K6705) For comparing 32-bit counters, make sure to use an instruction for 32-bit operation (DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, or DBKCMP>=).


## Program example

1) In the program shown below, four 16-bit binary data starting from D100 are compared with four 16-bit binary data starting from D200 by BKCMP= (FNC194) instruction when X020 is set to ON, and the comparison result is stored in four points starting from M10.
When the comparison result is "ON (1)" in all of the four points starting from M10, Y000 is set to ON.

(When all of M10 to M13 are ON, Y000 is set to ON.)
2) In the program shown below, the constant K1000 is compared with four data starting from D10 when X 010 is set to ON , and the comparison result is stored in b4 to b7 of D0.


## 26. Character String Control - FNC200 to FNC209

FNC200 to FNC209 provide instructions for controlling character strings such as linking character string data, replacing some characters and extracting character string data.

FNC No.	Mnemonic	Symbol	Function	Reference
200	STR	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { STR } & \text { S1 } & \text { S2 } & \mathrm{D} \\ \hline \end{array}$	BIN to Character String Conversion	Section 26.1
201	VAL	$\begin{array}{\|l\|l\|l\|l\|} \hline & \\ \hline \mathrm{VAL} & \mathrm{~S} & \mathrm{D} 1 & \mathrm{D} 2 \\ \hline \end{array}$	Character String to BIN Conversion	Section 26.2
202	\$+	$\|$$\$+$ s 1 s 2 D	Link Character Strings	Section 26.3
203	LEN	HЮ LEN $\mathrm{H}_{\text {L }} \mathrm{D}$ D	Character String Length Detection	Section 26.4
204	RIGHT	RIGHT S D n	Extracting Character String Data from the Right	Section 26.5
205	LEFT	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { LEFT } & \mathrm{S} & \mathrm{D} & \mathrm{n} \\ \hline \end{array}$	Extracting Character String Data from the Left	Section 26.6
206	MIDR	MIDR S1 D S 2	Random Selection of Character Strings	Section 26.7
207	MIDW	$\begin{array}{\|} \hline- & \mathrm{MIDW} & \mathrm{~S} 1 & \mathrm{D} & \mathrm{~S} 2 \\ \hline \end{array}$	Random Replacement of Character Strings	Section 26.8
208	INSTR		Character string search	Section 26.9
209	\$MOV		Character String Transfer	$\begin{gathered} \text { Section } \\ 26.10 \end{gathered}$

### 26.1 FNC200 - STR / BIN to Character String Conversion

## Outline

This instruction converts binary data into character strings (ASCII codes).
On the other hand, the ESTR (FNC116) instruction converts floating point data into character strings.
$\rightarrow$ For character strings, refer to Section 5.3.
$\rightarrow$ For ESTR (FNC116) instruction, refer to Section 18.4.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Head device number storing the number of digits of a numeric value to be converted	16 -bit binary
S2•	Device number storing binary data to be converted	16- or 32-bit binary
D•	Head device number storing converted character string	Character string

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
S2.								$\checkmark$																
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					

## Explanation of function and operation

## 1. 16-bit operation (STR and STRP)

1) All digits (specified by $\mathrm{S}_{1} \cdot$ ) of 16 -bit binary data stored in $\mathrm{S}_{2} \cdot$ are converted into ASCII codes while the decimal point is added to the position specified by the device storing the number of digits of the decimal part (S1• +1), and stored in $\mathrm{D}^{\cdot}$ and later.

2) Set the number of all digits $\mathrm{S} 1 \cdot$ ranging from 2 to 8 .
3) Set the number of digits of the decimal part $\mathrm{S} 1 \cdot+1$ ranging from 0 to 5 . Make sure to satisfy "Number of digits of decimal part <= (Number of all digits -3)".
4) 16-bit binary data to be converted stored in S2. should be ranging from -32768 to +32767 .
5) Converted character string data is stored in $\quad D^{\cdot}$ and later as shown below.

- As the sign, "space" $(20 \mathrm{H})$ is stored when the 16 -bit binary data stored in $\mathrm{S}_{2} \cdot$ is positive, and "-" (2DH) is stored when the 16 -bit binary data stored in S2• is negative.
- When the number of digits of the decimal part $\mathrm{S}_{1} \cdot+1$ is set to any value other than " 0 ", the decimal point "." (2EH) is automatically added in "number of digits of decimal part + 1 "th digit.
When the number of digits of the decimal part (S1•)+1 is set to " 0 ", the decimal point is not added.
- When the number of digits of the decimal part $\mathrm{S}_{1} \cdot+1$ is larger than the number of digits of 16-bit binary data stored in S2• , " 0 " $(30 \mathrm{H})$ is automatically added, and the data is shifted to the right end during conversion.

- When the number of all digits stored in S1- excluding the sign and decimal point is larger than the number of digits of 16-bit binary data stored in S2•, "space" $(20 \mathrm{H})$ is stored in each digit between the sign and the numeric value


When the number of all digits stored in
S1- excluding the sign and decimal point is smaller than the number of digits of 16-bit binary data stored in (S2.), an error is caused.

- " 00 H " indicating the end of a character string is automatically stored at the end of a converted character string. When the number of all digits is even, " 0000 H " is stored in the device after the last character.
When the number of all digits is odd, " 00 H " is stored in the high-order byte ( 8 bits) of the device storing the final character.


## 2. 32-bit operation (DSTR and DSTRP)

1) All digits (specified by $\left(\mathrm{S}_{1} \cdot\right.$ ) of 32-bit binary data stored in [ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot$ ] are converted into ASCII codes while the decimal point is added to the position specified by the device storing the number of digits of the decimal part ( $\mathrm{S} 1 \cdot+1$ ), and stored in $\mathrm{D} \cdot$ and later.

2) Set the number of all digits $\mathrm{S}_{1-}$ ranging from 2 to 13.
3) Set the number of digits of the decimal part $\mathrm{S}_{1} \cdot+1$ ranging from 0 to 10 . Make sure to satisfy "Number of digits of decimal part <= (Number of all digits -3)".
4) 32-bit binary data to be converted stored in [S2• +1, S2• ] should be ranging from $-2,147,483,648$ to $+2,147,483,647$.
5) Converted character string data is stored in (D. and later as shown below.

- For the sign, "space" (20H) is stored when the 32-bit binary data stored in S2• is positive, and "- (2DH)" is stored when the 32-bit binary data stored in (S2•) is negative.
- When the number of digits of the

Number of all digits	10
Number of	3
digits of decimal part	
32 -bit	12345678


 When the number of all digits stored in S1• excluding the sign and decimal point is smaller than the number of digits of 32 -bit binary data stored in [S2• +1, S2• ], an error is caused.

- " 00 H " indicating the end of a character string is automatically stored at the end of a converted character string. When the number of all digits is even, " 0000 H " is stored in the device after the last character. When the number of all digits is odd, " 00 H " is stored in the high-order byte ( 8 bits) of the device storing the final character.


## Related instructions

Instruction	Description
ESTR (FNC116)	Converts binary floating point data into a character string (ASCII codes) with a specified number of digits.
EVAL (FNC117)	Converts a character string (ASCII codes) into binary floating point data.
VAL (FNC201)	Converts a character string (ASCII codes) into binary data.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the number of all digits stored in $\mathrm{S}_{1-}$ is outside the following range (error code: K6706)

	Setting range
16-bit operation	2 to 8
32-bit operation	2 to 13

- When the number of digits of the decimal part stored in $\mathrm{S} 1 \cdot^{-}+1$ is outside the following range (error code: K6706)

	Setting range
16-bit operation	0 to 5
32-bit operation	0 to 10

- When the relationship between the number of all digits stored in $\mathrm{S} 1-$ and the number of digits of the decimal part stored in $\mathrm{S} 1 \cdot+1$ does not satisfy the following (error code: K6706)
(Number of all digits -3 ) $\geq$ Number of digits of decimal part
- When the number of all digits stored in $\mathrm{S} 1 \cdot$ including the digit for sign and the digit for decimal point is smaller than the number of digits of the binary data stored in [ $\mathrm{S} 2 \cdot+1$, $\mathrm{S} 2 \cdot^{-}$] (error code: K6706)
- When the devices $\mathrm{D}^{\bullet}$ and later storing a character string exceeds the corresponding device range (error code: K6706)


## Program example

In the program below, the 16-bit binary data stored in D10 is converted into a character string in accordance with the digit specification by D0 and D1 when X000 is set to ON, and then stored in D20 to D23.


16-bit binary data	D10		" ${ }^{12672 "}$	$\square$	b15------ b8 b7------- b0			
		12672			D20	31H(1)		H(space)
					D21	36H(6)		$32 \mathrm{H}(2)$
Number of all digits	D0	6			D22	$32 \mathrm{H}(2)$		$37 \mathrm{H}(7)$
Number of digits of	D1	0			D23			

### 26.2 FNC201 - VAL / Character String to BIN Conversion

## Outline

This instruction converts a character string (ASCII codes) into binary data.
On the other hand, EVAL (FNC117) instruction converts a character string (ASCII codes) into floating point data.
$\rightarrow$ For character strings, refer to Section 5.3.
$\rightarrow$ For EVAL (FNC117) instruction, refer to Section 18.5.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a character string to be converted into binary data	Character string
D1•	Head device number storing the number of all digits of the binary data acquired by   conversion	16 -bit binary
D2•	Head device number storing the binary data acquired by conversion	$16-$ or 32-bit binary

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square$ IG $\square$	Index			Con-   stant		Real Number E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D1-)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D2.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (VAL and VALP)
1) A character string stored in $S \cdot$ and later is converted into 16-bit binary data. The number of all digits of the binary data acquired for conversion is stored in D1• , the number of digits of the decimal part is stored in (D1-) +1 , and the converted binary data is stored in (D2.).
In converting a character string into binary data, the data from S• to a device number storing " 00 H " is handled as a character string in byte units.


For example, when a character string "-123.45" is specified in S. and later, the conversion result is stored in (D1-) and (D2• as shown below.

2) Character string to be converted
a) Number of characters of character string and the numeric range when the decimal point is ignored

	Description
Number of all characters (digits)	2 to 8
Number of characters (digits) of decimal part	0 to 5 and smaller than "number of all digits -3"
Numeric range when decimal point is ignored	-32768 to +32767   Example: $123.45 \rightarrow 12345$

b) Character types used in characters to be converted

		Character type
Sign	Positive numeric value	"Space" (20H)
	Negative numeric value	"-" (2DH)
Decimal point	"." (2EH)	
Number	"0" (30H) to "9" (39H)	

3) D1. stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).
4) D1• +1 stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).
5) (D2. stores 16-bit data (bin) converted from a character string with the decimal point ignored.

In the character string located in S• and later, "space" $(20 \mathrm{H})$ and " 0 " $(30 \mathrm{H})$ characters between the sign and the first number other than " 0 " are ignored in the conversion to 16-bit binary data.

	$\left\{\begin{array}{l} \text { Number of all } \\ \text { digits } \end{array}\right.$	8		$\left\{\begin{array}{l}\text { Number of all } \\ \text { digits }\end{array}\right.$	7
123	Number of digits	2	0.0012	Number of digits	4
$\mathbb{K}_{\text {Ignored }}$	16-bit binary data	-12345	Sign ${ }^{〔}{ }_{\text {Ignored }}$	16-bit binary	12

## 2. 32-bit operation (DVAL and DVALP)

1) A character string stored in $S \cdot$ and later is converted into 32-bit binary data. The number of all digits of the binary data acquired for conversion is stored in (D1•) the number of digits of the decimal part is stored in (D1• +1 , and the binary data is stored in [ $\mathrm{D} 2 \cdot$ +1, $\mathrm{D} 2 \cdot$ ].
In conversion from a character string into binary data, the data from S• to a device number storing " 00 H " is handled as a character string in byte units.


For example, when a character string "-12345.678" is specified in $S \cdot$ and later, the conversion result is stored in (D1- and (D2. as shown below.

(S.) +0	31H(1)	2DH(-)
+1	33H(3)	32H(2)
+2	$35 \mathrm{H}(5)$	34H(4)
+3	36H(6)	2EH(.)
+4	$38 \mathrm{H}(8)$	37H(7)
+5		00H


2) Character string to be converted
a) Number of characters of character string and the numeric range when the decimal point is ignored

	Description
Number of all characters (digits)	2 to 13
Number of characters (digits) of decimal part	0 to 10 and smaller than "number of all digits $-3 "$
Numeric range when decimal point is ignored	$-2,147,483,648$ to $+2,147,483,647$   Example: $12345.678 \rightarrow$ "12345678"

b) Character types used in characters to be converted

		Character type
Sign	Positive numeric value	"Space" (20H)
	Negative numeric value	"-" (2DH)
Decimal point	"." (2EH)	
Number	"0" (30H) to "9" (39H)	

3) D1• stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).
4) D1• +1 stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).
5) [D2• +1, D2•] stores 16-bit data (bin) converted from a character string with the decimal point ignored.

For the character string located in S. and later, the "space" $(20 \mathrm{H})$ and " 0 " $(30 \mathrm{H})$ characters between the sign and the first number other than " 0 " are ignored in the conversion to 32-bit binary data.


## Related instructions

Instruction	Description
ESTR (FNC116)	Converts binary floating point data into a character string (ASCII code) with a specified number of digits.
EVAL (FNC117)	Converts a character string (ASCII code) into binary floating point data.
STR (FNC200)	Converts binary data into a character string (ASCII code).

## Caution

Store sign data, "space $(20 \mathrm{H})$ " or "- $(2 \mathrm{DH})$ ", must be stored in the 1 st byte (lower order 8 bits of the head device set in S•).
Only the ASCII code data " $0(30 \mathrm{H})$ " to " $9(39 \mathrm{H})$ ", "space $(20 \mathrm{H})$ " and "decimal point $(2 \mathrm{EH})$ " can be stored from the 2 nd byte to the " 00 H " at the end of the character string in $\mathrm{S}^{-}$.
If "- $(2 \mathrm{DH})$ " is stored in the 2nd byte or later, an operation error (error code: K6706) occurs.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the number of characters of the character string to be converted ( $S^{\bullet}$ and later) is outside the following ranges (error code: K6706)

	Setting range
16-bit operation	2 to 8
32-bit operation	2 to 13

- When the number of characters after the decimal point of the character string to be converted ( $S^{\bullet}$ ) and later) is outside the following ranges (error code: K6706)

	Setting range
16-bit operation	0 to 5
32-bit operation	0 to 10

- When the relationship between the number of all characters in the character string to be converted ( $S^{\bullet}$ ) and later) and the number of characters after the decimal point does not satisfy the following (error code: K6706) (Number of all characters -3 ) $\geq$ Number of characters after the decimal point
- When the sign is set to any ASCII code other than "space" (20H) and "-" (2DH) (error code: K6706)
- When a digit of a number is set to any ASCII code other than " 0 " $(30 \mathrm{H})$ to " 9 " $(39 \mathrm{H})$ or a decimal point "." (2EH) (error code: K6706)
- When the decimal point "." (2EH) is set two or more times in the character string to be converted ( $S^{\bullet}$ ) and later) (error code: K6706)
- When the binary data acquired by conversion is outside the following range (error code: K6706)

	Setting range
16-bit operation	-32768 to 32767
32-bit operation	$-2,147,483,648$ to $2,147,483,647$

- When " 00 H " is not present in the location from $S \cdot$ to the final device number (error code: K6706)


## Program example

1) In the program below, the character string data stored in D20 to D22 is regarded as an integer value, converted into a binary value, and stored in D0 when X000 is set to ON.


Number of all digits
Number of digits of decimal part
" 00 H " is stored here.
2) In the program below, the character string data stored in D20 to D24 is regarded as an integer value, converted into a binary value, and stored in D0 when X 000 is set to ON .


### 26.3 FNC202 - \$+ / Link Character Strings

## Outline



This instruction links a character string to another character string.
$\rightarrow$ For handling of character strings, refer to Section 5.3.

## 1. Instruction format

	FNC 202	
$\vdots$		
	\$	P


16-bit Instruction	Mnemonic	Operation Condition
7 steps		Continuous
	+P	Pulse (Single)


32-bit Instruction	Mnemonic	Operation Condition
	-	
	-	

2. Set data

Operand Type	Description	Data Type
S1-	Head device number storing the link source data (character string) or directly specified character string	Character string
(S2.)	Head device number storing the link data (character string) or directly specified character string	
(D•)	Head device number storing the linked data (character string)	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \square \square \backslash \mathrm{G} \square \end{gathered}$	Index			Constant		Real   Number	$\begin{array}{c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \end{array}$	PointerP
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$			$\checkmark$				$\checkmark$									
(S2.)								$\checkmark$			$\checkmark$				$\checkmark$									
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (\$+ and \$+P)

The character string data stored in $\mathrm{S}_{2} \cdot$ and later is linked to the end of the character string data stored in $\mathrm{S}_{1} \cdot$ and later, and the linked data is stored to devices starting from D.
A character string stored in $\mathrm{S} 1 \cdot_{-}$or $\mathrm{S}_{2} \cdot$ or later indicates the data from the specified device to the first " 00 H " in units of byte.
Command



- In linking, " 00 H " indicating the end of a character string specified in S1• is ignored, and a character string specified in $\mathrm{S}_{2} \cdot$ is linked to the last character specified in $\mathrm{S}_{1} \cdot$.
When a character string is linked, " 00 H " is automatically added at the end.
- When the number of characters after linking is odd, " 00 H " is stored in the high-order byte of the device storing the last character.
- When the number of characters after linking is even, " 0000 H " is stored in the device after the last character.


## Cautions

- When directly specifying a character string, up to 32 characters can be specified (input).

However, this limitation in the number of characters is not applied when a word device is specified in $\mathrm{S} 1^{\circ}$ or (S2.).

- When the values in both $\mathrm{S} 1 \cdot^{-}$and $\mathrm{S} 2 \cdot^{\circ}$ start from " 00 H " (that is, when the number of characters is "0"), " 0000 H " is stored in D.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the number of devices after a device number specified by $D^{-}$is smaller than the number of devices required to store all linked character strings (that is, when " 00 H " cannot be stored after all character strings and the last character) (error code: K6706)
- When the same device is specified in $\mathrm{S}^{\bullet}$, $\mathrm{S}_{2 \cdot}$ and D • as a device for storing a character string (error code: K6706)
- When " $00 \mathrm{H}^{\prime}$ is not set within the corresponding device range after the device specified by $\mathrm{S} 1^{\bullet}$ or $\mathrm{S} 2^{\bullet}$ (error code: K6706)


## Program example

In the program example shown below, a character string stored in D10 to D12 (abcde) is linked to the character string "ABCD", and the result is stored to D100 and later when X000 turns ON.


### 26.4 FNC203 - LEN / Character String Length Detection

## Outline

This instruction detects the number of characters (bytes) of a specified character string.
$\rightarrow$ For handling of character strings, refer to Section 5.3.

## 1. Instruction format

FNC 203 LEN		16-bit Instruction5 steps	Mnemonic	Operation Condition
	P		LEN	Continuous
			LENP	$\begin{array}{ll} \lrcorner L & \text { Operation } \\ \text { Pulse (Single) } \\ \text { Operation } \end{array}$


2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a character string whose length is to be detected	Character string
D•	Device number storing the detected character string length (number of bytes)	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { Uप\|GI } \end{array}$	Index			Constant		Real Number E	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (LEN and LENP)

The length of a character string stored in S• and later is detected, and stored to (D. Data starting from (S• until the first device storing " 00 H " is handled as a character string in units of byte.


For example, when "ABCDEFGHI" is stored in $S \cdot$ and later as shown below, K9 is stored to $D \cdot$.


## Caution

- This instruction can handle character codes other than ASCII codes, but the character string length is handled in byte units ( 8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS codes, the length of 1 character is detected as " 2 ".


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " 00 H " is not set within the corresponding device range after a device specified by(error code: K6706)
- When the detected number of characters is "32768" or more (error code: K6706)


## Program example

In the program example shown below, the length of a character string stored in D0 and later is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.



### 26.5 FNC204 - RIGHT / Extracting Character String Data from the Right

Outline
This instruction extracts a specified number of characters from the right end of a specified character string.
$\rightarrow$ For handling of character strings, refer to Section 5.3.

## 1. Instruction format



16-bit Instruction	Mnemonic	Operation Condition
7 steps	RIGHT	L   Continuous   L Operation
	RIGHTP	Pulse (Single) Operation

32-bit Instruction Mnemonic Operation Condition
-
-
2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a character string	Character string
$\mathrm{D} \cdot$	Head device number storing extracted character string	
n	Number of characters to be extracted	$16-$ bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Con-   stant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (RIGHT and RIGHTP)

" n " characters are extracted from the right end (that is, from the end) of the character string data stored in $S \cdot$ and later, and stored to $\mathrm{D}^{\cdot}$ and later.
If the number of characters specified by " $n$ " is " 0 ", the NULL code $(0000 \mathrm{H})$ is stored to (D.).
When characters are extracted from a character string, " 00 H " is automatically added at the end of the extracted characters.

- When the number of extracted characters is odd, " 00 H " is stored in the high-order byte of a device storing the last character.
- When the number of extracted characters is even, "0000H" is stored in the device after the last character.

Command


In the case of " $n=5$ "


- A character string stored in $S \cdot$ and later indicates data stored in devices from the specified device until " 00 H " is first detected in byte units.


## Cautions

When handling character codes other than ASCII codes, note the following contents:

- The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS codes, the length of 1 character is detected as " 2 ".
- When extracting characters from a character string including character codes in which 2 bytes express 1 character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character.
Note that the expected character code is not given if only 1 byte is executed out of a 2-byte character code.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " 00 H " is not set within the corresponding device range after a device specified by $\mathrm{S}^{\cdot}$ (error code: K6706)
- When " $n$ " exceeds the number of characters specified by $S \cdot$ (error code: K6706)
- When the number of devices after a device number specified by $\mathrm{D}^{\cdot}$ is smaller than the number of devices required to store extracted " n " characters (that is, when " 00 H " cannot be stored after all character strings and the last character) (error code: K6706)
- When " $n$ " is a negative value (error code: K6706)


## Program example

In the program example shown below, 4 characters are extracted from the right end of the character string data stored in RO and later, and stored to D0 and later when X000 turns ON.


### 26.6 FNC205 - LEFT / Extracting Character String Data from the Left

## Outline

Ver.2.20 $\quad$ "
This instruction extracts a specified number of characters from the left end of a specified character string.
$\rightarrow$ For handling of character strings, refer to Section 5.3.

## 1. Instruction format



16-bit Instruction	Mnemonic	Operation Condition
7 steps		Continuous Operation
	LEFTP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
	-	
	-	

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing a character string	Character string
$\mathrm{D} \cdot$	Head device number storing extracted character string	
n	Number of characters to be extracted	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \text { Special } \\ \text { Unit } \\ \hline \text { U } \square \backslash \square \end{gathered}$	Index			Constant		Real Number E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (LEFT and LEFTP)

" n " characters are extracted from the left end (that is, from the head) of the character string data stored in $S \cdot$ and later and stored to $D \cdot$ and later.
If the number of characters specified by " n " is " 0 ", the NULL code $(0000 \mathrm{H})$ is stored to D.
When characters are extracted from a character string, " 00 H " is automatically added at the end of the extracted characters.

- When the number of extracted characters is odd, " 00 H " is stored in the high-order byte of a device storing the last character.
- When the number of extracted characters is even, " 0000 H " is stored in the device after the last character.

Command


In the cas	= 7 "		ASCII code for 1	acter	
	---------	--------		---	
(5.)	42H(B)	41H(A)	(D.)	42H(B)	41H(A)
(S.) +1	44H(D)	43H(C)	$\checkmark$ (D.) +1	44H(D)	43H(C)
(S.) +2	$46 \mathrm{H}(\mathrm{F})$	45H(E)	(D.) +2	46 H (F)	45H(E)
(5.) +3	$32 \mathrm{H}(2)$	$31 \mathrm{H}(1)$	(D.) +3	00H	31H(1)
(S.) +4	$34 \mathrm{H}(4)$	$33 \mathrm{H}(3)$	ASCII code for 7	acter	
(5.) +5	00H	$35 \mathrm{H}(5)$			

- A character string stored in S• and later indicates data stored in devices from the specified device until " 00 H " is first detected in byte units.


## Cautions

When handling character codes other than ASCII codes, note the following contents:

- The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS codes, the length of 1 character is detected as " 2 ".
- When extracting characters from a character string including character codes in which 2 bytes express 1 character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character.
Note that the expected character code is not given if only 1 byte is executed out of a 2-byte character code.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " 00 H " is not set within the corresponding device range after a device specified by $\mathrm{S} \cdot$ (error code: K6706)
- When " $n$ " exceeds the number of characters specified by $S \cdot$ (error code: K6706)
- When the number of devices after a device number specified by $D \cdot$ is smaller than the number of devices required to store extracted "n" characters (that is, when " 00 H " cannot be stored after all character strings and the last character) (error code: K6706)
- When " $n$ " is a negative value (error code: K6706)


## Program example

In the program example shown below, the number of characters which is equivalent to the number stored in D0 are extracted from the left end of the character string data stored in D100 and later, and stored to R10 and later when X010 turns ON.


### 26.7 FNC206 - MIDR / Random Selection of Character Strings

## Outline

This instruction extracts a specified number of characters from arbitrary positions of a specified character string.
$\rightarrow$ For handling of character strings, refer to Section 5.3.

## 1. Instruction format



16-bit Instruction	Mnemonic	Operation Condition
7 steps		Continuous
	MIDRP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
	-	
	-	

2. Set data

Operand Type	Description	Data Type
S1-	Head device number storing a character string	Character string
(D•)	Head device number storing extracted character string	
(S2.)	Head device number specifying the head position and number of characters to be extracted   S2• : Head character position   S2• +1 : Number of characters	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\G口	Index			Con-   stant		Real   Number   E	Character String	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												
S2.)								$\checkmark$			$\checkmark$													

## Explanation of function and operation

## 1. 16-bit operation (MIDR and MIDRP)

" S2• +1" characters are extracted leftward from the position specified by $\mathrm{S} 2 \cdot$ of the character string data stored in S1. and later, and stored to (D. and later.
When characters are extracted from a character string, " 00 H " is automatically added at the end of the extracted characters.

- When the number of extracted characters specified by $\mathrm{S} 2 \cdot^{-}+1$ is odd, " 00 H " is stored in the high-order byte of a device storing the last character.
- When the number of extracted characters specified by $\mathrm{S}_{2 \cdot} \cdot+1$ is even, " 0000 H " is stored in the device after the last character.

Command


- A character string stored in $\mathrm{S}_{1}$ - and later indicates data stored in devices from the specified device until "00H" is first detected in units of byte.
- When the number of characters to be extracted specified by $\mathrm{S} 2 \cdot+1$ is " 0 ", the extraction processing is not executed.
- When the number of characters to be extracted specified by $\mathrm{S}_{2 \cdot}+1$ is " -1 ", the entire character string stored in S1- and later is stored to $\mathrm{D}^{-}$and later.



## Cautions

When handling character codes other than ASCII codes, note the following contents:

- The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS code, the length of 1 character is regarded as 2 characters.
- When extracting characters from a character string including character codes in which 2 bytes express 1 character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character.
Note that the expected character code is not given if only 1 byte is executed out of a 2-byte character code.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " 00 H " is not set within the corresponding device range after a device specified by $\mathrm{S}_{1} \cdot$ (error code: K6706)
- When the value specified by $\mathrm{S} 2 \cdot^{-}+1$ exceeds the number of characters specified by $\mathrm{S}^{\bullet}$ (error code: K6706)
- When the number of characters specified by $S 2 \cdot+1$ from the position specified by $D^{\cdot}$ exceeds the device range specified by (D• (error code: K6706)
- When the number of devices after a device number specified by $D^{-}$is smaller than the number of devices required to store extracted characters as many as the number specified by $\mathrm{S} 2 \cdot+1$ (that is, when "00H" cannot be stored after all character strings and the last character) (error code: K6706)
- When S2• specifies a negative value (error code: K6706)
- When $\mathrm{S} 2 \cdot+1$ specifies "-2" or less (error code: K6706)
- When $\mathrm{S} 2 \cdot+1$ specifies a number larger than the number of characters specified by $\mathrm{S} 1 \cdot$ (error code: K6706)


## Program example

In the program example shown below, four characters are extracted from the 3rd character from the left end of the character string data stored in D10 and later, and then stored to D0 and later when X000 turns ON.


## 26．8 FNC207－MIDW／Random Replacement of Character Strings

Outline
This instruction replaces the characters in arbitrary positions inside designated character string with a specified character string．
$\rightarrow$ For handling of character strings，refer to Section 5．3．

## 1．Instruction format



16－bit Instruction	Mnemonic	Operation Condition
7 steps	MIDW	Continuous   L Operation
	DWP	Pulse（Single） Operation


32－bit Instruction	Mnemonic	Operation Condition
	-	

2．Set data

Operand Type	Description	Data Type
S1•	Head device number storing a character string used in overwriting	Character string
D•	Head device number storing character string to be overwritten	
S2•	Head device number specifying the head position and number of characters to be   overwritten   S2• ：Head character position to be overwritten	16－bit binary

3．Applicable devices

Oper－ and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U口\Gロ	Index			Con－   stant		Real Number E	Charac－   ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1－								$\checkmark$			$\checkmark$													
（D．）									$\checkmark$			$\checkmark$												
S2．）								$\checkmark$			$\checkmark$													

## Explanation of function and operation <br> xplanation of function and operation

1．16－bit operation（MIDW and MIDWP）
＂S2•＋1＂characters are extracted from the left end（that is，the head）of the character string data stored in S1• and later，and stored to the position specified by S2．and later of the character string data stored in $\mathrm{D}^{-}$and later．
＂S2•＋1
and later，
Command
input



- The character string stored in $\mathrm{S} 1 \cdot$ and later or $\mathrm{D} \cdot$ and later indicates data stored in devices from the specified device until " 00 H " is first detected in byte units.
- When the number of characters to be overwritten specified by $\mathrm{S}_{2 \cdot}+1$ is " 0 ", the overwriting processing is not executed.
- When the number of characters to be overwritten specified by $\mathrm{S}_{2} \cdot+1$ exceeds the last character of the character string stored in (D. and later, data is stored up to the last character.

Before execution

b15---------------b8b7-------------------10				b15--------------b8b7----------------b0			
(S1.)	$31 \mathrm{H}(1)$	$30 \mathrm{H}(0)$	1st character	(D.)	42H(B)	41H(A)	
S1. +1	$33 \mathrm{H}(3)$	$32 \mathrm{H}(2)$		(D.) +1	44H(D)	43H(C)	
(S1.) +2	$35 \mathrm{H}(5)$	34H(4)		(D.) +2	46H(F)	45H(E)	
S1. +3	$37 \mathrm{H}(7)$	$36 \mathrm{H}(6)$		(D.) +3	$48 \mathrm{H}(\mathrm{H})$	47H(G)	
S1. +4	00H	$38 \mathrm{H}(8)$		(D.) +4	00H	49H(I)	
	racter					$\begin{aligned} & \mathrm{HI} \\ & \text { ion } \end{aligned}$	



Characters from the 5th character to the last character are overwritten. Excessive characters, " 35 H (5)" to " $37 \mathrm{H}(7)$ ", are no stored.

- When S2•+1 (the number of characters to be extracted) is "-1", the entire character string stored in $\mathrm{S}_{1} \cdot$ and later is stored to $\mathrm{D}^{\cdot}$ and later



## Cautions

This instruction can handle character codes other than ASCII codes, but please note the following:

- The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS code, the length of 1 character is regarded as 2 characters.
- When overwriting a character string including character codes in which 2 bytes express 1 character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the expected character code is not given if only 1 byte is overwritten out of a 2-byte character code.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " $00 \mathrm{H}^{\prime}$ " is not set within the corresponding device range after a device specified by $\mathrm{S}_{1-}{ }^{-}$or $\mathrm{D} \cdot$ (error code: K6706)
- When the value specified by $\mathrm{S}_{2 \cdot}$ exceeds the number of characters of the character string stored in $\mathrm{D}^{\circ}$ and later (error code: K6706)
- When the number of characters specified by $\mathrm{S} 2 \cdot^{-}+1$ exceeds the number of characters specified by $\mathrm{S}_{1-}$ (error code: K6706)
- When S2• specifies a negative value (error code: K6706)
- When S2•+1 specifies "-2" or less (error code: K6706)


## Program example

In the program example shown below, 4 characters are extracted from the character string data stored in D0 and later, and stored to the 3rd character (from the left end) and later for the character string data stored in D100 and later when X010 turns ON.

4th
character

Before execution


After execution


The 1st to 4th characters are stored


### 26.9 FNC208 - INSTR / Character string search

## Outline

This instruction searches a specified character string within another character string.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
9 steps	INSTR	L   Continuous Operation
	P	Pulse (Single)   - Operation

32-bit Instruction Mnemonic Operation Condition
-

9 steps

2. Set data

Operand Type	Description	Data Type
S1•	Head device number storing a character string	Character string
S2•	Head device number storing a character string to be searched	Character string
D•	Head device number storing search result	$16-$ bit binary
n	Search start position	$16-$ bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUप\Gロ	Index			Con-   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$				$\checkmark$	
S2.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (INSTR and INSTRP)

1) The character string stored in $\mathrm{S}_{1 \cdot}$ and higher is searched for within the character string $\mathrm{S}_{2 \cdot}$ and higher. The search begins at the " $n$ "th character from the left end (head character) of S2• and the search result is stored in (D. . The search result provides the first matching character (located from the left end (head character)) in (S2.).


Command					
input	FNC208	S1-	S2-	(D :	n

Character string to be searched $\mathrm{S}_{2}$.
Character string (S1.)


46H(F)	$45 \mathrm{H}(\mathrm{E})$
$48 \mathrm{H}(\mathrm{H})$	47H(G)
	00H
	Th firs is
(D.)	

2) When the searched character string is not detected, " 0 " is stored in D.
3) When the search start position " n " is a negative number or " 0 ", search processing is not executed.
4) A character string can be directly specified in the character string (S1-.

Character string to be searched S $2 .^{2}$.			
(S2.) +0	32H(2)	$31 \mathrm{H}(1)$	Search is started from the 3rd character ( $\mathrm{n}=3$ )
+1	34H(4)	33H(3)	
+2	42H(B)	41H(A)	Fifth character from the head character
+3	$36 \mathrm{H}(6)$	$35 \mathrm{H}(5)$	
+4	42H(B)	41H(A)	
+5		00H	
"1234AB56AB"			



## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the search start position " n " exceeds the number of characters stored in $\mathrm{S}_{2 \cdot}$ (error code: K6706)
- When " 00 H (NULL)" is not located within the corresponding device range starting from $\mathrm{S}_{1} \cdot$ (error code: K6706)
- When " 00 H (NULL)" is not located within the corresponding device range starting from © $\mathrm{S}_{2} \cdot$ (error code: K6706)


## Program example

1) In the program example below, the character string "CI23" (D0 and later) is searched from the 5th character from the left end (head character) of the character string "CI2312CIM" (R0 and later) when X000 is set to ON. The search result is stored in D100


Character string to be searched R0



### 26.10 FNC209 - \$MOV / Character String Transfer

## Outline

This instruction transfers character string data.

## 1. Instruction format

FNC 209 \$MOV		16-bit Instruction   5 steps	Mnemonic	Operation Condition
	P	5 steps	\$MOV	Continuous Operation
			\$MOVP	Pulse (Single) Operation


32-bit Instruction Mnemonic	Operation Condition

- 

2. Set data

Operand Type	Description	Data Type
S•	Directly specified character string (up to 32 characters) or head device number storing   character string which is handled as the transfer source	Character string
D•	Head device number storing transferred character string	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$			$\checkmark$				$\checkmark$									
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (\$MOV and \$MOVP)

The character string data stored in the device specified by $S^{-}$and later is transferred to the device specified by (D.) and later.

From the device number specified by $S \cdot$ to a device after that which stores " $00 H^{\prime}$ " in its high-order or low-order byte are transferred at one time.
Command


00 H indicates the end of character string.
Even if the device range "S. to $S^{\cdot}+\mathrm{n}$ " storing the transfer source character string data overlaps the device range " $D \cdot$ to $D \cdot+\mathrm{n} / 2$ " storing the transferred character string data, transfer is executed.
For example, when a character string stored in D10 to D13 is transferred to D11 to D14, the transfer is executed as shown below:

Command

| $\substack{\text { input } \\ \hline}$ | FNC209 <br> \$MOV | D10 |
| :---: | :---: | :---: | D11 |  |
| :---: |



It is the same as the character string before transfer.

## Caution

When " 00 H " is stored in the low-order byte of $\mathrm{S} \cdot+\mathrm{n}$, " 00 H " is stored to both the high-order byte and low-order byte of $D \cdot+n$.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When " 00 H " does not exist in the range specified from device S. (error code: K6706)
- When the specified character string cannot be stored in devices from the device specified by $D \cdot$ to the last device (error code: K6706)


## Program example

In the program example shown below, character string data stored in D10 to D12 is transferred to D20 through D22.


## 27. Data Operation 3 - FNC210 to FNC219

FNC210 to FNC219 provide instructions for reading last-in data and controlling leftward/rightward shift instructions with carry

FNC No.	Mnemonic	Symbol	Function	Reference
210	FDEL	$-1 \longmapsto$ FDEL S D   n	Deleting Data from Tables	Section 27.1
211	FINS	FINS S D n	Inserting Data to Tables	Section 27.2
212	POP	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \mathrm{H} & \begin{array}{\|l\|l\|l\|} \hline \mathrm{POP} & \mathrm{~S} & \mathrm{D} \\ \hline \end{array} \\ \hline \end{array}$	Shift Last Data Read [FILO Control]	Section 27.3
213	SFR	$\begin{array}{\|l\|l\|l\|} \hline & \left.\begin{array}{\|l\|l\|l\|} \hline \text { SFR } & \mathrm{D} & \mathrm{n} \\ \hline \end{array} \right\rvert\, \end{array}$	16-bit data $n$   Bit Shift Right with Carry	Section 27.4
214	SFL	SFL D n	16-bit data $n$ Bit Shift Left with Carry	Section 27.5
215	-			-
216	-			-
217	-			-
218	-			-
219	-			-

### 27.1 FNC210 - FDEL / Deleting Data from Tables

## Outline

This instruction deletes an arbitrary data value from a data table.

1. Instruction format

2. Set data

Operand Type		Description
S•	Device number storing deleted data value	Data Type
D•	Head device number in data table	16-bit binary
n	Position of deleted data in table	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG $\square$	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (FDEL and FDELP)

The " $n$ "th data value is deleted from a data table (stored in $D \cdot$ and later), and the deleted value is stored in $S \cdot$. " $\mathrm{n}+1$ "th data value and later in the data table are shifted forward one by one, and the number of stored data is subtracted by " -1 ".


Device range used in data table	$\left\{\begin{array}{l}\text { Number of } \\ \text { stored data }\end{array}\right.$	(D. +0	Data table	$\xrightarrow{-1}$ D +0	Data table	Number of stored data
			5		4	
			5432	When " n " is "2" ${ }^{+1}$	5432	
	$\left\{\begin{array}{l} \text { Data table } \\ \text { (having }(\mathrm{D} \cdot \\ \text { data starting } \\ \text { from }(\mathrm{D} \cdot+1) \end{array}\right.$	$\left\{\begin{array}{r} +2 \\ +3 \\ +4 \\ +5 \\ \vdots \end{array}\right.$	3333		4444	Data table range
			4444	$\longrightarrow+3$	1234	
			1234	+4	5678	
			5678	+5	0	$\leftarrow$ "0" is stored.
			!	!	:	
			0		Deleted data	
				(S.)	3333	

## Caution

The device range used in a data table should be controlled by the user.
The data table has (D. number of stored data starting from ( $D^{\circ}+1$ ).
$\rightarrow$ Refer to the program example.
Related instruction

Instruction	
FINS (FNC211)	Inserts data into an arbitrary position in a data table.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the table position " n " of the data to be deleted exceeds the amount of data stored (error code: K6706)
- When the value " $n$ " exceeds the device range of the data table $D \cdot($ • (error code: K6706)
- When the FDEL (FNC210) instruction is executed under the condition " $\mathrm{n} \leq 0$ " (error code: K6706)
- When the amount of data stored specified in (D. is "0" (error code: K6706)
- When the data table range exceeds the corresponding device range (error code: K6706)


## Program example

In the program shown below, the 2nd data value entry is deleted from the data table stored in D100 to D105, and the deleted data is stored in D0.
When the amount of data stored is " 0 ", however, the FDEL (FNC210) instruction is not executed. (The device range used in the data table is D100 to D107).


### 27.2 FNC211 - FINS / Inserting Data to Tables

## Outline

This instruction inserts a data value into an arbitrary position in a data table.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Device number storing data to be inserted	
$\mathrm{D} \cdot$	Head device number in data table	
n	Data insertion position in table	

3. Applicable devices

Oper-   and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash G \square$	Index			Constant		Real Number   E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
n														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (FINS and FINSP)

16-bit data $S \cdot$ is inserted in the "n"th position in a data table (stored in $D \cdot$ and later).
" $n$ "th data and later in the data table are shifted backward one by one, and the number of stored data is added by " 1 ".


Device range used in data table


## Caution

The device range used in a data table should be controlled by the user.
The data table has (D• number of stored data starting from ( $D^{\circ}+1$ ).
$\rightarrow$ Refer to the program example.
Related instruction

Instruction	Description
FDEL (FNC210)	Deletes an arbitrary data entry from a data table.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the table position " $n$ " for data insertion exceeds the amount of stored data plus 1 (error code: K6706)
- When the value " $n$ " exceeds the device range of the data table $D \cdot($ error code: K6706)
- When FNC211 instruction is executed under the condition " $\mathrm{n} \leq 0$ " (error code: K6706)
- When the data table range exceeds the corresponding device range (error code: K6706)


## Program example

In the program shown below, data stored in D100 is inserted into the 3rd position of the data table stored in D0 to D4. When the amount of data stored exceeds "7", however, the FINS (FNC211) instruction is not executed. (The device range used in the data table is D0 to D7).


## 27．3 FNC212－POP／Shift Last Data Read［FILO Control］

## Outline

This instruction reads the last data written by a shift write（SFWR）instruction for FILO control．
$\rightarrow$ For SFWR（FNC 38）instruction，refer to Section 11．9．

## 1．Instruction format



16－bit Instruction	Mnemonic	Operation Condition	
7 steps	POP	$\boxed{L}$	Continuous
	POPP	$\boxed{\text { Operation }}$	
		$\boxed{\imath} L$	Pulse $($ Single $)$   Operation


32 －bit Instruction	Mnemonic	Operation Condition
	-	
	-	

2．Set data

Operand Type	Description	Data Type
S•	Head device number storing first－in data（including pointer data）	
D•	Device number storing last－out data	16－bit binary
n	Length of data array   （Add＂1＂because pointer data is also included．）   $2 \leq \mathrm{n} \leq 512$	

3．Applicable devices

Oper－ and   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con－ stant		Real Number   E	Charac－ ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
（S．）									$\checkmark$			$\checkmark$												
（D．）									$\checkmark$															
n																				$\checkmark$	$\checkmark$			

## Explanation of function and operation

1．16－bit operation（POP and POPP）


Data for FILO control

	Description
（5•）	Pointer data（amount of data stored）
（S．）＋1	Data area （First－in data written by shift write（SFWR）instruction）
（S．）+2	
（S•）+3	
：	
（S．）$+\mathrm{n}-3$	
（S．）$+\mathrm{n}-2$	
（S．）$+\mathrm{n}-1$	

－Every time the instruction is executed for the word devices S• to S•＋n－1，a device＂S•＋Pointer data （S．）＂is read to（D．．（The last data entry written by the shift write（SFWR）instruction for first－in first－out control is read to（D．）．）Specify＂ n ＂ranging from＂ 2 ＂to＂ 512 ＂．

- Subtract " 1 " from the value of the pointer data $S^{\bullet}$.


In the case of K4

$\mathrm{K} 4 \rightarrow$ K3

## Related device

$\rightarrow$ For the zero flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8020	Zero flag	Turns ON when the instruction is executed while the pointer $\mathrm{S} \cdot$ is "0".

## Related instructions

| Instruction |  |
| :---: | :--- | :--- |
| SFWR (FNC 38) | Shift write [for FIFO/FILO control] |
| SFRD (FNC 39) | Shift read [for FIFO control] |

## Cautions

- When this instruction is programmed in the continuous operation type, the instruction is executed in every operation cycle. As a result, an expected operation may not be achieved. Usually, program this instruction in the "pulse operation type", or let this instruction be executed by a "pulsed command contact".
- When the current value of the pointer S. is " 0 ", the zero flag M8020 turns ON and the instruction is not executed.
Check in advance using a comparison instruction whether the current value of $\mathrm{S}^{\circ}$ satisfies " $1 \leq \mathrm{S} \cdot \mathrm{n}-1$ ", and then execute this instruction.
- When the current value of the pointer $S \cdot$ is " 1 ", " 0 " is written to $S$. and the zero flag M8020 turns ON.


## Error

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When S. is larger than "n-1" (error code: K6706)
- When S. is smaller than " 0 " (error code: K6706)


## Program example

Among values stored in D20 input first to D101 to D106, the last value input is stored to D10, and "1" is subtracted from the number of stored data (pointer D100) every time X000 turns ON.


When the first-in data is as shown in the table below

Pointer	D100	K3
Data	D 101	H 1234
	D 102	H 5678
	D 103	HABCD
	D 104	H 0000
	D 105	H 0000
	D 106	H 0000



D106	D105	D104	D103	D102	D101	D100	D10
H0000	H0000	H0000	HABCD	H5678	H1234	$\mathrm{K} 3 \rightarrow \mathrm{~K} 2$	HABCD

### 27.4 FNC213 - SFR / Bit Shift Right with Carry

Outline
This instruction shifts 16 bits stored in a word device rightward by " n " bits.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
5 steps	SFR	Continuous Operation
	SFRP	Pulse (Single)

32-bit Instruction Mnemonic $\quad$ Operation Condition
$\qquad$
2. Set data

Operand Type	Description	Data Type
$\left(D^{\bullet}\right.$	Device number storing data to be shifted	16-bit binary
$n$	Number of times of shift $(0 \leq \mathrm{n} \leq 15)$	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									$\checkmark$															
n								$\checkmark$		$\checkmark$	$\checkmark$													

## Explanation of function and operation

## 1. 16-bit operation (SFR and SFRP)



1) 16 bits stored in a word device (D. are shifted rightward by " $n$ " bits.

Specify a value ranging from " 0 " to " 15 " as " n ".
If " 16 " or larger value is specified as " $n$ ", 16 bits are shifted rightward by the remainder of " $n / 16$ ". For example, when " $n$ " is set to " 18 ", 16 bits are shifted rightward by 2 bits $(18 / 16=1 \ldots 2)$.
2) The ON (1)/OFF (0) status of the "n"th bit (bit " $n-1$ ") in the word device $D \cdot$. is transferred to the carry flag M8022.
3) " 0 " is set to " $n$ " bits from the most significant bit.


When a bit device is specified by digit specification
$4 \times \mathrm{K} \square$ bits are shifted according to the data bit specification.


## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry flag	Shifts the ON/OFF status of bit " $n-1$ ".

## Error

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a negative value is set to " n " (error code: K6706)


## Program example

In the program example shown below, the contents of Y010 to Y023 are shifted rightward by the number of bits specified by D0 when X020 turns ON.


### 27.5 FNC214 - SFL / Bit Shift Left with Carry

Outline
This instruction shifts 16 bits stored in a word device leftward by " $n$ " bits.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition
5 steps		Continuous Operation
	SFLP	Pulse (Single) Operation

32-bit Instruction Mnemonic $\quad$ Operation Condition
$\qquad$
-
2. Set data

Operand Type	Description	Data Type
$\mathrm{D} \cdot$	Device number storing data to be shifted	16-bit binary
n	Number of times of shift $(0 \leq \mathrm{n} \leq 15)$	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(D.)									$\checkmark$															
n								$\checkmark$		$\checkmark$	$\checkmark$													

## Explanation of function and operation

1. 16-bit operation (SFL and SFLP)

Command input			
	FNC214 SFLP	(D.)	n

1) 16 bits stored in a word device (D. are shifted leftward by " $n$ " bits.

Specify a value ranging from " 0 " to " 15 " as " n ".
If " 16 " or larger value is specified as " n ", 16 bits are shifted leftward by the remainder of " $\mathrm{n} / 16$ ". For example, when " $n$ " is set to " 18 ", 16 bits are shifted leftward by 2 bits (18/16 = $1 \ldots 2$ ).
2) The ON (1)/OFF (0) status of the " $n+1$ "th bit (bit " $n$ ") in the word device ( $D \cdot$ is transferred to the carry flag M8022.
3) " 0 " is set to " $n$ " bits from the least significant bit.


When a bit device is specified by digit specification
$4 \times \mathrm{K} \square$ bits are shifted according to the data of bit specification.
Command

$\substack{\text { input } \\ \text { in }}$	FNC214   SFL	K2M10	K3



## Related device

$\rightarrow$ For the carry flag use method, refer to Subsection 6.5.2.

Device	Name	Description
M8022	Carry flag	Shifts the ON/OFF status of bit "n".

## Error

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When a negative value is set to " n " (error code: K6706)


## Program example

In the program example shown below, the contents of Y010 to Y017 are shifted leftward by the number of bits specified by D0 when X020 turns ON.


## 28. Data Comparison - FNC220 to FNC249

FNC220 to FNC249 provide data comparison instructions which can be handled as contact symbols in programming such as LD, AND and OR.

FNC No.	Mnemonic	Symbol	Function	Reference
220	-			-
221	-			-
222	-			-
223	-			-
224	LD=	$L D=$	Load Compare S 1 $=$ S2	Section 28.1
225	LD>	$\begin{array}{\|l\|l\|l\|} \hline \text { LD> } & \mathrm{S} 1 & \mathrm{~S} 2 \\ \hline \end{array}$	Load Compare $\mathrm{S}^{\text {1 }}>$ S2	Section 28.1
226	LD<	$\begin{array}{\|l\|l\|l\|} \hline \mathrm{LD}< & \mathrm{S} 1 & \mathrm{~S} 2 \\ \hline \end{array}$	Load Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	Section 28.1
227	-			-
228	LD<>	$\begin{array}{l\|l\|l\|} \hline L D<> & S 1 & S \\ \hline \end{array}$	Load Compare $\mathrm{S}_{1} \neq \mathrm{S}_{2}$	Section 28.1
229	LD<=	$\mathrm{LD}<=\mathrm{S}_{1} \mathrm{~S} 2$	Load Compare S1 <= S2	Section 28.1
230	LD>=	$\begin{array}{\|l\|l\|l\|} \hline L D>= & S 1 & S 2 \\ \hline \end{array}$	Load Compare S1 >= S2	Section 28.1
231	-			-
232	AND=	$H \mapsto \mathrm{AND}=\mathrm{S} 1 \mid \mathrm{S} 2$	AND Compare S 1 S 2	Section 28.2
233	AND>	$H \mapsto \begin{array}{\|l\|l\|l\|} \hline \text { AND }> & \mathrm{S} 1 & \mathrm{~S} 2 \\ \hline \end{array}$	AND Compare $\mathrm{S}_{1}>$ S2	Section 28.2
234	AND<	$\begin{array}{\|l\|l\|l\|} \hline \mathrm{AND}<\mathrm{S} 1 & \mathrm{~S} 2 \\ \hline \end{array}$	AND Compare S 1 $<$ S2	Section 28.2
235	-			-
236	AND<>	$\mapsto \mapsto A N D<>\|S 1\| S 2$	AND Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	Section 28.2
237	AND<=	$\vDash \mathrm{AND}<=$ S1 S 2	AND Compare S 1 $<=$ S2	Section 28.2
238	AND>=	$\vdash$AND $>=$ S1 2	AND Compare S 1 $>=$ S2	Section 28.2


FNC No.	Mnemonic	Symbol	Function	Reference
239	-			-
240	$\mathrm{OR}=$		OR Compare $\mathrm{S}^{1}=\mathrm{S}^{2}$	Section 28.3
241	OR>	$\begin{array}{\|l\|} \hline-\mathrm{OR}> \\ \mathrm{S} 1 \\ \hline \mathrm{~S} 2 \\ \hline \end{array}$	OR Compare $\mathrm{S}^{1}>$	Section 28.3
242	OR<	$\begin{array}{\|l\|l\|l\|} \hline \mathrm{OR}< & \mathrm{S} 1 & \mathrm{~S} 2 \\ \hline \end{array}$	OR Compare $\mathrm{S}_{1}$ < $\mathrm{S}_{2}$	Section 28.3
243	-			-
244	OR<>	$\begin{array}{\|l\|} \hline \mathrm{OR}<>\|\mathrm{S} 1\| \mathrm{S} 2 \\ \hline \end{array}$	OR Compare $\mathrm{S}_{1} \neq \mathrm{S}^{2}$	Section 28.3
245	OR<=	$\begin{array}{\|l\|} \hline \mathrm{OR}<=\|\mathrm{S} 1\| \mathrm{s} 2 \\ \hline \end{array}$	OR Compare $\mathrm{S}_{1}<=$ S2	Section 28.3
246	OR>=	OR	OR Compare S > $>$ S2	Section 28.3
247	-			-
248	-			-
249	-			-

### 28.1 FNC224~230 - LD =, >, <, <>, <=, >= / Data Comparison

## Outline



These instructions compare numeric values, and set a contact to ON when the condition agrees so that an operation is started.

1. Instruction format

2. Set data (common among FNC224 to FNC230)

Operand Type	Description	Data Type
S1•	Device number storing comparison data	$16-$ or 32-bit binary
S2•	Device number storing comparison data	$16-$ or 32-bit binary

3. Applicable devices (common among FNC224 to FNC230)

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square$ IG $\square$	Index			Constant		Real Number E	Character String$\square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2-								$\checkmark$	-1	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C}}$ PLCs.
©2: This function is supported only in $F X_{3} \mathrm{U} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

FNC224 to FNC230 are data comparison instructions connected to bus lines．
The contents of $\mathrm{S} 1 \cdot$ are compared with the contents of $\mathrm{S} 2 \cdot$ in binary format，and a contact becomes conductive （ON）or non－conductive（OFF）depending on the comparison result．

FNC No．	16－bit instruction	32－bit instruction	ON condition	OFF condition
224	LD＝	LDD＝	$\mathrm{S}_{1}{ }^{-}=\mathrm{S}_{2}{ }^{\circ}$	
225	LD＞	LDD＞	（ $3_{1 \cdot}>{ }^{(12 \cdot}$	S1．$<=$ S2－
226	LD＜	LDD＜	（S1－）$<\mathrm{S}_{2 \cdot}$	S1－$>=\mathrm{S}_{2} \cdot$
228	LD＜＞	LDD＜＞	S1－$=\mathrm{S}_{2 \cdot}$	S1－$=\mathrm{S}_{2} \cdot$
229	LD＜＝	LDD＜＝	S1．$<=$ S2•	S1－$>$ S2．
230	LD＞＝	LDD＞＝	S1－$>=\mathrm{S}_{2} \cdot$	S1．）$<$ S2．

## Cautions

1．Negative value
When the most significant bit is＂1＂in the data stored in $\mathrm{S}_{1} \cdot$ or $\mathrm{S}_{2} \cdot$ ，it is regarded as a negative value in comparison．
－In the 16 －bit operation：bit 15
－In the 32－bit operation：bit 31
2．When using 32－bit counters（including 32－bit high－speed counters）
Make sure to execute the 32 －bit operation（such as＂LDD＝＂，＂LDD＞＂and＂LDD＜＂）when comparing 32－bit counters （C200 to C255）．
If a 32 －bit counter is specified in the 16 －bit operation（such as＂LD＝＂，＂LD＞＂and＂LD＜＂），a program error or operation error will occur．

3．Programming of data comparison instructions
When programming in GX Works2 and GX Developer，symbols＂$\leq$＂and＂$\geq$＂cannot be input．
Separate＂$\leq$＂into＂＜＂and＂＝＂，and separate＂$\geq$＂into＂＞＂and＂＝＂．
＜Input example for 16－bit operation＞

＜Input example for 32－bit operation＞


## Program example



### 28.2 FNC232~238 - AND=, >, <, <>, <=, >= / Data Comparison

## Outline

These instructions compare numeric values, and set a contact to ON when the condition agrees.

1. Instruction format


## 2. Set data (common among FNC232 to FNC238)

Operand Type	Description	Data Type
S1•	Device number storing comparison data	16- or 32-bit binary
S2•	Device number storing comparison data	$16-$ or 32-bit binary

3. Applicable devices (common among FNC232 to FNC238)

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash \square$	Index			Constant		Real Number E	Charac-ter String" $\square$ "	P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	$\triangle 1$	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.)								$\checkmark$	-1	$\Delta 2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup c ~ P L C s$.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{U}$ PLCs.

## Explanation of function and operation

FNC232 to FNC237 are data comparison instructions connected to other contacts in series．
The contents of $\mathrm{S}_{1 \cdot}$ are compared with the contents of $\mathrm{S}_{2} \cdot$ in binary format，and a contact becomes conductive （ON）or non－conductive（OFF）depending on the comparison result．

FNC No．	16－bit instruction	32－bit instruction	ON condition	OFF condition
232	AND＝	ANDD $=$	S $\mathrm{S}_{1} \cdot{ }^{\text {S }}$ 2 $\cdot$	S 1 $^{\circ} \neq{ }^{\text {S2 }}$－
233	AND＞	ANDD＞	S1－$>$ S2．	S1．$<=$ S2．
234	AND＜	ANDD＜	（S1．）$<$ S2．	S1．）$>=$ S2．
236	AND＜＞	ANDD＜＞	S1．）$\neq \mathrm{S}_{2} \cdot$	S1．）$=\mathrm{S}_{2} \cdot$
237	AND＜＝	ANDD＜＝	S1．$<=$ S2．	S1．）$<$ S2．
238	AND＞	ANDD＞＝	S1．$>=\mathrm{S}_{2} \cdot$	$\mathrm{S} 1 \cdot \mathrm{P}$－ $\mathrm{S}_{2} \cdot$

## Cautions

1．Negative value
 comparison．
－In the 16－bit operation：bit 15
－In the 32－bit operation：bit 31
2．When using 32－bit counters（including 32－bit high－speed counters）
Make sure to execute the 32－bit operation（such as＂ANDD＝＂，＂ANDD＞＂and＂ANDD＜＂）when comparing 32－bit counters（C200 to C255）．
If a 32 －bit counter is specified in the 16 －bit operation（such as＂AND＝＂，＂AND＞＂and＂AND＜＂），a program error or operation error will occur．
3．Programming of data comparison instructions
When programming in GX Works2 and GX Developer，symbols＂$\leq$＂and＂$\geq$＂cannot be input．
Separate＂$\leq$＂into＂＜＂and＂＝＂，and separate＂$\geq$＂into＂＞＂and＂＝＂．
＜Input example for 16－bit operation＞

＜Input example for 32－bit operation＞


## Program example



### 28.3 FNC240~246-OR=, >, <, <>, <=, >= / Data Comparison

## Outline



These instructions compare numeric values, and set a contact to ON when the condition agrees.

1. Instruction format


16 -bit Instruction	Mnemonic	Operation Condition
5 steps OR>      $\quad$Continuous   Operation		




## 2. Set data (common among FNC240 to FNC246)

Operand Type	Description	Data Type
S1•	Device number storing comparison data	16- or 32-bit binary
S2•	Device number storing comparison data	$16-$ or 32-bit binary

3. Applicable devices (common among FNC240 to FNC246)

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   UपIGロ	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$	41	-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									
S2.)								$\checkmark$	-1	$\Delta 2$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$									

©1: This function is supported only in $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \cup c ~ P L C s$.
©2: This function is supported only in $F X_{3} \mathrm{~J} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

FNC240 to 246 are data comparison instructions connected to other contacts in parallel.
The contents of $\mathrm{S} 1^{\cdot}$ are compared with the contents of $\mathrm{S} 2 \cdot$ in binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.

FNC No.	16-bit instruction	32-bit instruction	ON condition	OFF condition
240	$\mathrm{OR}=$	ORD=	$\mathrm{S} 1 \cdot$ = $\mathrm{S} 2 \cdot$	S1• $=\mathrm{S}_{2 \cdot}$
241	OR>	ORD>	S1- $>$ S2-	(S1-) $<=$ S2-
242	OR<	ORD<	S1- $<\mathrm{S} 2 \cdot$	(S1-) $>=\mathrm{S} 2 \cdot^{\circ}$
244	OR<>	ORD<>	S1• $\neq \mathrm{S} 2 \cdot$	$\mathrm{S} 1^{\cdot}=\mathrm{S}_{2} \cdot$
245	OR<=	ORD<=	S1- $<=$ S2•	(S1-) $\mathrm{S} 2 \cdot^{-}$
246	OR>=	ORD>=	$\mathrm{S} 1 \cdot>=\mathrm{S}^{-}$	(S1•) $\mathrm{S} 2 \cdot$

## Cautions

1. Negative value

When the most significant bit is "1" in the data stored in $\mathrm{S}_{1 \cdot}$ or $\mathrm{S}_{2 \cdot}$, it is regarded as a negative value in comparison.

- In the 16 -bit operation: bit 15
- In the 32-bit operation: bit 31

2. When using 32-bit counters (including 32-bit high-speed counters)

Make sure to execute the 32 -bit operation (such as "ORD=", "ORD>" and "ORD<") when comparing 32-bit counters (C200 to C255).
If a 32-bit counter is specified in the 16-bit operation (such as "OR=", "OR>" and "OR<"), a program error or operation error will occur.
3. Programming of data comparison instructions

When programming in GX Works2 and GX Developer, symbols " $\leq$ " and " $\geq$ " cannot be input.
Separate " $\leq$ " into " $<$ " and " $=$ ", and separate " $\geq$ " into " $>$ " and "=".
<Input example for 16 -bit operation>


## 29. Data Table Operation - FNC250 to FNC269

FNC No.	Mnemonic	Symbol	Function	Reference
250	-			-
251	-			-
252	-			-
253	-			-
254	-			-
255	-			-
256	LIMIT	LIMIT S1 S2 S3 D	Limit Control	Section 29.1
257	BAND		Dead Band Control	Section 29.2
258	ZONE	ZONE S1 S2 S3 D	Zone Control	Section 29.3
259	SCL	SCL S1 S2 D	Scaling (Coordinate by Point Data)	Section 29.4
260	DABIN	DABIN S D	Decimal ASCII to BIN Conversion	Section 29.5
261	BINDA	BINDA S D	BIN to Decimal ASCII Conversion	Section 29.6
262	-			-
263	-			-
264	-			-
265	-			-
266	-			-
267	-			-
268	-			-
269	SCL2	SCL2 S1 S2 D	Scaling 2 (Coordinate by X/Y Data)	Section 29.7

## 29．1 FNC256－LIMIT／Limit Control

## Outline

This instruction provides the upper limit value and lower limit value for an input numeric value，and controls the output value using these limit values．

1．Instruction format

	FNC 256	
	LIMIT	P


16－bit Instruction	Mnemonic	Operation Condition
9 steps	LIMIT	Continuous   L Operation
	LIMITP	Pulse（Single） Operation



2．Set data

Operand Type	Description	Data Type
S1•	Lower limit value（minimum output value）	
S2•	Upper limit value（maximum output value）	16－or 32－bit binary
S3•	Input value controlled by the upper and lower limit values	
D•	Head device number storing the output value controlled by the upper and lower limit   values	

3．Applicable devices

Oper－ and Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Con－   stant		Real Number E	Charac－ ter String   ＂$\square$＂	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1－								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
S2．）								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
S3．）								$\checkmark$			$\checkmark$													
（D．）									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1．16－bit operation（LIMIT and LIMITP）
Depending on how the input value（16－bit binary value）specified by $\mathrm{S}_{3} \cdot$ compares to the range between $\mathrm{S}_{1} \cdot$ ． and S2• ，the output value（D．is controlled．
The output value is controlled as shown below：

－In the case of＂S1．Lower limit value＞S3．Input value＂．．．．S1．Lower limit value $\rightarrow$（D．）Output value －In the case of＂S2．Upper limit value＜S3．Input value＂．．．．S2．Upper limit value $\rightarrow$（D．）Output value －In the case of＂S1．Lower limit value $\leq$ S3．Input value $\leq \mathrm{S} 2$ ．Upper limit value＂

－When controlling the output value using only the upper limit value，set＂－ 32768 ＂to the lower limit value specified in （S1－）．

- When controlling the output value using only the lower limit value, set " 32767 " to the upper limit value specified in S2.


## 2. 32-bit operation (DLIMIT and DLIMITP)

Depending on how the input value (32-bit binary value) specified by [ $S_{3 \cdot}+1, S_{3 \cdot}$ ] compares to the range between $\left[S 1 \cdot+1, \mathrm{~S}_{1} \cdot\right]$ ] and $\left[\mathrm{S}_{2 \cdot}+1, \mathrm{~S}_{2 \cdot}\right.$ ], the output value $[\mathrm{D} \cdot+1, \mathrm{D} \cdot$ ] is controlled.

Command

-In the case of "Lower limit value $>$ Input value" $\qquad$ Lower limit value $\rightarrow$ Output value
S2• +1 , S2- S3• $+1, \mathrm{~S}_{3} \cdot$
S2• +1 , S2• (D. +1 , D•
$\cdot$ In the case of "Upper limit value $<$ Input value" $\qquad$ Upper limit value $\rightarrow$ Output value

$$
\mathrm{S} 1 \cdot+1 \text {, S1- S3• }+1 \text {, S3• S2• }+1 \text {, S2• S3• }+1 \text {, S3• (D. }+1 \text {, (D. }
$$

$\bullet$ In the case of "Lower limit value $\leq$ Input value $\leq$ Upper limit value"
Input value $\rightarrow$
Output value



- When controlling the output value using only the upper limit value, set " $-2,147,483,648$ " to the lower limit value specified in [ $\left.\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]$.
- When controlling the output value using only the lower limit value, set " $2,147,483,647$ " to the upper limit value specified in [ $\left.\mathrm{S}_{2} \cdot+1, \mathrm{~S}_{2} \cdot\right]$.


## Error

An operation error is caused when the instruction is executed in the setting status shown below; The error flag M8067 turns ON, and the error code (K6706) is stored in D8067.

	Relationship
16-bit operation	$\mathrm{S} 1 \cdot \mathrm{~S} 2 \cdot$
32-bit operation	$\left[\mathrm{S} \mathrm{S}^{\bullet}+1, \mathrm{~S} 1 \cdot \mathrm{~s}\right] \leq[\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$

## Program examples

## 1. Program example 1

In the program example shown below, the BCD data set in X020 to X037 is controlled by the limit values " 500 " to " 5000 ", and the controlled value is output to D1 when X000 turns ON.


## Operation

- In the case of "D0 < 500", " 500 " is output to D1.
- In the case of " $500 \leq \mathrm{D} 0 \leq 5000$ ", the value of D0 is output to D1.
- In the case of "D0 > 5000", " 5000 " is output to D1.


2. Program example 2

In the program example shown below, the BCD data set in X020 to X057 is controlled by the limit values "10000" and " $1,000,000$ ", and the controlled value is output to D11 and D10 when X000 turns ON.


## Operation

- In the case of "(D1, D0) < 10000", "10000" is output to (D11, D10).
- In the case of " $10000 \leq(\mathrm{D} 1, \mathrm{D} 0) \leq 1,000,000$ ", the value of (D1, D0) is output to (D11, D10).
- In the case of "(D1, D0) > 1,000,000", " $1,000,000$ " is output to (D11, D10).



### 29.2 FNC257 - BAND / Dead Band Control

## Outline

This instruction provides the upper limit value and lower limit value of the dead band for an input numeric value, and controls the output value using these limit values.

1. Instruction format

	FNC 257	
	BAND	P


16-bit Instruction	Mnemonic	Operation Condition
9 steps	BAND	Continuous   L Operation
	BANDP	Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
17 steps	DBAND DBANDP	Continuous Operation Pulse (Single)

2. Set data

Operand Type	Description	Data Type
S1•	Lower limit value of the dead band (no-output band)	
S2•	Upper limit value of the dead band (no-output band)	16- or 32-bit binary
S3.	Input value controlled by the dead band	
D•	Device number storing the output value controlled by the dead band	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant			Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
S1-								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(S2.)								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(33.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (BAND and BANDP)

Depending on how the input value (16-bit binary value) specified by $\mathrm{S}_{3} \cdot$ compares to the dead band range between S1• and S2• , the output value $D \cdot$ is controlled

" $\mathrm{S} 1 \cdot>$ S3. " $\ldots$.. S3. $-\mathrm{S} 1 \cdot \rightarrow$ (D.

- " S2• < S3. " .... S3. - S2• $\rightarrow$ (D.



2. 32-bit operation (DBAND and DBANDP)

Depending on how the input value ( 32 -bit binary value) specified by $\left[\mathrm{S}_{3} \cdot+1, \mathrm{~S}_{3} \cdot\right.$ ] compares to the dead band range between $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]$ ] and $\left[\mathrm{S}_{2} \cdot \cdot+1, \mathrm{~S}_{2} \cdot\right]$ ], the output value $[\mathrm{D} \cdot+1$, $\mathrm{D} \cdot]$ is controlled. The output value is controlled as shown below:

-In the case of "Lower limit value > Input value" $\qquad$ ..Input value
Lower limit value $\rightarrow$ Output value

$$
\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot \mathrm{~S} \cdot \mathrm{~S}+1, \mathrm{~S} 3 \cdot
$$

S2. +1, S2•

-In the case of "Upper limit value < Input value" $\qquad$ .Input value Upper limit value $\rightarrow$ Output value

$$
\text { S1. +1, S1- S3. +1, S3. S2 }+1, \mathrm{~S} 2 \cdot
$$

$$
\text { (D. }+1, D^{\cdot}
$$

$\cdot$ In the case of "Lower limit value $\leq$ Input value $\leq$ Upper limit value"


## Caution

- When the output value overflows, it is handled as follows:
- In the 16-bit operation

The output value is a 16-bit binary value with sign. Accordingly, if the operation result is outside the range from 32768 to +32767 , it is handled as follows:


- In the 32-bit operation

The output value is a 32-bit binary value with sign. Accordingly, if the operation result is outside the range from $2,147,483,648$ to $+2,147,483,647$, it is handled as follows:

Lower limit value of dead band [S1 +1, S1 ] = 1000


Output value $=-2,147,483,648-1000$
$=80000000 \mathrm{H}-000003 \mathrm{E} 8 \mathrm{H}$
= 7FFFFC18H
$=2,147,482,648$

## Error

An operation error is caused when the instruction is executed in the setting status shown below; The error flag M8067 turns ON, and the error code (K6706) is stored in D8067.

	Relationship
16-bit operation	$\mathrm{S} 1 \cdot>\mathrm{S} 2^{\bullet}$
32-bit operation	$\left[\mathrm{S} 1^{\bullet}+1, \mathrm{~S} 1^{\bullet}\right]>$ [ $\left.\mathrm{S} 2^{\bullet}+1, \mathrm{~S} 2 \cdot\right]$

Input value $[S 3+1, S 3]=-2,147,483,648$

$$
=2,147,482,648
$$

## Program examples

## 1. Program example 1

In the program example shown below, the BCD data set in X020 to X037 is controlled by the dead band from "-1000" to "+1000", and a controlled value is output to D1 when X000 turns ON.


## Operation

- In the case of "D0 < -1000", "D0 - (-1000)" is output to D1.
- In the case of " $-1000 \leq \mathrm{D} 0 \leq+1000$ ", " 0 " is output to D1.
- In the case of "D0 $>+1000$ ", "D0 1000 " is output to $D 1$.





## 2. Program example 2

In the program example shown below, the BCD data set in X020 to X057 is controlled by the dead band from "-10000" to " +10000 ", and a controlled value is output to D11 and D10 when X000 turns ON.


## Operation

- In the case of "(D1, D0) <-10000", "(D1, D0) - (-10000)" is output to (D11, D10).
- In the case of "-10000 $\leq(\mathrm{D} 1, \mathrm{D} 0) \leq+10000$ ", " 0 " is output to (D11, D10).
- In the case of "(D1, D0) > +10000", "(D1, D0) - 10000" is output to (D11, D10).





### 29.3 FNC258 - ZONE / Zone Control

## Outline

Depending on how the input value compares to positive or negative, the output value is controlled by the bias value specified.

1. Instruction format

	$\begin{gathered} \text { FNC } 258 \\ \text { ZONE } \end{gathered}$		16-bit Instruction	Mnemonic	Operation Condition
D		P	9 steps	ZONE   ZONEP	Continuous   L Operation
					Pulse (Single) Operation


32-bit Instruction	Mnemonic	Operation Condition
17 steps	DZONE   DZONEP	Continuous Operation Pulse (Single) Operation

2. Set data

Operand Type		Description
S1•	Negative bias value to be added to the input value	
S2•	Positive bias value to be added to the input value	
S3•	Input value controlled by the zone	16- or 32-bit binary
(D.	Head device number storing the output value controlled by the zone	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Con-   stant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(S2.)								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(3.)								$\checkmark$			$\checkmark$													
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (ZONE and ZONEP)

The bias value specified by $\mathrm{S}_{1 \cdot}$ or $\mathrm{S}_{2 \cdot}$ is added to the input value specified by $\mathrm{S}_{3 \cdot}$, and output to the device specified by D.
The bias value is added as shown below:
Command

-In the case of "S3. Input value $<0$ " ..... S3. Input value + S1• Negative bias value $\rightarrow$ D. Output value
-In the case of "S3. Input value $=0$ " ........................................................................ $0 \rightarrow$ D. Output value
-In the case of "S3. Input value $>0$ " ..... S3. Input value + S2. Positive bias value $\rightarrow$ (D. Output value



## 2. 32-bit operation (DZONE and DZONEP)

The bias value specified by $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right.$ ] or $\left[\mathrm{S} \cdot \cdot+1, \mathrm{~S}_{2} \cdot\right.$ ] is added to the input value specified by $[\mathrm{S} \cdot \cdot+1$, S3•], and output to the device specified by [ $\mathrm{D}^{-}+1$, $\mathrm{D}^{2}$ ]. The bias value is added as shown below:

Command

$\substack{\text { input } \\ H}$	FNC258   DZONE	S1•	S2.	S3.	(D.

S3. +1 , S3. S3• +1 , S3. S1• +1 , S1• (D. +1, (D.)
-In the case of "Input value $<0$ "
Input value + Negative bias value $\rightarrow$ Output value

$$
\text { S3. }+1, \mathrm{~S} 3 \cdot
$$

-In the case of "Input value $=0$ " $\qquad$ $0 \rightarrow$ Output value
S3. +1 , S3. S3. +1 , S3. S2• +1 , S2• (D. +1 , (D.

- In the case of "Input value $>0$ " $\qquad$ Input value + Positive bias value $\rightarrow$ Output value




$$
[\mathrm{S} 1 \cdot+1, \mathrm{~S} 1 \cdot]
$$

## Caution

- When the output value overflows, it is handled as follows:
- In the 16-bit operation

The operation result is a 16 -bit binary value with sign. Accordingly, if the output value is outside the range from -32768 to +32767 , it is handled as follows:
Negative bias value S1- =-100 Output value $\begin{aligned} & =-32768+(-100) \\ & =8000 \mathrm{H}+\mathrm{FF9CH} \\ & =7 \mathrm{~F} 9 \mathrm{CH} \\ & =32668\end{aligned}$

- In the 32-bit operation

The output value is a 32-bit binary value with sign. Accordingly, if the operation result is outside the range from $-2,147,483,648$ to $+2,147,483,647$, it is handled as follows:


## Program examples

## 1. Program example 1

In the program example shown below, the BCD data set in X020 to X037 is controlled by the zone from "-1000" to
" +1000 ", and the controlled value is output to D1 when X000 turns ON.


## Operation

- In the case of "D0 < 0", "D0 + (-1000)" is output to D1.
- In the case of " $D=0$ ", " 0 " is output to $D 1$.
- In the case of "D0 > 0 ", " $D 0+1000$ " is output to $D 1$.


2. Program example 2

In the program example shown below, the BCD data set in X020 to X057 is controlled by the zone from "-10000" to "+10000", and the controlled value is output to D11 and D10 when X000 turns ON.


## Operation

- In the case of "(D1, D0) < 0", "(D1, D0) + (-10000)" is output to (D11, D10).
- In the case of " $(D 1, D 0)=0$ ", the " 0 " is output to (D11, D10).
- In the case of "(D1, D0) > 0", "(D1, D0) + 10000" is output to (D11, D10).



### 29.4 FNC259 - SCL / Scaling (Coordinate by Point Data)

## Outline

This instruction executes scaling of the input value using a specified data table, and outputs the result. SCL2 (FNC269) is also available with a different data table configuration for scaling.
$\rightarrow$ For SCL2 (FNC269) instruction, refer to Section 29.7.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition
13 steps	DSCL	$\square \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DSCLP	Pulse (Single)   Operation

2. Set data

Operand Type	Description	Data Type
S1.	Input value used in scaling or device number storing the input value	16- or 32-bit binary
S2.	Head device number storing the conversion table used in scaling	
(D.)	Device number storing the output value controlled by scaling	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{gathered} \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash \end{gathered}$	Index			Con-   stant		Real Number   E	Character String$\text { " } \square \text { " }$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
S2.														$\checkmark$	$\checkmark$				$\checkmark$					
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (SCL and SCLP)

The input value specified in S1- is processed by scaling for the specified conversion characteristics, and stored to a device number specified in D. Conversion for scaling is executed based on the data table stored in a device specified in S2• and later. If the output data is not an integer, however, the number in the first decimal place is rounded.
$\rightarrow$ For the method to set the conversion table for scaling, refer to the next page.


Set item		Device assignment in setting data table
Number of coordinate points (" 5 " in the case shown in the left figure)		S2.)
Point 1	X coordinate	(S2.) +1
	Y coordinate	(S2- +2
Point 2	$X$ coordinate	(S2- +3
	Y coordinate	(S2. +4
Point 3	X coordinate	(S2.) +5
	Y coordinate	(S2-) +6
Point 4	$X$ coordinate	(S2. +7
	Y coordinate	(S2.) +8
Point 5	$X$ coordinate	(S2.) +9
	Y coordinate	(S2.) +10

2. 32-bit operation (DSCL and DSCLP)

The input value specified in $\left[\mathrm{S}_{1} \cdot+1, \mathrm{~S}_{1} \cdot\right]$ is processed by scaling for the specified conversion characteristics, and stored to a device number specified in [ $\mathrm{D}^{\cdot}+1$, $\left.\mathrm{D}^{\cdot}\right]$. Conversion for scaling is executed based on the data table stored in a device specified in [ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$ and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.



Conversion setting data table for scaling

Set item		Device assignment in setting data table
Number of coordinate points (" 5 " in the case shown in the left figure)		[ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$
Point 1	X coordinate	$[\mathrm{S} 2 \cdot+3, \mathrm{~S} 2 \cdot+2]$
	Y coordinate	[ $\mathrm{S} 2 \cdot+5, \mathrm{~S} 2 \cdot+4]$
Point 2	$X$ coordinate	[ $\mathrm{S} 2 \cdot+7, \mathrm{~S} 2 \cdot^{+6}$ ]
	Y coordinate	[ $\mathrm{S} 2 \cdot^{-}+9, \mathrm{~S} 2 \cdot+8$ ]
Point 3	X coordinate	[ $\mathrm{S} 2 \cdot+11, \mathrm{~S} 2 \cdot+10]$
	Y coordinate	[ $\mathrm{S} 2 \cdot+13, \mathrm{~S} 2 \cdot+12]$
Point 4	X coordinate	[ $\mathrm{S} 2 \cdot+15, \mathrm{~S} 2 \cdot+14]$
	Y coordinate	[ $\left.\mathrm{S} 2 \cdot^{-}+17, \mathrm{~S} 2 \cdot+16\right]$
Point 5	X coordinate	[ $\mathrm{S} 2 \cdot+19, \mathrm{~S} 2 \cdot+18]$
	Y coordinate	[ $\mathrm{S} 2 \cdot+21, \mathrm{~S} 2 \cdot^{+20}$

## 3. Setting the conversion table for scaling

The conversion table for scaling is set based on the data table stored in a device specified in [ $\mathrm{S}_{2 \cdot} \cdot+1, \mathrm{~S}_{2 \cdot}$ ] and later.
The data table has the following configuration:
$\rightarrow$ For a setting example, refer to the following.

Set item		Device assignment in setting data table	
		16-bit operation	32-bit operation
Number of coordinate points		S2.)	[ $\mathrm{S} 2 \cdot+1, \mathrm{~S}_{2 \cdot}$ ]
Point 1	X coordinate	S2. +1	[ $\mathrm{S} 2 \cdot^{-}+3, \mathrm{~S} 2 \cdot^{+2}$ ]
	Y coordinate	S2. +2	[ $\left.\mathrm{S} 2 \cdot^{-}+5, \mathrm{~S} 2 \cdot+4\right]$
Point 2	X coordinate	S2. +3	[ $\mathrm{S} 2 \cdot^{-}+7, \mathrm{~S} 2 \cdot^{+6}$
	Y coordinate	S2- +4	[ $\mathrm{S} 2 \cdot^{-}+9, \mathrm{~S} 2 \cdot^{+8}$ ]
:	$\vdots$	:	$\vdots$
Point n (last)	X coordinate	S2. $+2 n-1$	[ S2• +4n-1, S2• +4n-2]
	Y coordinate	S2. $+2 n$	$\left[\mathrm{S}^{\cdot} \cdot+4 \mathrm{n}+1, \mathrm{~S}_{2 \cdot}+4 \mathrm{n}\right]$

Setting example of the conversion table for scaling
A setting example for the 16-bit operation is shown below.
For the 32-bit operation, set each item using a 32-bit binary value.
In the case of the conversion characteristics for scaling shown in the figure below, set the following data table.


Setting the conversion setting data table for scaling

Set item		Setting device and setting contents			Remarks
		When $\mathbf{R O}$ is specified in (S2.)		Setting contents	
Number of	nate points	S2.	R0	K10	
Point 1	$X$ coordinate	(S2. +1	R1	K5	
	Y coordinate	(S2. +2	R2	K7	
Point 2	X coordinate	S2. +3	R3	K20	
	Y coordinate	S2. +4	R4	K30	
Point 3	X coordinate	(S2. +5	R5	K50	
	Y coordinate	S2. +6	R6	K100	
Point 4	X coordinate	(S2.) +7	R7	K200	When coordinates are specified using three points in this way, the output value can be set to an intermediate value In this example, the output value (intermediate value) is specified by the $Y$ coordinate of the point 5 . If the X coordinate is the same at three points or more, the value at the second point is also output.
	Y coordinate	S2. +8	R8	K25	
Point 5	X coordinate	(S2- +9	R9	K200	
	Y coordinate	(S2.) +10	R10	K70	
Point 6	X coordinate	(S2. +11	R11	K200	
	Y coordinate	(S2- +12	R12	K250	
Point 7	X coordinate	(S2- +13	R13	K250	
	Y coordinate	(S2- +14	R14	K90	
Point 8	X coordinate	S2•+15	R15	K350	When coordinates are specified using two points in this way, the output value is the $Y$ coordinate at the next point In this example, the output value is specified by the $Y$ coordinate of the point 9 .
	Y coordinate	S2. +16	R16	K90	
Point 9	$X$ coordinate	(S2. +17	R17	K350	
	Y coordinate	S2. +18	R18	K30	
Point 10	$X$ coordinate	(S2.) +19	R19	K400	
	Y coordinate	S2- +20	R20	K7	

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the Xn data is not set in the ascending order in the data table (error code: K6706)

The data table is searched from the low-order side of device numbers in the data table in the operation.
Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.

- When $\mathrm{S} 1 \cdot$ is outside the data table (error code: K6706)
- When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, verify that the distance between points is not "65535" or more. If the distance is " 65535 " or more, reduce the distance between points.


## Program example

In the program example shown below, the value input to DO is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.

## Program



Conversion setting data table for scaling

Set item	Device	Setting   contents	
	R 0	K 6	
Point 1	X coordinate	R 1	K 0
	Y coordinate	R 2	K 0
Point 2	X coordinate	R 3	K 10
	Y coordinate	R 4	K 50
Point 3	X coordinate	R 5	K 30
	Y coordinate	R 6	K 100
Point 4	X coordinate	R 7	K 40
	Y coordinate	R 8	K 45
Point 5	X coordinate	R 9	K 50
	Y coordinate	R 10	K 30
Point 6	X coordinate	R 11	K 60
	Y coordinate	R 12	K 0

### 29.5 FNC260 - DABIN / Decimal ASCII to BIN Conversion

Outline
This instruction converts numeric data expressed in decimal ASCII codes $(30 \mathrm{H}$ to 39 H$)$ into binary data.

1. Instruction format


16-bit Instruction	Mnemonic	Operation Condition	
	DABIN	$\boxed{L}$ steps	Continuous
Operation			
	DABINP	$\checkmark$	Pulse $($ Single $)$   Operation


32-bit Instruction	Mnemonic	Operation Condition
9 steps	DDABIN	$\square \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	DDABINP	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
S•	Head device number storing data (ASCII codes) to be converted into binary data	Character string
D•	Device number storing conversion result	16- or 32-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant			Character String   " $\square$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(D.)									$\checkmark$															

## Explanation of function and operation

## 1. 16-bit operation (DABIN and DABINP)

1) Data stored in $\mathrm{S}^{\cdot}$ to $\mathrm{S}^{\cdot}+2$ expressed in decimal ASCII codes $(30 \mathrm{H}$ to 39 H$)$ is converted into 16 -bit binary data, and stored in D.



For example, when S• to S•+2 store ASCII codes expressing "-25108", 16-bit binary data is stored in (D. as follows:

2) The numeric range of data stored in S. to $S \cdot+2$ is from -32768 to +32767 .
3) As "sign data" (low-order byte of $\mathrm{S}^{\cdot}$ ), "20H (space)" is set when the data to be converted is positive, and "2DH $(-)$ " is set when the data to be converted is negative.
4) An ASCII code for each digit is ranging from " 30 H " to " 39 H ".
5) When an ASCII code for each digit is "20H (space)" or "00H (NULL)", it is handled as "30H".
2. 32-bit operation (DDABIN and DDABINP)

1) Data stored in $\mathrm{S}^{\bullet}$ to $\mathrm{S}^{\bullet}+5$ expressed in decimal ASCII codes $(30 \mathrm{H}$ to 39 H$)$ is converted into 32-bit binary data, and stored in [ $\left.D^{\cdot}+1, D^{\cdot}\right]$.




For example, when S• to S•+5 store ASCII codes expressing "-1,234,543,210", 32-bit binary data is stored in [ $\left.\mathrm{D}^{\cdot}+1, \mathrm{D}^{\circ}\right]$ as follows:

2) The numeric range of data stored in $S \cdot$ to $S \cdot+5$ is from $-2,147,483,648$ to $+2,147,483,647$. The high-order byte of $S^{\cdot}+5$ is ignored.
3) As "sign data" (low-order byte of (S.), "20H (space)" is set when the data to be converted is positive, and "2DH $(-)$ " is set when the data to be converted is negative.
4) An ASCII code for each digit is ranging from " 30 H " to " 39 H ".
5) When an ASCII code for each digit is "20H (space)" or "00H (NULL)", it is handled as "30H".

## Related instructions

Instruction	Description
ASCI (FNC 82)	Converts hexadecimal codes into ASCII codes.
HEX (FNC 83)	Converts ASCII codes into hexadecimal codes.
STR (FNC200)	Converts binary data into a character string (ASCII codes).
VAL (FNC201)	Converts a character string (ASCII codes) into binary data.
BINDA (FNC261)	Converts binary data into decimal ASCII codes (30H to 39H).

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the sign data stored in S• is any value other than "20H (space)" or "2DH (-)" (error code: K6706)
- When an ASCII code for each digit stored in $S \cdot$ to $S^{\cdot}+2(5)$ is any value other than " 30 H " to " 39 H ", " 20 H (space)", or "00H (NULL)" (error code: K6706)
- When the numeric range of $S \cdot$ to $S \cdot+2(5)$ is outside the following range (error code: K6706)

	Setting range
16-bit operation	-32768 to 32767
32-bit operation	$-2,147,483,648$ to $2,147,483,647$

- When S. to $S^{(\cdot)+2(5) ~ e x c e e d s ~ t h e ~ d e v i c e ~ r a n g e ~(e r r o r ~ c o d e: ~ K 6706) ~}$


## Program example

In the program below, the sign and decimal ASCII codes in five digits stored in D20 to D22 are converted into a binary value and stored in D0 when X000 is set to ON.


### 29.6 FNC261 - BINDA / BIN to Decimal ASCII Conversion

## Outline

This instruction converts binary data into decimal ASCII codes (30H to 39 H ).

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Device number storing binary data to be converted into ASCII codes	16- or 32-bit binary
D•	Head device number storing conversion result	Character string

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real Number   E	Character String   " $\square^{11}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)								$\checkmark$																
(D.)												$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (BINDA and BINDAP)
1) Each digit of 16-bit binary data stored in $S^{\cdot}$ is converted into an ASCII code $(30 \mathrm{H}$ to 39 H$)$, and stored in D. and later.

$\underbrace{\square}_{\text {16-bit binary data }} \underbrace{\square 15-------b 0}$
(S.)
(D.) +0

ASCII code for 10000's digit	Sign data
ASCII code for 100's digit	ASCII code for 1000's digit
ASCII code for 1's digit	\| ASCII code for 10's digit
0000 H or sour	source data

M8091=OFF: 0000H M8091=ON: Does not change.

For example, when s. stores "-12345", the conversion result is stored in $\mathrm{D}^{\circ}$ and later as follows:
$\mathrm{S} \cdot \stackrel{\mathrm{b} 15-------\mathrm{b0}}{\square-12345} \square$

2) The numeric range of 16 -bit binary data stored in $S \cdot$ is from -32768 to +32767 .
3) The conversion result stored in $D \cdot$ is as follows:
a) As "sign data" (low-order byte of $\mathrm{D} \cdot$ ), "20H (space)" is set when the 16 -bit binary data stored in $S \cdot$ is positive, and "2DH (-)" is set when 16-bit binary data stored in $S \cdot$ is negative.
b) " 20 H (space)" is stored for " 0 " on the left side of the effective digits (zero suppression).

00325

## N-Nective digits <br> 20 H

c) D. +3 is set as follows depending on the ON/OFF status of M8091.

ON/OFF status	Contents of processing	
M8091=OFF	D• +3 is set to "0000H (NULL)".	
M8091=ON	D• +3 does not change.	

## 2. 32-bit operation (DBINDA and DBINDAP)

1) Each digit of 32-bit binary data stored in [ $S \cdot+1$, $S \cdot$ ] is converted into an ASCII code ( 30 H to 39 H ), and stored in (D. and later.


For example, when $\left[S^{\bullet}+1, S^{\cdot}\right.$ ] stores "-12,345,678", the conversion result is stored in $D^{\bullet}$ and later as follows:

2) The numeric range of 32 -bit binary data stored in [ $S \cdot+1$, $S \cdot]$ is from $-2,147,483,648$ to $+2,147,483,647$.
3) The conversion result stored in $D \cdot$ is as follows:
a) "sign data" (low-order byte of (D•) "20H (space)" is set when the 32-bit binary data stored in [ $\mathrm{S}^{\bullet}$. +1 , S•] is positive, and "2DH (-)" is set when 32-bit binary data stored in [ $\left.S^{\cdot}+1, S^{\cdot}\right]$ is negative.
b) " 20 H (space)" is stored for " 0 " on the left side of the effective digits (zero suppression).

c) The high-order byte of $\mathrm{D}^{\cdot}+5$ is set as follows depending on the ON/OFF status of M8091.

ON/OFF status	Contents of processing
M8091=OFF	The high-order byte of (D• +5 is set to "00H (NULL)".
M8091=ON	The high-order byte of $D \cdot+5$ is set to "20H (space)".

## Related devices

Device	Name	Description
M8091	Output character quantity selector signal	- For 16-bit operation   - When M8091 is OFF, (D. +3 is set to "0000H (NULL)".   - When M8091 is ON, D• +3 does not change.   - For 32-bit operation   - When M8091 is OFF, the high-order byte of D• +5 is set to "00H (NULL)".   - When M8091 is ON, the high-order byte of $\mathrm{D} \cdot+5$ is set to " 20 H (space)".

## Related instructions

Instruction	Description
ASCI (FNC 82)	Converts hexadecimal values into ASCII code.
HEX (FNC 83)	Converts ASCII code into hexadecimal values.
STR (FNC200)	Converts binary data into a character string (ASCII code).
VAL (FNC201)	Converts a character string (ASCII code) into binary data.
DABIN (FNC260)	Converts numeric data expressed in decimal ASCII code (30H to 39H) into binary data.

## Cautions

1. Occupied device points

The table below shows the occupied device points of (D. for 16-bit operation(BINDA/BINDAP) when M8091 is ON/ OFF and 32-bit operation (DBINDA/DBINDAP).

		Occupied Points of D•
16-bit operation	M8091=ON	3
	M8091=OFF	4
32 -bit operation		6

## Errors

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the occupied device point of $\mathrm{D} \cdot$ storing the ASCII code character string exceeds the corresponding device rang (error code: K6706).


## Program example

In the program below, 16-bit binary data stored in D1000 is converted into decimal ASCII codes when X000 is set to ON, and the ASCII codes converted by the PR (FNC 77) instruction are output one by one by the time division method to Y040 to Y051.
By turning to OFF the output character selector signal M8091 and setting to ON PR mode flag M8027, ASCII codes up to " 00 H " are output.
$\rightarrow$ For PR mode flag and the PR (FNC 77) instruction, refer to Section 15.8.


### 29.7 FNC269 - SCL2 / Scaling 2 (Coordinate by X/Y Data)

## Outline



Ver. 2.20 " $\Rightarrow$

This instruction executes scaling of the input value using a specified data table, and outputs the result.
SCL (FNC259) is also available with a different data table configuration for scaling.
SCL2 instruction is supported in the FX3Uc Series Ver. 1.30 or later.
$\rightarrow$ For SCL (FNC259) instruction, refer to Section 29.4.

1. Instruction format

	FNC 269		16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
D	SCL2	P	7 steps		Continuous   L Operation	13 steps	DSCL2	Continuous Operation
				SCL2P	Pulse (Single) Operation		DSCL2P	Pulse (Single) Operation

2. Set data

Operand Type	Description	Data Type
S1•	Input value used in scaling or device number storing the input value	
S2•	Head device number storing the conversion table used in scaling	16- or 32-bit binary
D•	Device number storing the output value controlled by scaling	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIG—	Index			Constant		Real Number   E	Charac-   ter String   $" \square "$	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-								$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$											
(S2.)														$\checkmark$	$\checkmark$				$\checkmark$					
(D.)									$\checkmark$			$\checkmark$												

## Explanation of function and operation

1. 16-bit operation (SCL2 and SCL2P)

The input value specified in $\mathrm{S}_{1} \cdot$ is processed by scaling for the specified conversion characteristics, and stored to a device number specified in (D. Conversion for scaling is executed based on the data table stored in a device specified in $\mathrm{S}_{2 \cdot}$ and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.
$\rightarrow$ For the method to set the conversion table for scaling, refer to the next page.


Conversion setting data table for scaling

Set item		Device assignment in   setting data table
Number of coordinate points   ("5" in the case shown in the left   figure)	S2•	
X coordinate	Point 1	S2• +1
	Point 2	S2• +2
	Point 3	S2• +3
	Point 4	S2• +4
	Point 5	S2• +5
Y coordinate	Point 1	S2• +6
	Point 2	S2• +7
	Point 3	S2• +8
	Point 4	S2• +9
	Point 5	S2• +10

2. 32-bit operation (DSCL2 and DSCL2P)

The input value specified in $\left[S 1 \cdot+1, S_{1 \cdot}\right]$ is processed by scaling for the specified conversion characteristics, and stored to a device number specified in [ $\left.D^{\cdot}+1, D^{\cdot}\right]$. Conversion for scaling is executed based on the data table stored in a device specified in [ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$ and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.


Conversion setting data table for scaling

Set item		Device assignment in setting data table
Number of coordinate points (" 5 " in the case shown in the left figure)		[ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot$ ]
X coordinate	Point 1	[ $\mathrm{S} 2 \cdot+3$, $\mathrm{S} 2 \cdot+2]$
	Point 2	[ $\left.\mathrm{S} 2 \cdot^{-}+5, \mathrm{~S} 2 \cdot^{-}+4\right]$
	Point 3	[ $\mathrm{S} 2 \cdot^{+}+7, \mathrm{~S} 2 \cdot^{+6}$
	Point 4	[ $\mathrm{S} 2 \cdot+9, \mathrm{~S} 2 \cdot^{+}$+ $]$
	Point 5	[ $\mathrm{S} 2 \cdot+11, \mathrm{~S} 2 \cdot+10]$
Y coordinate	Point 1	[ $\mathrm{S} 2 \cdot+13, \mathrm{~S} 2 \cdot+12]$
	Point 2	[ $\mathrm{S} 2 \cdot+15, \mathrm{~S} 2 \cdot+14]$
	Point 3	[ $\left.\mathrm{S} 2 \cdot^{-}+17, \mathrm{~S} 2 \cdot+16\right]$
	Point 4	[ $\mathrm{S} 2 \cdot+19, \mathrm{~S} 2 \cdot+18]$
	Point 5	$\left[\mathrm{S} 2 \cdot^{-}+21, \mathrm{~S} 2 \cdot^{-}+20\right]$

## 3. Setting the conversion table for scaling

The conversion table for scaling is set based on the data table stored in a device specified in [ $S 2 \cdot+1, \mathrm{~S}_{2 \cdot}$ ] and later.
The data table has the following configuration:
$\rightarrow$ For a setting example, refer to the next page.

Set item		Device assignment in setting data table	
		16-bit operation	32-bit operation
Number of coordinate points		S2.	[ $\mathrm{S} 2 \cdot+1, \mathrm{~S} 2 \cdot]$
X coordinate	Point 1	(2- +1	[ $\mathrm{S} 2 \cdot^{-}+3, \mathrm{~S} 2 \cdot^{-2}$
	Point 2	S2- +2	[ $\left.\mathrm{S} 2 \cdot^{-}+5, \mathrm{~S} 2 \cdot^{+}+4\right]$
	:	:	:
	Point n (last)	S2• +n	[ $\left.\mathrm{S} 2 \cdot^{-}+2 \mathrm{n}+1, \mathrm{~S} 2 \cdot^{-}+2 \mathrm{n}\right]$
Y coordinate	Point 1	S2. $+n+1$	[ S2• +2n+3, S2• +2n+2]
	Point 2	(S2.) $+\mathrm{n}+2$	$[\mathrm{S} 2 \cdot+2 \mathrm{n}+5, \mathrm{~S} 2 \cdot+2 \mathrm{n}+4]$
	:	:	$!$
	Point n (last)	S2- $+2 n$	$\left[\mathrm{S}^{-} \cdot+4 \mathrm{n}+1, \mathrm{~S} 2 \cdot^{-}+4 \mathrm{n}\right]$

Setting example of the conversion table for scaling
A setting example for the 16 -bit operation is shown below.
For the 32-bit operation, set each item using 32-bit binary value.
In the case of the conversion characteristics for scaling shown in the figure below, set the following data table.


Setting the conversion setting data table for scaling

Set item		Setting device and setting contents			Remarks
		When R0 is specified in S2-		Setting contents	
Number of coordinate points		(S2.)	R0	K10	
X coordinate	Point 1	(2- +1	R1	K5	
	Point 2	(S2- +2	R2	K20	
	Point 3	(S2. +3	R3	K50	
	Point 4	(S2. +4	R4	K200	Refer to *1.
	Point 5	(S2. +5	R5	K200	
	Point 6	S2. +6	R6	K200	
	Point 7	S2- +7	R7	K250	
	Point 8	S2. +8	R8	K350	Refer to *2.
	Point 9	S2- +9	R9	K350	
	Point 10	(S2.) +10	R10	K400	
Y coordinate	Point 1	S2•+11	R11	K7	
	Point 2	(S2.) +12	R12	K30	
	Point 3	(S2.) +13	R13	K100	
	Point 4	S2• +14	R14	K25	Refer to *1.
	Point 5	(S2.)+15	R15	K70	
	Point 6	(S2.)+16	R16	K250	
	Point 7	(S2.) +17	R17	K90	
	Point 8	(S2.)+18	R18	K90	Refer to *2.
	Point 9	S2•+19	R19	K30	
	Point 10	(S2.) +20	R20	K7	

*1. When coordinates are specified using three points as shown in the points 4,5 and 6 , the output value can be set to an intermediate value.
In this example, the output value (intermediate value) is specified by the Y coordinate of the point 5. If the X coordinate is same at three points or more, the value at the second point is output also.
*2. When coordinates are specified using two points as shown in the points 8 and 9 , the output value is the $Y$ coordinate at the next point.
In this example, the output value is specified by the Y coordinate of the point 9 .

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the Xn data is not set in the ascending order in the data table (error code: K6706) The data table is searched from the low-order side of the device numbers in the data table in the operation. Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.
- When $\mathrm{S} 1 \cdot$ is outside the data table (error code: K6706)
- When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, verify that the distance between points is not " 65535 " or more. If the distance is " 65535 " or more, reduce the distance between points.


## Program example

In the program example shown below, the value input to D0 is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.

## Program



## Operation

Conversion setting data table for scaling


Set item		Device	Setting   contents
Number of coordinate points	R 0	K 6	
X coordinate	Point 1	R 1	K 0
	Point 2	R 2	K 10
	Point 3	R 3	K 30
	Point 4	R 4	K 40
	Point 5	R 5	K 50
	Point 6	R 6	K 60
Y coordinate	Point 1	R 7	K 0
	Point 2	R 8	K 50
	Point 3	R 9	K 100
	Point 4	R 10	K 45
	Point 5	R 11	K 30
	Point 6	R 12	K 0

## 30. External Device Communication - FNC270 to FNC276

FNC270 to FNC276 provide instructions for executing inverter communication and MODBUS communication.

FNC No.	Mnemonic	Symbol	Function	Reference
270	IVCK	IVCK S1 S D n	Inverter Status Check	Section 30.1
271	IVDR		Inverter Drive	Section 30.2
272	IVRD	IVRD S1 S2 D n	Inverter Parameter Read	Section 30.3
273	IVWR		Inverter Parameter Write	Section 30.4
274	IVBWR		Inverter Parameter Block Write	Section 30.5
275	IVMC	  IVMC S1 S2 S3 D n	Inverter Multi Command	Section 30.6
276	ADPRW		MODBUS Read / Write	Section 30.7

### 30.1 FNC270 - IVCK / Inverter Status Check

## Outline

This instruction reads the operation status of an inverter to a PLC using the computer link operation function of the inverter. Applicable inverters vary depending on the version.
This instruction corresponds to the EXTR (K10) instruction in the FX2N/FX2NC Series.
$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Instruction format

2. Set data

Operand Type		Description
S1•	Inverter station number (K0 to K31)	Data Type
S2•	Inverter instruction code (shown on the next page)	16-bit binary
D•	Device number storing the read value	
n	Channel to be used (K1: ch 1, K2: ch 2$)^{* 1}$	

*1. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3s PLC.

## 3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Con-   stant		Real   Number   E	Character String   " $\square$ "	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H			
(S1-)														$\checkmark$	A1	-2			$\checkmark$	$\checkmark$	$\checkmark$			
S2.)														$\checkmark$	$\Delta 1$	-2			$\checkmark$	$\checkmark$	$\checkmark$			
(D.)									$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	-1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

41: This function is supported only in $\mathrm{FX}_{3 \mathrm{G} / \mathrm{FX}}^{3 \mathrm{GC} / \mathrm{FX}} \mathrm{X}_{3} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup c$ PLCs.

## Explanation of function and operation

$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVCK)

The operation status corresponding to the instruction code ${ }^{* 2}$ specified in $\mathrm{S}_{2} \cdot$ of an inverter connected to communication port $n$ whose station number is specified in $\mathrm{S}_{1} \cdot$ is read and transferred to $\mathrm{D} \cdot$.

## Command

$\begin{gathered} \hline \text { FNC270 } \\ \text { IVCK } \end{gathered}$	(S1.)	(S2.)	(D.)	n

*2. Refer to the instruction code list shown on the next page.
Refer to the pages in the inverter manual on which the computer link function is explained in detail.
2. Inverter instruction codes

The table below shows inverter instruction codes which can be specified in S2. Only use the instruction codes shown below. Use of instruction codes not shown below may cause communication errors.
Do not use instruction codes not shown in the table below. They may cause communication errors.
For the instruction codes, refer to the pages explaining computer link in detail in each inverter manual.

	Read contents	Applicable inverter				
Inverter Instruction code (hexadecimal)		$\begin{aligned} & \text { F700, A700, E700, } \\ & \text { D700, F800, A800 } \end{aligned}$	V500	F500, A500	E500	S500
H7B	Operation mode	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
H6F	Output frequency (speed)	$\checkmark$	$\checkmark{ }^{\star 1}$	$\checkmark$	$\checkmark$	$\checkmark$
H70	Output current	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
H71	Output voltage	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-
H72	Special monitor	$\checkmark$	$\checkmark$	$\checkmark$	-	-
H73	Special monitor selection No.	$\checkmark$	$\checkmark$	$\checkmark$	-	-
H74	Alarm definition	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
H75	Alarm definition	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
H76	Alarm definition	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-
H77	Alarm definition	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-
H79	Inverter status monitor (expansion)	$\checkmark$	-	-	-	-
H7A	Inverter status monitor	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
H6E	Set frequency (EEPROM)	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark$	$\checkmark$	$\checkmark$
H6D	Set frequency (RAM)	$\checkmark$	$\checkmark^{* 1}$	$\checkmark$	$\checkmark$	$\checkmark$
H7F	Link parameter extended setting	These codes cannot be specified in S2• of the IVCK instruction. They are automatically processed when a "second parameter specification code" is specified the IVRD instruction.				
H6C	Second parameter changing					

*1. Please write " 0 " to instruction code HFF (Link parameter expansion setting) just before the IVCK instruction when reading frequency.
When "0" is not written, reading of the frequency may not be executed normally.

## 3. Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Number		Description	
ch1	ch2		
M8029	Instruction execution complete		
M8063	M8438	Serial communication error*2	
M8151	M8156	Inverter communicating	
M8152	M8157	Inverter communication error ${ }^{* 3}$	
M8153	M8158	Inverter communication error latch*3	
M8154	M8159	IVBWR instruction error ${ }^{* 3}$	


Number		Description	
ch1	ch2		
D8063	D8438	Error code of serial communication error*2	
D8150	D8155	Response wait time in inverter communication*2	
D8151	D8156	Step number in inverter communication ${ }^{* 4}$	
D8152	D8157	Error code of inverter communication error ${ }^{* 3}$	
D8153	D8158	Latch of inverter communication error occurrence   step ${ }^{* 3 * 4}$	
D8154	D8159	IVBWR instruction error parameter number ${ }^{* 3 * 4}$	

*2. Cleared when PLC power supply is turned from OFF to ON.
*3. Cleared when the PLC mode switches from STOP to RUN.
*4. Initial value: -1

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"FLCRT (FNC300) to FLSTRD (FNC305)" instruction and an "IVCK (FNC270) to IVMC (FNC275)" instruction for the same port.
- Two or more inverter communication instructions (FNC270 to FNC275) can be driven for the same port at the same time.


## PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	$\begin{gathered} \hline \text { FREQROL-V500/F500/A500/ } \\ \text { E500/S500 } \end{gathered}$	FREQROL-F700/A700	FREQROL-E700/D700	FREQROL-F800/A800
FX3S	Ver. 1.00 or later			Ver. 1.10 or later
FX3G	Ver. 1.10 or later			Ver. 2.22 or later
FX3GC	Ver. 1.40 or later			Ver. 2.22 or later
FX3U	Ver. 2.20 or later		Ver. 2.32 or later	Ver. 3.11 or later
FX3UC	Ver. 1.00 or later	Ver. 2.20 or later	Ver. 2.32 or later	Ver. 3.11 or later

### 30.2 FNC271 - IVDR / Inverter Drive

## Outline

This instruction writes a inverter operation required control value to an inverter using the computer link operation function of the inverter.
This instruction corresponds to the EXTR (K11) instruction in the FX2N/FX2NC Series.
$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Instruction format

2. Set data

Operand Type		Description
S1•	Inverter station number (K0 to K31)	Data Type
S2•	Inverter instruction code (shown on the next page)	
S3•	Set value to be written to the inverter parameter or device number storing the data to be   set	16-bit binary
n	Channel to be used (K1: ch 1, K2: ch 2$)^{* 1}$	

*1. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLC.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square$ IG $\square$	Index			Constant			$\begin{array}{\|c} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline \text { " } \end{array}$	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-1	$\pm 2$			$\checkmark$	$\checkmark$	$\checkmark$			
(S2.)														$\checkmark$	A1	-2			$\checkmark$	$\checkmark$	$\checkmark$			
(S3.)								$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	-1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

41: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} / / F X_{3} \cup C$ PLCs.
©2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

## 1. 16-bit operation (IVDR)

The control value specified in $\mathrm{S}_{3 \cdot}$ is written to the instruction code ${ }^{* 2}$ specified in $\mathrm{S}_{2 \cdot}$ of an inverter connected to a communication port n whose station number is specified in $\mathrm{S}_{1} \cdot$.

Command

*2. Refer to the instruction code list shown on the next page.
Refer to the pages in the inverter manual on which the computer link function is explained in detail.

## 2. Inverter instruction codes

The table below shows inverter instruction codes which can be specified in S2•.
For instruction codes, refer to the pages explaining computer link in detail in each inverter manual.

(S2•   Inverter Instruction code (hexadecimal)	Write contents	Applicable inverter			
		$\begin{aligned} & \text { F700, A700, E700, } \\ & \text { D700, F800, A800 } \end{aligned}$	V500	F500, A500	E500, S500
HFB	Operation mode	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
HF3	Special monitor selection number	$\checkmark$	$\checkmark$	$\checkmark$	-
HF9	Run command (expansion)	$\checkmark$	-	-	-
HFA	Run command	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
HEE	Set frequency (EEPROM)	$\checkmark$	$\checkmark^{* 3}$	$\checkmark$	$\checkmark$
HED	Set frequency (RAM)	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark$	$\checkmark$
HFD*1	Inverter reset* ${ }^{*}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
HF4	Alarm definition batch clear	$\checkmark$	-	$\checkmark$	$\checkmark$
HFC	Parameter all clear	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
HFC	User clear	-	-	$\checkmark$	-
HFF	Link parameter extended setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*1. The instruction code "HFD (inverter reset)" does not request a response from the inverter. Accordingly, even if inverter reset is executed to a station number at which an inverter is not connected, error does not occur.
It takes about 2.2 seconds to complete execution of inverter reset.
*2. When resetting the inverter, please specify H9696 as the operand S3. of the IVDR instruction. Do not use H9966.
*3. Please write " 0 " to instruction code HFF (Link parameter expansion setting) just before the IVDR instruction when writing frequency. When " 0 " is not written, writing of the frequency may not be executed normally.

## 3. Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Number		Description	Number		Description
ch1	ch2		ch1	ch2	
M8029		Instruction execution complete	D8063	D8438	Error code of serial communication error*4
M8063	M8438	Serial communication error*4	D8150	D8155	Response wait time in inverter communication*4
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication ${ }^{*} 6$
M8152	M8157	Inverter communication error*5	D8152	D8157	Error code of inverter communication error ${ }^{* 5}$
M8153	M8158	Inverter communication error latch*5	D8153	D8158	Latch of inverter communication error occurrence step ${ }^{*}{ }^{*} 6$
M8154	M8159	IVBWR instruction error*5	D8154	D8159	IVBWR instruction error parameter number ${ }^{*}{ }^{*} 6$

*4. Cleared when PLC power supply is turned from OFF to ON.
*5. Cleared when the PLC mode switches from STOP to RUN.
*6. Initial value: -1

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"FLCRT (FNC300) to FLSTRD (FNC305)" instruction and an "IVCK (FNC270) to IVMC (FNC275)" instruction for the same port.
- Two or more inverter communication instructions (FNC270 to FNC275) can be driven for the same port at the same time.


## PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/ E500/S500	FREQROL-F700/A700	FREQROL-E700/D700	FREQROL-F800/A800
FX3S	Ver. 1.00 or later			Ver. 1.10 or later
FX3G	Ver. 1.10 or later			Ver. 2.22 or later
FX3GC	Ver. 1.40 or later			Ver. 2.22 or later
FX3U	Ver. 2.20 or later		Ver. 2.32 or later	Ver. 3.11 or later
FX3UC	Ver. 1.00 or later	Ver. 2.20 or later	Ver. 2.32 or later	Ver. 3.11 or later

### 30.3 FNC272 - IVRD / Inverter Parameter Read

## Outline



This instruction reads an inverter parameter to the PLC using the computer link operation function of the inverter. This instruction corresponds to the EXTR (K12) instruction in the FX2N/FX2NC Series.
$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Inverter station number (K0 to K31)	
S2•	Inverter parameter number	16-bit binary
D•	Device number storing the read value	
n	Channel to be used (K1: ch 1, K2: ch 2$)^{* 1}$	

*1. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLC.
3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number E	Charac-ter String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square \backslash \square \square$	V	Z	Modify	K	H			
S1.														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$			
(S2.)														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$			
(D.)														$\checkmark$	-1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©1: This function is supported only in $F^{2 G} / F X_{3 G C} / F X_{3} / F X_{3} \cup c$ PLCs.
A2: This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \mathrm{C}$ C PLCs.

## Explanation of function and operation

$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVRD)

The value of the parameter S2. is read from an inverter connected to a communication port n whose station number is $\mathrm{S} 1 \cdot$, and output to $\mathrm{D}^{\cdot}$.
Command


## 2. Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Number		Description	
ch1	ch2	M89	
M8029	Instruction execution complete		
M8063	M8438	Serial communication error *1	
M8151	M8156	Inverter communicating	
M8152	M8157	Inverter communication error ${ }^{* 2}$	
M8153	M8158	Inverter communication error latch*2	
M8154	M8159	IVBWR instruction error ${ }^{* 2}$	


Number		Description
ch1	ch2	
D8063	D8438	Error code of serial communication error*1
D8150	D8155	Response wait time in inverter communication*1
D8151	D8156	Step number in inverter communication*3
D8152	D8157	Error code of inverter communication error ${ }^{*}{ }^{2}$
D8153	D8158	Latch of inverter communication error occurrence step ${ }^{* 2 * 3}$
D8154	D8159	IVBWR instruction error parameter number ${ }^{*}{ }^{*} 3$

*1. Cleared when PLC power supply is turned from OFF to ON.
*2. Cleared when the PLC mode switches from STOP to RUN.
*3. Initial value: -1

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"FLCRT (FNC300) to FLSTRD (FNC305)" instruction and an "IVCK (FNC270) to IVMC (FNC275)" instruction for the same port.
- Two or more inverter communication instructions (FNC270 to FNC275) can be driven for the same port at the same time.


## PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/   E500/S500	FREQROL-F700/A700	FREQROL-E700/D700	FREQROL-F800/A800
FX3S	Ver. 1.00 or later			Ver. 1.10 or later
FX3G	Ver. 1.10 or later			Ver. 2.22 or later
FX3GC	Ver. 1.40 or later		Ver. 2.22 or later	
FX3U	Ver. 2.20 or later	Ver. 2.32 or later	Ver. 3.11 or later	
FX3UC	Ver. 1.00 or later	Ver. 2.20 or later	Ver. 2.32 or later	Ver. 3.11 or later

## 30．4 FNC273－IVWR／Inverter Parameter Write

## Outline

This instruction writes an inverter parameter of an inverter using the computer link operation function of the inverter． This instruction corresponds to the EXTR（K13）instruction in the FX2N／FX2nc Series．
$\rightarrow$ For detailed explanation of the instruction，refer to the Data Communication Edition manual．
1．Instruction format

FNC 273	16－bit Instruction	Mnemonic	Operation Condition
IVWR	9 steps	IVWR	Continuous Operation


32 －bit Instruction	Mnemonic
-	
-	

2．Set data

Operand Type	Description	Data Type
S1－	Inverter station number（K0 to K31）	16－bit binary
S2．）	Inverter parameter number	
（S3．）	Set value to be written to the inverter parameter or device number storing the data to be set	
n	Channel to be used（K1：ch 1，K2：ch 2）${ }^{* 1}$	

＊1．Ch2 is not available in FX3G PLC（14－point and 24－point type）and FX3s PLC．
3．Applicable devices

Oper－ and Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit U $\square$ IG	Index			Con－   stant		Real Number E	Charac－ ter String"口"	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1．														$\checkmark$	－1	$\Delta 2$			$\checkmark$	$\checkmark$	$\checkmark$			
S2．														$\checkmark$	A1	－2			$\checkmark$	$\checkmark$	$\checkmark$			
S3．														$\checkmark$	－1	－2			$\checkmark$	$\checkmark$	$\checkmark$			
n																				$\checkmark$	$\checkmark$			

©1：This function is supported only in $F X_{3 G} / F X_{3 G c} / F X_{3} / F X_{3} \cup c$ PLCs．
42：This function is supported only in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup c$ PLCs．

## Explanation of function and operation

$\rightarrow$ For detailed explanation of the instruction，refer to the Data Communication Edition manual．
1．16－bit operation（IVWR）
A value specified in $\mathrm{S}_{3} \cdot$ is written to a parameter $\mathrm{S} 2 \cdot$ in an inverter connected to a communication port n whose station number is $\mathrm{S} 1 \cdot^{\cdot}$ ．

Command

－	FNC273 IVWR	（S1．）	（S2．）	（33．）	n

## 2. Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Number		Description	Number		Description
ch1	ch2		ch1	ch2	
M8029		Instruction execution complete	D8063	D8438	Error code of serial communication error*1
M8063	M8438	Serial communication error*1	D8150	D8155	Response wait time in inverter communication*1
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication ${ }^{*}$
M8152	M8157	Inverter communication error*2	D8152	D8157	Error code of inverter communication error ${ }^{*}{ }^{2}$
M8153	M8158	Inverter communication error latch*2	D8153	D8158	Latch of inverter communication error occurrence step ${ }^{* 2}{ }^{* 3}$
M8154	M8159	IVBWR instruction error*2	D8154	D8159	IVBWR instruction error parameter number ${ }^{*}{ }^{*} 3$

*1. Cleared when PLC power supply is turned from OFF to ON.
*2. Cleared when the PLC mode switches from STOP to RUN.
*3. Initial value: -1

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"FLCRT (FNC300) to FLSTRD (FNC305)" instruction and an "IVCK (FNC270) to IVMC (FNC275)" instruction for the same port.
- Two or more inverter communication instructions (FNC270 to FNC275) can be driven for the same port at the same time.
- Cautions when using the password function for inverter.

1) When a communication error occurs

When a communication error occurs in an inverter communication instruction, the FX PLC automatically retries communication up to 3 times ${ }^{*} 4$.
Hence, when a password disable error occurs in the inverter in which "display of the number of times of password disable error"*5 is enabled using Pr297, please note that the number of times of password disable error displayed in accordance with the setting of Pr297 may not be the same as the actual number of times of password input error as described below.
Do not execute automatic retry (re-driving of an inverter instruction) using a sequence program when writing data to Pr297.

Cases in which a password reset error occurs in an inverter communication instruction, and the actual number of times of reset error in such cases.

- When a wrong password is written to Pr297 due to a password input error When the writing instruction is executed once, a password reset error occurs 3 times.
- When the password cannot be written correctly to Pr297 due to noise, etc. A password reset error occurs up to 3 times.

2) When registering the password

When registering the password in the inverter using an inverter communication instruction, write the password to Pr297, read Pr297, and then confirm that registration of the password is completed normally ${ }^{*} 6$.
If writing of the password to Pr297 is not completed normally due to noise, etc., the FX PLC automatically retries writing, and the registered password may be reset by the retry.
*4. The FX PLC executes the first communication, and then retries communication twice (3 time in total).
*5. When "display of the number of times of password disable error" is enabled using Pr297 and when a password disable error occurs 5 times, the "reading/writing restriction" cannot be disabled even if the right password is input. For recovery from this status, it is necessary to all-clear all parameters.
*6. When the value given as a result of reading $\operatorname{Pr} 297$ is " 0 " to " 4 ", registration of the password is completed normally.

## PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/ E500/S500	FREQROL-F700/A700	FREQROL-E700/D700	FREQROL-F800/A800
FX3S	Ver. 1.00 or later			Ver. 1.10 or later
FX3G	Ver. 1.10 or later			Ver. 2.22 or later
FX3GC	Ver. 1.40 or later			Ver. 2.22 or later
FX3U	Ver. 2.20 or later		Ver. 2.32 or later	Ver. 3.11 or later
FX3UC	Ver. 1.00 or later	Ver. 2.20 or later	Ver. 2.32 or later	Ver. 3.11 or later

### 30.5 FNC274 - IVBWR / Inverter Parameter Block Write

## Outline

This instruction writes parameters of an inverter at one time using the computer link operation function of the inverter. $\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	Station number of an inverter (K0 to K31)	
S2•	Number of parameters in an inverter to be written at one time	16-bit binary
S3•	Head device number of a parameter table to be written to an inverter	
n	Used channel (K1: ch 1, K2: ch 2)	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   Uप\|G $\square$	Index			Constant		Real Number   E	Character String   " $\square$ "	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$			
(S2.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$			
(S3.)														$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

## Explanation of function and operation

$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVBWR)

A data table ${ }^{* 1}$ (parameter numbers and set values) specified in $\mathrm{S}_{2 \cdot}$ and $\mathrm{S}_{3 \cdot}$ is written to an inverter connected to a communication port n whose station number is $\mathrm{S}_{1-}$ all at once.

*1. The table below shows the data table format.
S2•) : Number of parameters to be written
S3. : Head device number of data table

Device	Parameter numbers to be written and set values	
(33.)	1st parameter	Parameter number
(S3.) +1		Set value
(S3.) +2	2nd parameter	Parameter number
(S3.) +3		Set value
!	:	:
(S3*) +2 S2• -4	" S2•-1"th parameter	Parameter number
(S3*) +2 (2• -3		Set value
(S3•) +2 S2•-2	" S2• "th parameter	Parameter number
(S3*) +2 S2•-1		Set value

## 2. Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Number		Description
ch1	ch2	M8
M8029	Instruction execution complete	
M8063	M8438	Serial communication error*1
M8151	M8156	Inverter communicating
M8152	M8157	Inverter communication error ${ }^{* 2}$
M8153	M8158	Inverter communication error latch*2
M8154	M8159	IVBWR instruction error ${ }^{* 2}$


Number		Description
ch1	ch2	
D8063	D8438	Error code of serial communication error*1
D8150	D8155	Response wait time in inverter communication*1
D8151	D8156	Step number in inverter communication ${ }^{*}$
D8152	D8157	Error code of inverter communication error ${ }^{*}{ }^{2}$
D8153	D8158	Latch of inverter communication error occurrence step ${ }^{* 2 * 3}$
D8154	D8159	IVBWR instruction error parameter number ${ }^{*}{ }^{*} 3$

*1. Cleared when PLC power supply is turned from OFF to ON.
*2. Cleared when the PLC mode switches from STOP to RUN.
*3. Initial value: -1

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"FLCRT (FNC300) to FLSTRD (FNC305)" instruction and an "IVCK (FNC270) to IVMC (FNC275)" instruction for the same port.
- Two or more inverter communication instructions (FNC270 to FNC275) can be driven for the same port at the same time.


## Applicable models depending on the PLC version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/   E500/S500	FREQROL-F700/A700	FREQROL-E700/D700	FREQROL-F800/A800
FX3U	Ver. 2.20 or later		Ver. 2.32 or later	Ver. 3.11 or later
FX3UC	Ver. 1.00 or later	Ver. 2.20 or later	Ver. 2.32 or later	Ver. 3.11 or later

### 30.6 FNC275 - IVMC / Inverter Multi Command

## Outline

This instruction writes 2 types of settings (operation command and set frequency) to the inverter, and reads 2 types of data (inverter status monitor, output frequency, etc.) from the inverter at the same time.
$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Instruction format

2. Set data

Operand Type		Description
S1•	Inverter station number (K0 to K31)	Data Type
S2•	Multiple instructions for inverter: Send/receive data type specification	
S3•	Head device which stores data to be written to the inverter (Occupies 2 points.)	16-bit binary
$\mathrm{S} \cdot$	Head device which stores values to be read from the inverter (Occupies 2 points.)	
n	Channel to be used (K1: ch1, K2: ch2) ${ }^{* 1}$	

*1. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3s PLC.
3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User					Index			Constant		Real Number E	Character String$\square$	$\begin{array}{\|c} \hline \text { Pointer } \\ \hline P \end{array}$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\checkmark$	-1	-2			$\checkmark$	$\checkmark$	$\checkmark$			
(S2.)														$\checkmark$	-1	42			$\checkmark$	$\checkmark$	$\checkmark$			
S3.)														$\checkmark$	-1	-2			$\checkmark$					
(D.)														$\checkmark$	-1	-2			$\checkmark$					
n																				$\checkmark$	$\checkmark$			

41: This function is supported only in $F X_{3 G} / F X_{3 G C} / F X_{3} / / F X_{3} \cup C$ PLCs.
42: This function is supported only in FX3u/FX3uc PLCs.

## Explanation of function and operation

$\rightarrow$ For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVMC)

This instruction executes multiple commands of an inverter connected to a communication port n whose station number is specified in $\mathrm{S}_{1} \cdot$. Specify the send/receive data type using $\mathrm{S}_{2} \cdot$, the head device which stores data to be written to the inverter using S3• , and the head device which stores values to be read from the inverter using (D.).

Command

$\stackrel{\text { input }}{\stackrel{\text { int }}{2}}$	FNC275 IVMC	(S1.)	(S2.)	(33.)	(D.)	n

## 2. Send/receive data type S2•

The table below shows valid send data 1 and 2 and receive data 1 and 2 specified by the send/receive data type (S2.).

Send/receive data type	Send data(Write contents to Inverter)		Receive data(Read contents from Inverter)	
	Data 1 ( $\mathrm{S}_{3}$ )	Data 2 ( $\mathrm{S}{ }^{-}+1$ )	Data 1 (D.)	Data 2 ( $\mathrm{D}^{-}+1$ )
H0000	Run command (expansion)	Set frequency (RAM)	Inverter status monitor (expansion)	Output frequency (speed)
H0001				Special monitor
H0010		Set frequency (RAM, EEPROM)		Output frequency (speed)
H0011				Special monitor

## 3. Related devices

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Number		Description	Number		Description
ch1	ch2		ch1	ch2	
M8029		Instruction execution complete	D8063	D8438	Error code of serial communication error*1
M8063	M8438	Serial communication error*1	D8150	D8155	Response wait time in inverter communication*1
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication*3
M8152	M8157	Inverter communication error*2	D8152	D8157	Error code of inverter communication error ${ }^{*}{ }^{2}$
M8153	M8158	Inverter communication error latch*2	D8153	D8158	Latch of inverter communication error occurrence step*2*3
M8154	M8159	Inverter instruction error*2	D8154	D8159	IVBWR instruction error parameter number ${ }^{*}{ }^{*} 3$

*1. Cleared when PLC power supply is turned from OFF to ON.
*2. Cleared when the PLC mode switches from STOP to RUN.
*3. Initial value: -1

## Cautions

$\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"FLCRT (FNC300) to FLSTRD (FNC305)" instruction and an "IVCK (FNC270) to IVMC (FNC275)" instruction for the same port.
- Two or more inverter communication instructions (FNC270 to FNC275) can be driven for the same port at the same time.
- Number of occupied devices

Two devices are occupied respectively by S3• and (D. . Make sure not to use those devices in another control.

- If a device number outside the range due to indexing, etc. is specified in $D \cdot$, the receive data from the inverter is not stored in (D. However, values set in S3• and $\mathrm{S}_{3} \cdot+1$ may be written to the inverter.
- If any unspecified value is set in S2• , unexpected data may be written to and read from the inverter, and values of $D \cdot$ and $D \cdot+1$ may be updated.
- IVMC instruction reads the inverter status at the time of communication with the inverter, and stores the read status to D. . Accordingly, the status written by the IVMC instruction can be read by a next or later read instruction (IVCK or IVMC).


## Applicable inverters

This instruction is applicable to the following inverters:

- FREQROL-F800(Applicable in all)
- FREQROL-A800(Applicable in all)
- FREQROL-E700 (February 2009 and later)
- FREQROL-D700 (Applicable in all)


## $\rightarrow$ For details, refer to the respective inverter manual

## Applicable programming tool

This instruction is applicable to the following programming tools:

- FX3S Series PLC

Product name	Model name	Compatible Versions	Remarks
GX Works2	SWDDNC-GXW2-E	Ver. 1.492N or later	
FX-30P		Ver. 1.50 or later	
FX3G Series PLC			
Product name	Model name	Compatible Versions	Remarks
GX Works2	SWDDNC-GXW2-E	Ver. 1.62Q or later	
FX-30P		Ver. 1.50 or later	
FX3GC Series PLC			
Product name	Model name	Compatible Versions	Remarks
GX Works2	SWDDNC-GXW2-E	Ver. 1.77F or later	
FX-30P		Ver. 1.50 or later	-

- FX3u/FX3uc Series PLCs

Product name	Model name	Compatible Versions	Remarks
GX Works2	SWDDNC-GXW2-E	Ver. 1.48A or later	
FX-30P	Ver. 1.20 or later	-	

### 30.7 FNC276 - MODBUS Read/Write Instruction



## Outline

This instruction allows the MODBUS Master to communicate (read/write data) with its associated Slaves.
$\rightarrow$ For explanation of the instruction, refer to the MODBUS Communication Edition.

1. Instruction Format


## 2. Set Data

Operand Type	Description	Data Type
(S.)	Slave Node Address (K0 to K32)	16-bit binary
(S1.)	Command Code	16-bit binary
(S2.)	Command Parameter depending on the Command Code (See Subsection 30.7.1)	16-bit binary
(S3.)	Command Parameter depending on the Command Code (See Subsection 30.7.1)	16-bit binary
(S4.) / D.	Command Parameter depending on the Command Code (See Subsection 30.7.1)	Bit or 16-bit binary

3. Applicable Devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square \backslash \square \square$	Index			Constant		Real   Number	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(5.)															-1	-2				$\checkmark$	$\checkmark$	$\checkmark$			
S1.															A1	-2				$\checkmark$	$\checkmark$	$\checkmark$			
S2.)															$\Delta 1$	A2				$\checkmark$	$\checkmark$	$\checkmark$			
S3.)															$\Delta 1$	$\triangle 2$				$\checkmark$	$\checkmark$	$\checkmark$			
S4• / (D.)	$\checkmark$	$\checkmark$	-1			$\checkmark$	$\checkmark$								$\Delta 1$	A2				$\checkmark$	$\checkmark$	$\checkmark$			

41: Except special auxiliary relay (M) and special data register (D).
42: Only available for $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{~J} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs.

## Explanation of function and operation

1. 16-bit operation (ADPRW)

Command Code $S_{1 \cdot}$ is operated on Slave Node $S^{\cdot}$ according to Parameters S2• , S3• , and S4•• D• Use 0 as the Slave Node Address for Broadcast commands.


### 30.7.1 Command Code and Command Parameters

The following table shows the required command parameters for each command code.

( $1_{1}$ -	( $2^{2}$	(S3.)	S4. $/$ (D.)	
1H   Read Coils	MODBUS Address: 0000H~FFFFH	Device Count:1~2000	PLC Destination Device (head address)	
			Applicable Devices	$D \cdot R \cdot M \cdot Y \cdot S$
			Block Length	( S3. + 15) $\div 16^{* 1}$
2H   Read Discrete Inputs	MODBUS Address: 0000H~FFFFH	Device Count:1~2000	PLC Destination Device (head address)	
			Applicable Devices	$\mathrm{D} \cdot \mathrm{R} \cdot \mathrm{M} \cdot \mathrm{Y} \cdot \mathrm{S}$
			Block Length	( S3• + 15) $\div 16^{* 1}$
3H   Read Holding Register	MODBUS Address: 0000H~FFFFH	Device Count:1~125	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	S3.
4H   Read Input Register	MODBUS Address: 0000H~FFFFH	Device Count:1~125	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	S3.)
5H   Write Single Coil	MODBUS Address: 0000H~FFFFH	0 (fixed)	PLC Source Device (head address)	
			Applicable Devices	$D \cdot R \cdot K \cdot H \cdot M \cdot X \cdot Y \cdot S$ $(D \cdot R \cdot M \cdot X \cdot Y \cdot S$ can be indexed.)
			Block Length	1 Point
6H   Write Single Register	MODBUS Address: 0000H~FFFFH	0 (fixed)	PLC Source Device (head address)	
			Applicable Devices	D•R•K•H   ( $D \cdot R$ can be indexed.)
			Block Length	1 Point
7H   Read Exception State (Available only in FX3U and FXзис PLCs.)	0 (fixed)	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
8H   Diagnosis (Available only in $F^{3} 3 \mathrm{U}$ and FXзис PLCs.)	Sub-function: OH Loop-back Test	Sub-function Data (loop-back data):0~65535	Loop-back Test Data   (Slave response: echo of ( $3_{3} \cdot$ )	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 1H Restart Communication	Sub-function Data: 0x0000: Do Not Reset Event Log 0xFF00: Reset Event Log	(Slave response: echo of (S3*)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 2H Return Diagnostic Register	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 3H   Change ASCII Input Delimiter	Sub-function Data (ASCII Mode End of Message Character): $00 \mathrm{H} \sim$ FFH	(Slave response: echo of (S3.$)$	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 4 H   Force Listen Only Mode	0 (fixed)	0 (fixed)	
			Applicable Devices	D•R
			Block Length	0
	Sub-function: AH Clear Counter and Diagnostic Register	0 (fixed)	(Slave response: echo of ( $3^{*} \cdot{ }^{\circ}$ )	
			Applicable Devices	D•R
			Block Length	1 Point


(S1.)	S2.	(3).	(S4• / D•	
8H   Diagnosis (Available only in $\mathrm{FX}_{3} \mathrm{u}$ and FX3uc PLCs.)	Sub-function: BH Return Bus Message Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: CH Return Bus Communication Error Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: DH Return Bus Exception Error Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: EH Return Slave Message Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: FH Return Slave No Response Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 10H Return NAK Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 11H Return Slave Busy Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
	Sub-function: 12 H Return Character Overrun Counter	0 (fixed)	PLC Destination Device (head address)	
			Applicable Devices	D•R
			Block Length	1 Point
BH   Get Comm.   Event Counter   (Available only	0 (fixed)	0 (fixed)	PLC Destination Device (head address)   (D.) : Programming State   (D.) +1: Event Counter	
in FX3 ${ }^{\text {and }}$			Applicable Devices	$D \cdot R$
FX3uc PLCs.)			Block Length	2 Point
CH   Get Comm. Event Log (Available only in $F X_{3} U$ and FX3uc PLCs.)	0 (fixed)	0 (fixed)	PLC Destination Device (head address)   (D.): Programming State   (D.) +1: Event Counter   (D.) +2 : Bus Message Counter   (D.) +3 : Log Length   (D.) +4~35: Up to 64 Bytes Event Log	
			Applicable Devices	D•R
			Block Length	4~36 Point
FH   Write Multiple Coils	MODBUS Address:   0000H~FFFFH	Device Count:1~1968	PLC Source Device (head address)	
			Applicable Devices	$\begin{aligned} & \mathrm{D} \cdot \mathrm{R} \cdot \mathrm{~K} \cdot \mathrm{H} \cdot \mathrm{M} \cdot \mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{~S} \\ & (\mathrm{D} \cdot \mathrm{R} \cdot \mathrm{M} \cdot \mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{~S} \text { can be } \\ & \text { indexed. }) \end{aligned}$
			Block Length	( $\left.3^{*} \cdot{ }^{\circ}+15\right) \div 16^{* 1}$
10 H   Write Multiple Registers	MODBUS Address: 0000H~FFFFH	Device Count:1~123	PLC Source Device (head address)	
			Applicable Devices	$\mathrm{D} \cdot \mathrm{R} \cdot \mathrm{K} \cdot \mathrm{H}$ $(\mathrm{D} \cdot \mathrm{R}$ can be indexed.)
			Block Length	S3.)


(31.)	(S2.)	(3)	S4.)	1 (D.)
11H   Report Slave ID (Available only in $F X_{3} U$ and FX3uc PLCs.)	0 (fixed)	0 (fixed)	PLC Destination Device (head address)   (D.) : Slave ID   (D. +1 : RUN/STOP State	
			Applicable Devices	D•R
			Block Length	2 Point
16H   Mask Write Register (Available only in FX3U and FX3uc PLCs.)	MODBUS Address:$0000 \mathrm{H} \sim \mathrm{FFFFH}$	AND Mask:   0000H~FFFFH	OR Mask: 0000H~FFFFF	
			Applicable Devices	D•R•K•H   ( $D \cdot R$ can be indexed.)
			Block Length	1 Point
17H   Read/Write   Multiple   Registers (Available only in $F_{3} X_{3}$ and FX3uc PLCs.)	MODBUS Address:   Write Address 0000H~FFFFH $\qquad$ +1: Read Address 0000H~FFFFH	Device Count:   S3.): Write Count 1~121   S3. +1: Read Count 1~125	PLC Destination Devic (head address)   S4•): Write Data 1   S4• +1: Write Data 2   S4•- (Write Count   Data ( $\mathrm{S}_{3} \cdot$ )   S4• + S3•): Read D   S4• + S3• +1 : Read   S4•) + S3.) + (Read   Read Data ( $\mathrm{S}_{3} \cdot+1$ )	ce   (33•) -1: Write   Data 1   d Data 2   Count $\left(\mathrm{S}_{3} \cdot+1\right)-1$ :
			Applicable Devices	D•R
			Block Length	$\begin{aligned} & \text { Write Count } \mathrm{S}_{3} \cdot{ }^{+}+ \\ & \text {Read Count } \mathrm{S}_{3} \cdot++1 \end{aligned}$

*1. This calculation formula is applicable when the applicable device is $D$ or $R$.

## 31. Data Transfer 3 - FNC277 to FNC279

FNC277 to FNC279 provide instructions for executing more complicated processing for fundamental applied instructions and for special processing.

FNC No.	Mnemonic	Symbol	Function	Reference
277	-			
278	RBFM		Divided BFM Read	Section 31.1
279	WBFM		Divided BFM Write	Section 31.2

### 31.1 FNC278 - RBFM / Divided BFM Read

## Outline

This instruction reads data from continuous buffer memories (BFM) in a special function unit/block over several operation cycles by the time division method. This instruction is convenient for reading receive data, etc. stored in buffer memories in a special function unit/block for communication by the time division method.
FROM (FNC 78) instruction is also available to read the buffer memory (BFM) data.
$\rightarrow$ For FROM (FNC 78) instruction, refer to Section 15.9.

## 1. Instruction format


2. Set data

Operand Type		Description
m 1	Unit number [0 to 7]	Data Type
m 2	Head buffer memory (BFM) number [0 to 32766]	
$\mathrm{D} \cdot$	Head device number storing data to be read from buffer memory (BFM)	16-bit binary
n 1	Number of all buffer memories (BFM) to be read [1 to 32767]	
n 2	Number of points transferred in one operation cycle [1 to 32767]	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIG	Index			Constant		Real Number E	Charac-   ter String   $" \square "$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
m1														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
m2														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
(D.)														A	$\checkmark$				$\checkmark$					
n1														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
n2														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

A: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (RBFM)
" n 1 " buffer memory (BFM) units at location \# "m2" in special function unit/block No. "m1" are read to D• in the PLC. While transferring, " n 1 " is divided by " n 2 " so $\mathrm{n} 1 / \mathrm{n} 2$ buffer memories (rounded up when there is a remainder) are transferred per scan time.
$\rightarrow$ For the unit No., buffer memory (BFM) \#, cautions, and program example,
refer to Subsection 31.1.1.


- When the instruction is finished normally, the instruction execution complete flag M8029 turns ON. When the instruction is finished abnormally, the instruction execution abnormally complete flag M8329 turns ON.
- When RBFM (FNC278) or WBFM (FNC279) instruction is executed in another step for the same unit number, the instruction non-execution flag M8328 is set to ON, and execution of such an instruction is paused. When execution of the other target instruction is complete, the paused instruction resumes.


## Related devices

$\rightarrow$ For the flag use methods for instruction execution complete and instruction execution abnormally complete, refer to Subsection 6.5.2.

Device	Name	Description
M8029	Instruction execution complete	Turns ON when an instruction is finished normally.
M8328	Instruction non-execution	Turns ON when RBFM (FNC278) or WBFM (FNC279) instruction in   another step is executed for the same unit number.
M8329	Instruction execution abnormally complete	Turns ON when an instruction is finished abnormally.

## Related instructions

Instruction	
FROM (FNC 78)	Read from a special function block
TO (FNC 79)	Write to a special function block
WBFM (FNC279)	Divided BFM write

## Errors

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the unit number "m1" does not exist (error code: K6708)


### 31.1.1 Common items between RBFM (FNC278) instruction and WBFM (FNC279) instruction

## Specification of unit number of special function unit/block and buffer memory

$\rightarrow$ For the connection method of special function units/blocks, number of connectable units/blocks, and handling of $I / O$ numbers, refer to the manual of the PLC used and special function unit/block.

1. Unit number " m 1 " of a special function unit/block

Use the unit number to specify to which equipment the RBFM/WBFM instruction works.
Setting range: K0 to K7

Unit No. 0 Built-in CC-Link/LT		Unit No. 1	Unit No. 2		Unit No. 3
FX3UC-32MT-LT   (-2)   main unit	I/O   extension block	Special function block	Special function block	I/O extension block	Special function block

A unit number is automatically assigned to each special function unit/block connected to the PLC.
The unit number is assigned in the way "No. $0 \rightarrow$ No. $1 \rightarrow$ No. $2 \ldots$... starting from the equipment nearest the main unit. When the main unit is the FX3UC-32MT-LT(-2), the unit number is assigned in the way "No. $1 \rightarrow$ No. $2 \rightarrow$ No. 3 ..." starting from the equipment nearest to the main unit because the CC-Link/LT master is built into the FX3UC-32MT-LT (-2).
2. Buffer memory (BFM) number "m2"

Up to 32767 16-bit RAM memories are built in a special function unit/block, and they are called buffer memories.
The buffer memory number is from "0" to " 32766 ", and the contents are determined according to each special function unit/block.
Setting range: K0 to K32766
$\rightarrow$ For the contents of buffer memories, refer to the manual of the special function unit/block used.

## Cautions

- A watchdog timer error may occur when many numbers of points are transferred in one operation cycle. In such a case, take one of the following countermeasures:
- Change the watchdog timer time

By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time is changed (initial value: K200).
When the program shown below is input, the sequence program will be monitored with the new watchdog timer time.


- Change the number of transferred points "n2" in each operation cycle

Change the number of transferred points "n2" in each operation cycle to a smaller value.

- Do not stop the driving of the instruction while it is being executed. If driving is stopped, the buffer memory (BFM) reading/writing processing is suspended, but the data acquired in the middle of reading/writing processing is stored in D• and later and buffer memories (BFM).

- When indexing is executed, the contents of index registers at the beginning of execution are used.

Even if the contents of index registers are changed after the instruction, such changes do not affect the process of the instruction.

- The contents of "n1" devices starting from (D• change while the RBFM (FNC278) instruction is executed. After execution of the instruction is completed, execute another instruction for "n1" devices starting from D•
- Do not update (change) the contents of "n1" devices starting from S• while the WBFM (FNC279) instruction is executed. If the contents are updated, the intended data may not be written to the buffer memories (BFM).
- Do not update (change) the contents of "n1" buffer memories (BFM) starting from the buffer memory No. "m2" while the RBFM (FNC278) instruction is executed. If the contents are updated, the intended data may not be read.


## Program example

In the example shown below, data is read from and written to the buffer memories (BFM) in the unit No. 2 as follows:

- When X000 is set to ON, data stored in D100 to D179 (80 points) are written to the buffer memories (BFM) \#1001 to 1080 in the special function unit/block whose unit number is No. 2 by 16 points in each operation cycle.
- When X001 is set to ON, the buffer memories (BFM) \#2001 to 2080 (80 points) in the special function unit/block whose unit number is No. 2 are written to D200 to D279 by 16 points in each operation cycle.



### 31.2 FNC279 - WBFM / Divided BFM Write

F×
Outline
Ver.2.20 H 몬
This instruction writes data to continuous buffer memories (BFM) in a special function unit/block over several operation cycles by the time division method. This instruction is convenient for writing send data, etc. to buffer memories in a special function unit/block for communication by the time division method.
TO (FNC 79) instruction is also available for writing data to the buffer memory (BFM).
$\rightarrow$ For TO (FNC 79) instruction, refer to Section 15.10.

1. Instruction format

2. Set data

Operand Type		Description
m 1	Unit number [0 to 7]	Data Type
m 2	Head buffer memory (BFM) number [0 to 32766]	
$\mathrm{S} \cdot$	Head device number storing data to be written to buffer memory (BFM)	16-bit binary
n 1	Number of all buffer memories (BFM) to be written [1 to 32767]	
n 2	Number of points transferred in one operation cycle [1 to 32767]	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit UपIG	Index			Constant		Real Number E	Charac-   ter String   $" \square "$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
m1														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
m2														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
(s.)														A	$\checkmark$				$\checkmark$					
n1														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			
n2														$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$			

©: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (WBFM)
" n 1 " word units from S• in the PLC are written to buffer memory (BFM) location \# "m2" in special function unit/ block No. "m1". While transferring, " n 1 " is divided by " n 2 " so $\mathrm{n} 1 / \mathrm{n} 2$ words (rounded up when there is a remainder) are transferred per scan time.
$\rightarrow$ For the unit No., buffer memory (BFM) No., cautions, and program example, refer to Subsection 31.1.1.


- When the instruction is finished normally, the instruction execution complete flag M8029 turns ON. When the instruction is finished abnormally, the instruction execution abnormally complete flag M8329 turns ON.
- When the RBFM (FNC278) or WBFM (FNC279) instruction is executed in another step for the same unit number, the instruction non-execution flag M8328 is set to ON, and execution of such an instruction is paused. When execution of the first target instruction is complete, the paused instruction resumes.


## Related devices

$\rightarrow$ For the flag use methods for instruction execution complete and instruction execution abnormally complete, refer to Subsection 6.5.2.

Device	Name	Description
M8029	Instruction execution complete	Turns ON when an instruction is finished normally.
M8328	Instruction non-execution	Turns ON when the RBFM (FNC278) or WBFM (FNC279) instruction   in another step is executed for the same unit number.
M8329	Instruction execution abnormally complete	Turns ON when an instruction is finished abnormally.

## Related instructions

Instruction	
FROM (FNC 78)	Read from a special function block
TO (FNC 79)	Write to a special function block
RBFM (FNC278)	Divided BFM read

## Errors

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the unit number "m1" does not exist (error code: K6708)


## 32. High-Speed Processing 2 - FNC280 to FNC289

FNC No.	Mnemonic	Symbol		Function	Reference
280	HSCT	H $-\mathrm{HSCT}\|\mathrm{S} 1\| \mathrm{m} \mid \mathrm{S} 2$	D	$\mathrm{n} \mid$	High-Speed Counter Compare With Data   Table
Section 32.1					
281	-			-	
282	-			-	
283	-			-	
284	-			-	
285	-			-	
286	-			-	
287	-			-	
288	-			-	
289	-			-	

### 32.1 FNC280 - HSCT / High-Speed Counter Compare With Data Table

## Outline

Ver. 2.20 "
This instruction compares the current value of a high-speed counter with a data table of comparison points, and then sets or resets up to 16 output devices.

1. Instruction format


32-bit Instruction	Mnemonic	Operation Condition	
	DHSCT	$\boxed{L}$ Continuous	
	-		

2. Set data

Operand Type	Description	Data Type
$\mathrm{S} 1 \cdot$	Head device number storing the data table	16- or 32-bit binary
m	Number of comparison points in data table $[1 \leq \mathrm{m} \leq 128]$	16 -bit binary
$\mathrm{S} 2 \cdot$	High-speed counter number (C235 to C 255$)$	32 -bit binary
$\mathrm{D} \cdot$	Head device number to which the operation status is output	Bit
n	Number of devices to which the operation status is output $[1 \leq \mathrm{n} \leq 16]$	16 -bit binary

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special Unit   U $\square$ IG $\square$	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M			C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
( $\mathrm{S}^{-}$															$\checkmark$	$\checkmark$				$\checkmark$					
m																					$\checkmark$	$\checkmark$			
S2.)														-						$\checkmark$					
(D.)		$\checkmark$	$\checkmark$				$\checkmark$													$\checkmark$					
n																					$\checkmark$	$\checkmark$			

Only a high-speed counter C235 to C255 can be specified in " $\mathbf{\Delta}$ ".

## Explanation of function and operation

1. 32-bit operation (DHSCT)

The current value of a high-speed counter specified in S2• is compared with the data table shown below which has $(3 \times \mathrm{m})$ points stored in $\mathrm{S}_{1} \cdot$ and later, and the operation output set value (ON or OFF) specified in the data table is output to $D^{\cdot}$ to $D^{\cdot}+\mathrm{n}-1$.
Command


Data table used for comparison

Comparison point number	Comparison value	Operation output set value (SET [1] or RESET [0])	Operation output destination
0	S1- +1, $\mathrm{S} 1 \cdot$	S1- +2	(D.) to D• +n-1
1	S1• +4, $\mathrm{S} 1 \cdot^{+}+3$	S1- +5	
2	$\mathrm{S} 1 \cdot^{\cdot}+7 \mathrm{~S} 1 \cdot^{-}+6$	S1- +8	
!	!	:	
m-2	S1- +3m-5, S1• +3m-6	S1• $+3 m-4$	
m-1	S1• +3m-2, $\mathrm{S} 1 \cdot^{-}+3 \mathrm{~m}-3$	S1- $+3 \mathrm{~m}-1$	

## Operation output setting (SET [1] or RESET [0]) [Up to 16 points]

 = HA716


1) When this instruction is executed, the data table is set as the comparison target.
2) When the current value of the high-speed counter, specified in $\mathrm{S}_{2 \cdot}$, becomes equivalent to the comparison value in the data table, the corresponding operation output specified in the data table is output to (D. to D• +n-1.

If an output (Y) is specified in (D• , the output processing is executed immediately without waiting for the output refresh executed by the END instruction.
When specifying an output ( $Y$ ), make sure that the least significant digit of the device number is " 0 ". Examples: Y000, Y010 and Y020
3) Immediately after step 2), "1" is added to the current table counter value D8138.
4) The next comparison point is set as the comparison target data.
5) Steps 2) and 3) are repeated until the current value of the table counter D8138 becomes "m". When the current value becomes " $m$ ", the instruction execution complete flag M8138 turns ON, and the execution returns to step 1). At this time, the table counter D8138 is reset to " 0 ".
6) When the command contact is set to OFF, execution of the instruction is stopped and the table counter D8138 is reset to " 0 ".

Operation example


Comparison   point number	Comparison data		SET/RESET pattern		Table counter D8138
	Device	Comparison   value	Device	Operation output   set value	
0	$\mathrm{D} 201, \mathrm{D} 200$	K 321	D 202	H 0001	$0 \downarrow$
1	$\mathrm{D} 204, \mathrm{D} 203$	K 432	D 205	H 0007	$1 \downarrow$
2	$\mathrm{D} 207, \mathrm{D} 206$	K 543	D 208	H 0002	$2 \downarrow$
3	$\mathrm{D} 210, \mathrm{D} 209$	K 764	D 211	H 0000	$3 \downarrow$
4	$\mathrm{D} 213, \mathrm{D} 212$	K 800	D 214	H 0003	$4 \downarrow$ (Repeated from "0 $\downarrow$ ")



HSCT
instruction
execution
complete flag
M8138 OFF $\qquad$ ON
*1. If this instruction is not executed, no processing is executed for outputs.
In the operation example shown above, the command contact is "OFF".
2. Related device

Device	Name	Description
M8138	HSCT (FNC280) instruction   execution complete flag	Turns ON when the operation for the final table No. "m-1" is completed.
D8138	HSCT (FNC280) table counter	Stores the comparison point number handled as the comparison target.

## Cautions

- This instruction can be executed only once in a program If this instruction is programmed two or more times, an operation error is caused by the second instruction and later, and the instruction will not be executed. (error code: K6765)
- This instruction constructs the data table at the END instruction of the first execution of the instruction. Accordingly, the operation output works after the second scan and later.
- With regard to DHSCT (FNC280), DHSCS (FNC 53), DHSCR (FNC 54) and DHSZ (FNC 55) instructions, up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be executed. (error code: K6705)
- If an output $(\mathrm{Y})$ is specified in $\mathrm{D} \cdot$, the output processing is executed immediately without waiting for the output refresh executed by END instruction. When specifying an output ( Y ), make sure that the least significant digit of the device number is " 0 ". Examples: Y000, Y010 and Y020
- When a high-speed counter specified in S2• is indexed with index, all high-speed counters are handled as software counters.
- For this instruction, only one comparison point (one line) is handled as the comparison target at one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target.
If the current value of a high-speed counter executes up counting using the comparison data table shown in the operation example on the previous page, make sure to execute the instruction while the current value of the highspeed counter is smaller than the comparison value in comparison point No. 1.
- When the DHSCT instruction is used with a hardware counter (C235, C236, C237, C238, C239, C240, C244 (OP), C245 (OP), C246, C248 (OP), C251, C253), the hardware counter is automatically switched to a software counter, and the maximum frequency and total frequency are affected.


## Errors

An operation error occurs in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When any devices other than high-speed counters C235 to C255 are specified in (S2• (error code: K6706)
- When the " $3 \mathrm{~m}-1$ "th device from a device specified in $\mathrm{S}_{1} \cdot$ exceeds the last number of the device (error code: K6706)
- When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706)
- When this instruction is used two or more times in a program (error code: K6765)
- With regard to DHSCT (FNC280), DHSCS (FNC 53), DHSCR (FNC 54) and DHSZ (FNC 55) instructions, up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be executed. (error code: K6705)


## Program example

In the program shown below, the current value of C 235 (counting X 000 ) is compared with the comparison data table set in R0 and later, and a specified pattern is output to Y010 to Y013.


Operation example

Comparison   point	Comparison data		SET/RESET pattern		Table counter D8138
	Device	Comparison   value	Device	Operation output   set value	
0	$\mathrm{R} 1, \mathrm{R} 0$	K 100	R 2	H 0007	$0 \downarrow$
1	$\mathrm{R} 4, \mathrm{R} 3$	K 150	R 5	H 0004	$1 \downarrow$
2	$\mathrm{R} 7, \mathrm{R} 6$	K 200	R 8	H 0003	$2 \downarrow$
3	$\mathrm{R} 10, \mathrm{R} 9$	K 250	R 11	H 0006	$3 \downarrow$
4	$\mathrm{R} 13, \mathrm{R} 12$	K 300	R 14	H 0008	$4 \downarrow$ (Repeated from "0 $\downarrow$ ")



## 33. Extension File Register Control - FNC290 to FNC299

FNC No.	Mnemonic	Symbol	Function	Reference
290	LOADR	LOADR s n	Load From ER	Section 33.1
291	SAVER	SAVER s m D	Save to ER	Section 33.2
292	INITR	$\begin{array}{\|r\|l\|l\|} \hline \text { INITR } & \mathrm{S} & \mathrm{n} \\ \hline \end{array}$	Initialize R and ER	Section 33.3
293	LOGR	HH LOGR S m D 1 n D 2	Logging R and ER	Section 33.4
294	RWER		Rewrite to ER	Section 33.5
295	INITER	Н⺊ INITER $\mathrm{S}_{\text {¢ }} \mathrm{n}$ -	Initialize ER	Section 33.6
296	-			-
297	-			-
298	-			-
299	-			-

## 33．1 FNC290－LOADR／Load From ER

## Outline

##  <br> Ver．1．00 $\Rightarrow \quad$ Ver． 1.40 п $\Rightarrow$ <br> Ver．2．20 $\quad \Rightarrow$ Ver． $1.00 \leadsto \Rightarrow$

This instruction reads the current values of extension file registers（ER）stored in the attached memory cassette（flash memory or EEPROM）or EEPROM built into the PLC，and transfers them to extension registers（ R ）stored in the RAM in the PLC．

1．Instruction format


## 2．Set data

Operand Type	Description	Data Type
（S•）	Device number of extension register to which data is to be transferred （The extension file register with the same number is handled as the data transfer source．）	16－bit binary
n	Number of points to be read（transferred）   ［FX3G／FX3GC： $1 \leq \mathrm{n} \leq 24000$ ，FX3U／FX3UC： $0 \leq \mathrm{n} \leq 32767$ ］	

3．Applicable devices

Oper－ and Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   Unit   U $\square \backslash \square \square$	Index			Con－   stant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   $P$
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
（s．）															$\checkmark$				$\checkmark$					
n														$\checkmark$						$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1．16－bit operation（LOADR and LOADRP）

1）In FX3U／FX3UC PLCs
The contents（current values）of extension file registers（ER）stored in a memory cassette（flash memory）with the same numbers as the extension registers specified by $S_{\cdot}$ to $S^{\cdot}+n-1$ are read，and transferred to the extension registers specified by $S \cdot$ to $S \cdot+n-1$ stored in the PLC＇s built－in RAM．

－As apposed to the SAVER（FNC291），INITR（FNC292）and LOGR（FNC293）instructions，it is not necessary to execute this instruction in sector units．
－If＂$n$＂is set to＂ 0 ＂，it is handled as＂ 32768 ＂when the instruction is executed．
2) In $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} \mathrm{X}_{3} \mathrm{c}$ PLCs
a) When a memory cassette is connected (A memory cassette can be connected only to FX3G PLC.)

The contents (current values) of extension file registers (ER) stored in a memory cassette (EEPROM) with the same numbers as the extension registers specified by $S^{\cdot}$ to $S^{\cdot}+\mathrm{n}-1$ are read, and transferred to the extension registers specified by $S^{\cdot}$ to $S^{\cdot}+\mathrm{n}-1$ stored in the PLC's built-in RAM.
\(\left.$$
\begin{array}{|l|l|l|}\text { Command } \\
\text { input }\end{array}
$$ \begin{array}{|l|l|l|}\hline FNC290 <br>

LOADRP\end{array}\right)\) S* | $n$ |
| :--- |


-Reading (transferring) is executed in device units. Up to 24,000 devices can be read (transferred).
b) When a memory cassette is not connected

In the program example below, the contents (current value) of extension file registers (ER) which are stored in the EEPROM built in the PLC and have the same device numbers as extension registers $S$. to $S \cdot+\mathrm{n}$ 1 are read, and transferred to extension registers ( R ) which are stored in the RAM built in the PLC and have the device numbers $S \cdot$ to $S \cdot+n-1$.

-Reading (transferring) is executed in device units. Up to 24,000 devices can be read (transferred).

## Caution

## 1. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- In FX3u/FX3uc PLCs

Data can be written to the memory cassette (flash memory) up to 10,000 times.
Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a number of times of writing to the memory. Make sure not to exceed the allowable number of writes.

- In FX3G/FX3GC PLCs

Data can be written to the memory cassette (EEPROM) up to 10,000 times, and to the built-in memory (EEPROM) up to 20,000 times.
Every time the RWER (FNC294) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

Execution of the LOADR (FNC290)instruction is not counted as a write to the memory.

## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the last device number to be transferred exceeds "32767" (error code: K6706) At this time, devices up to R32767 are read and transferred.
- When a memory cassette is not connected (error code: K6771) ${ }^{* 1}$
*1. An operation error is not caused in FX3G PLC because the contents of extension file registers stored in the EEPROM built in the PLC are read if a memory cassette is not connected.


## Program example

In the program example shown below, the contents (current value) of 4,000 extension file registers ER1 to ER4000 inside the memory cassette are read, and transferred to 4,000 extension registers R1 to R4000 inside the built-in RAM.

M0			
	$\uparrow \vdash$	FNC290   LOADR	R1

### 33.2 FNC291 - SAVER / Save to ER

## Outline

Ver.2.20 ॥ $\Rightarrow$

This instruction writes the current values of the extension registers ( $R$ ) stored in the PLC's built-in RAM to extension file registers (ER) stored in a memory cassette (flash memory) in sector units (2048 points).
The RWER (FNC294) instruction provided in FX3Uc PLC Ver. 1.30 or later and FX3U PLC only writes (transfers) a arbitrary number of points. It is not necessary to execute the INITR (FNC292) or the INITER (FNC295) instruction when RWER instruction is used.
$\rightarrow$ For RWER instruction, refer to Section 33.5.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
S•	Head device number of extension register sector to which data is to be written   (Only the head device number of a sector of extension registers can be specified.)	16-bit binary
n	Number of points written (transferred) in one operation cycle $[0 \leq \mathrm{n} \leq 2048]$	
D.	Device number storing the number of already written points	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUपIG■	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S•)															$\checkmark$				$\checkmark$					
n																				$\checkmark$	$\checkmark$			
(D.)														$\checkmark$					$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (SAVER)

The contents (current values) of extension registers (R) specified by $S \cdot$ to $S \cdot+2047$ are written (transferred) to extension file registers (ER) inside a memory cassette (flash memory) with the same device numbers in "2048/n" operation cycles ("2048/ $n+1$ " cycles if there is a remainder).
While the instruction is being executed, the number of points already written is stored in D.
Command


Instruction execution complete flag M8029

Instruction execution complete flag for SAVER instruction

Extension registers ( R )
inside built-in RAM


*1 "n" points are written (transferred) in each operation cycle.

- Extension file registers are written in sector units (2048 points). The table below shows the head device number in each sector:

Sector   number	Head device number	Written device range	Sector   number	Head device number	Written device range
Sector 0	R0	ER0 to ER2047	Sector 8	R16384	ER16384 to ER18431
Sector 1	R2048	ER2048 to ER4095	Sector 9	R18432	ER18432 to ER20479
Sector 2	R4096	Sector 10	R20480	ER20480 to ER22527	
Sector 3	R6144	ER6144 to ER8191	Sector 11	R22528	ER22528 to ER24575
Sector 4	R8192	ER8192 to ER10239	Sector 12	R24576	ER24576 to ER26623
Sector 5	R10240	ER10240 to ER12287	Sector 13	R26624	ER26624 to ER28671
Sector 6	R12288	ER12288 to ER14335	Sector 14	R28672	ER28672 to ER30719
Sector 7	R14336	ER14336 to ER16383	Sector 15	R30720	ER30720 to ER32767

- If " n " is set to " 0 ", it is handled as " 2048 " when the instruction is executed.
- When writing (transferring) of 2,048 points is finished, execution of the instruction is completed and the instruction execution complete flag M8029 turns ON
- The number of already written points is stored in (D. .


## 2. Related device

$\rightarrow$ For the instruction execution complete flag use method, refer to Subsection 6.5.2.

Device number	Name	Description
M8029	Instruction execution   complete flag	When execution of the target instruction is completed, the instruction execution complete   flag M8029 turns ON.   In a program, however, there may be two or more instructions which use the flag M8029.   To avoid confusion, make sure to use the NO contact of this flag immediately under the   SAVER instruction so that this flag works only for the SAVER instruction.

## 1. Cautions on writing data to a memory cassette

Memory cassettes use flash memory. Note the following when writing data to extension file registers in a memory cassette with the FNC291 instruction.

- It takes about 340 ms to write 2,048 points. If "n" is set to K0 or K2048, the operation cycle for executing this instruction becomes longer than about 340ms.
If the operation cycle is severely affected, write data in two or more operation cycles.
When writing data in two or more operation cycles, set "n" ranging from K1 to K1024.
- Do not abort execution of this instruction in the middle of operation. If execution is aborted, unexpected data may be written to extension file registers.
If execution of this instruction is aborted by turning OFF the power, execute the instruction again using step 2 described below after turning the power ON again.



## 2. Initialization of extension file registers

Execute the INITER (FNC295) or INITR (FNC292) instruction to target extension file registers (ER) before executing the SAVER instruction. If the SAVER instruction is driven before the INITER (FNC295) or INITR (FNC292) instruction is executed, an operation error (error code: K6770) may occur.
To avoid this an operation error, make a program executing the SAVER instruction as shown in the following sequence:

## - If the $\mathrm{FX}_{3} \mathbf{U} / \mathrm{FX} 340$ PLC is Ver. 1.30 or later

[1] When storing sectors of 2,048 extension registers ( R ) to extension file registers (ER)

1) Execute the INITER (FNC295) instruction to the target extension file registers (ER) specified as targets in the SAVER instruction.
2) Execute the SAVER instruction.
[2] When storing an arbitrary number of extension registers ( $R$ ) to extension file registers (ER) Use the RWER instruction.
$\rightarrow$ For RWER (FNC294) instruction, refer to Section 33.5.

- When the FX3uc PLC is before Ver. 1.30
[1] When storing sectors of 2,048 extension registers $(R)$ in one sector to extension file registers (ER)
If the extension registers ( $R$ ) have data to be stored in extension file registers (ER), use the procedure [2].

1) Execute the INITR (FNC292) instruction to extension registers (R) and extension file registers (ER) specified as targets of the SAVER instruction.
2) Store data to extension registers ( $R$ ) specified as targets.
3) Execute the SAVER instruction.
[2] When storing sector of 2,048 extension registers (R) in one sector to extension file registers (ER)
4) Temporarily withdraw the data of the extension registers (R) specified as targets of the SAVER instruction to data registers or 2048 unused extension registers (R) by using the BMOV (FNC 15) instruction.
5) Execute the INITR (FNC292) instruction to extension registers (R) and extension file registers (ER) specified as targets of the SAVER instruction
6) Return the data of 2048 points temporarily withdrawn in step 1) to extension registers (R) specified as targets by using the BMOV (FNC 15) instruction.
7) Execute the SAVER instruction.

## 3. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- Data can be written to the memory cassette (flash memory) up to 10,000 times.

Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

- Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When any device number other than the head device number of a sector of extension file registers is set to $S$ • (error code: K6706)
- When a memory cassette is not connected (error code: K6771)
- When the protect switch of the memory cassette is set to ON (error code: K6770)
- When the collation result after data writing is a "mismatch" due to omission of initialization or for another reason (error code: K6770)
When this error occurs, the current values (data) of extension registers (R) may be lost. To avoid the data loss, back up the data of extension registers $(R)$ in advance using the following procedure:

1) Set the PLC mode to STOP.
2) Create a new project in GX Works2.

This step is not necessary if it is alright to overwrite the current project.
3) Read the contents of extension registers (R) to GX Works2.
[1] Select "Online" $\rightarrow$ "Read from PLC..." to display the Online Data Operation dialog box.
[2] Click "PLC Parameter/Network Parameter" and "Device Data/File Register" to check mark each of them
[3] Click [Execute] button.
[4] When reading is completed, save the project.
4) Change the current program inside the PLC to the program shown in "Cautions on writing data to a memory cassette" in "Cautions" on the previous page.

5) Write the data which was temporarily withdrawn to GX Works2 to the PLC.
[1] Select "Online" $\rightarrow$ "Write to PLC..." to display the Online Data Operation dialog box.
[2] Click "PLC Parameter/Network Parameter" and "MAIN" to check mark each of them.
[3] Click [Execute] button.
6) Change the PLC mode from STOP to RUN, execute the program, and store the data to the extension file registers inside the memory cassette.


## Program examples

1) In the case of $F X_{30}$ PLC Ver. 2.20 or later and $F X_{3} \cup c$ PLC Ver. 1.30 or later

In the example shown below, only extension registers R10 to R19 (in sector 0 ) need to be updated in the extension file registers (ER). When X000 is set to ON, sector 0 (head device RO) is written to the extension file registers 128 points at a time. (128 points are written in one operation cycle)

Program

(2)

Operation


	Setting backu	up data	
	Extension file r	registers (ER)	
	Device number	Current value	
	ER0	HFFFF	
	ER1	HFFFF	
	ER10	HFFFF	
(1)	ER11	HFFFF	(2)
$\square$	ER12	HFFFF	
INITER	.	.	SAVER
	ER19	HFFFF	
	:	-	
	ER99	HFFFF	
	ER100	HFFFF	
		:	
	ER2047	HFFFF	

To the next page

		Setting da			Setting	backup	data
		Extension regis	sters (R)		$\begin{array}{\|c} \hline \text { Extension file } \\ \text { (ER) } \\ \hline \end{array}$	egisters	Number of
		Device number	$\begin{gathered} \text { Current } \\ \text { value } \end{gathered}$		Device number	Current value	already written points (D0)
		R0	K100		ER0	K100	
		R1	K105		ER1	K105	
		.					
		R10	K200		ER10	K200	
\%	$\stackrel{\text { \% }}{\text { \% }}$	R11	K215		ER11	K215	
(2)	$\stackrel{\circ}{\mathrm{D}}$	R12	K400	1st operation cycle	ER12	K400	
$\longmapsto \omega$	$\begin{aligned} & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	.		$\square$			
SAVER	$\overline{0}$	R19	K350		ER19	K350	
		.	.				
		R99	K1000		ER99	K1000	
		R100	HFFFF		ER100	HFFFF	
		.				.	
		R127	HFFFF		ER127	HFFFF	K128
		R128	HFFFF	7 2nd operation	ER128	HFFFF	
	$\stackrel{0}{0}$	R255	HFFFF		ER255	HFFFF	K256
		R256	HFFFF	7 3rd to 15th	ER256	HFFFF	
		:		cycle		:	
		R1919	HFFFF	$\Rightarrow$	ER1919	HFFFF	K1920
		R1920	HFFFF	$=\frac{16 \text { th }}{}$	ER1920	HFFFF	
		.		cycle			
		R2047	HFFFF		ER2047	HFFFF	K2048

2) In the case of $\mathrm{FX}_{3} \cup \mathrm{C}$ PLC before Ver. 1.30

In the example shown below, only extension registers R10 to R19 (in sector 0) need to be updated in the extension file registers (ER). When X000 is set to ON, sector 0 (head device RO) is written to the extension file registers 128 points at a time. (128 points are written in one operation cycle)

## Program



Operation

	Setting data		Setting backup data	
	Extension registers (R)		Extension file registers (ER)	
	Device number	Current value	Device number	Current value
	R0	K100	ER0	K100
	R1	K105	ER1	K105
		.	:	
	R10	K200	ER10	K300
	R11	K215	ER11	K330
	R12	K400	ER12	K350
	R19	K350	ER19	K400
	R99	K1000	ER99	K1000
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{5} \end{aligned}$	R100	HFFFF	ER100	HFFFF
	R2047	HFFFF	ER2047	HFFFF


*1 Temporarity store data in unused devices.

To the next page

	Setting d		Setting backup	p data		Setting d		
	Extension regis	sters (R)	Extension file (ER)	gisters		Unused extensio	registers	
	Device number	Current value	Device number	$\begin{aligned} & \text { Current } \\ & \text { value } \end{aligned}$		Device number	Current value	
	R0	HFFFF	ER0	HFFFF		R0	K100	
	R1	HFFFF	ER1	HFFFF		R1	K105	
	R10	HFFFF	ER10	HFFFF	$\mathbb{\nwarrow}$	R10	K200	
(2)	R11	HFFFF	ER11	HFFFF	(3)	R11	K215	(4)
$\square$	R12	HFFFF	ER12	HFFFF	$\Longrightarrow$	R12	K400	
INITR					BMOV © instruction	$\vdots$		SAVER instruction
	R19	HFFFF	ER19	HFFFF		R19	K350	
	.							
	R99	HFFFF	ER99	HFFFF		R99	K1000	
	R100	HFFFF	ER100	HFFFF		R100	HFFFF	
	.							
	R2047	HFFFF	ER2047	HFFFF		R2047	HFFFF	



### 33.3 FNC292 - INITR / Initialize R and ER

## Outline

This instruction initializes extension registers (R) to "HFFFF" (<K-1>) in the RAM built into the PLC and extension file registers in a memory cassette (flash memory) before data logging using the LOGR (FNC293) instruction. In $F X_{3}$ Uc PLC before Ver. 1.30, use this instruction to initialize extension file registers (ER) before writing data to them using SAVER (FNC291) instruction.
In FX3uc PLC Ver. 1.30 or later and FX3U PLC, the INITER (FNC295) instruction is also provided to initialize only extension file registers (ER) to "HFFFF" (<K-1>) in a memory cassette (flash memory) in units of sector.
$\rightarrow$ For the SAVER (FNC291) instruction, refer to Section 33.2.
$\rightarrow$ For the LOGR (FNC293) instruction, refer to Section 33.4.
$\rightarrow$ For the INITER (FNC295) instruction, refer to Section 33.6.

## 1. Instruction format



16-bit Instruction	Mnemonic	Operation Condition
5 steps	INITR	$L \begin{aligned} & \text { Continuous } \\ & \text { Operation }\end{aligned}$
	ITRP	Pulse (Single) Operation


2. Set data

Operand Type	Description	Data Type
S•	Head device number of extension register and extension file register ${ }^{*}$ sector to be   initialized   It is possible to specify only the head device number in a sector of extension registers.	16-bit binary
	Number of sectors of extension registers and extension file registers to be initialized	

*1. When a memory cassette is not used, extension file registers (ER) are not initialized.

## 3. Applicable devices

Operand Type	Bit Devices							Word Devices													Others				
	System User							Digit Specification				System User				Special Unit	Index				Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . b$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ IG $\square$	V	Z		Modify	K	H			
(S•)															$\checkmark$					$\checkmark$					
n																					$\checkmark$	$\checkmark$			

## Explanation of function and operation

## 1. 16-bit operation (INITR and INITRP)

"n" sectors of extension registers in the PLC's built-in RAM starting from the one specified by $S^{-}$and "n" sectors of extension file registers in a memory cassette (flash memory) having the same device numbers are initialized to "HFFFF" (<K-1>).
Initialization is executed in sector units.
Command


The table below shows the head device number in each sector:

Sector   number	Head device   number	Initialized device range
Sector 0	R0	R0 to R2047,   ER0 to ER2047
Sector 1	R2048	R2048 to R4095,   ER2048 to ER4095
Sector 2	R4096	R4096 to R6143,   ER4096 to ER6143
Sector 3	R6144	R6144 to R8191,   ER6144 to ER8191
Sector 4	R8192	R8192 to R10239,   ER8192 to ER10239
Sector 5	R10240	R10240 to R12287,   ER10240 to ER12287
Sector 6	R12288	R12288 to R14335,   ER12288 to ER14335
Sector 7	R14336	R14336 to R16383,   ER14336 to ER16383


Sector   number	Head device   number	Initialized device range
Sector 8	R16384	R16384 to R18431,   ER16384 to ER18431
Sector 9	R18432	R18432 to R20479,   ER18432 to ER20479
Sector 10	R20480	R20480 to R22527,   ER20480 to ER22527
Sector 11	R22528	R22528 to R24575,   ER22528 to ER24575
Sector 12	R24576	R24576 to R26623,   ER24576 to ER26623
Sector 13	R26624	R26624 to R28671,   ER26624 to ER28671
Sector 14	R28672	R28672 to R30719,   ER28672 to ER30719
Sector 15	R30720	R30720 to R32767,   ER30720 to ER32767

## Operation (when a memory cassette is used)

Device number	Current value	
	Before execution	After execution
(S.)	H0010	HFFFF
(S.) +1	H0020	HFFFF
(S.) +2	H0011	HFFFF
!	!	!
(S•)+(2048×n)-1	HABCD	HFFFF

- Extension file registers (ER)
[inside the memory cassette]

Device number	Current value	
	Before execution	After execution
$\left.S^{\bullet}\right)$	H 1234	HFFFF
$S^{\bullet}+1$	H 5678	HFFFF
$S^{\bullet}+2$	H 90 AB	HFFFF
$\vdots$	$\vdots$	$\vdots$
$S^{\bullet}+(2048 \times n)-1$	HCDEF	HFFFF

## Caution

## 1. Initialization of two or more sectors

When a memory cassette is attached, 18 ms is required to initialize one sector.
(When a memory cassette is not attached, only 1 ms or less is required to initialize one sector.)
When initializing two or more sectors, take either measure shown below.

- Set a large value to the watchdog timer D8000 using the following program Initial pulse


4) Monitor the maximum scan time D8012 (unit: 0.1 ms ) using the device/buffer memory batch monitor function in GX Works2.
5) Set the watchdog timer to the maximum scan time (D8012) or more. D8012 stores the maximum scan time in increments of 0.1 ms .
Rough guide to the watchdog timer set value D8000 (unit: ms) is the "value stored in D8012 divided by 10" added by 50 to 100 .

- Setting the WDT (FNC 07) instruction just before and after the INITR instruction as shown below:


If the processing time of the INITR command exceeds 200 ms , set the watchdog timer value D8000 (unit: ms) to the processing time or more.

## 2. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- Data can be written to the memory cassette (flash memory) up to 10,000 times.

Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

- Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When any device number other than the head device number of a sector of extension file registers is set to $\mathrm{S} \cdot$ (error code: K6706)
- When a device number to be initialized exceeds "32767" (error code: K6706) In this case, devices up to R32767 (ER32767) are initialized.
- When the protect switch of the memory cassette is set to ON (error code: K6770)


## Program example

In the program example shown below, the extension registers R0 to R2047 in the sector 0 are initialized.
Note that the extension file registers ER0 to ER2047 are also initialized if a memory cassette is attached.


- Extension registers $(\mathrm{R})$ [inside the built-in RAM]

Device number	Current value				
	Before execution	After execution			
R0	H1234	HFFFF			
R1	H5678	HFFFF			
R2	H90AB	HFFFF			
$\quad \vdots$				$\vdots$	$\vdots$
R2047	HCDEF	HFFFF			

### 33.4 FNC293 - LOGR / Logging R and ER

## Outline

This instruction logs specified devices, and stores the logged data to extension registers (R) in the RAM and extension file registers (ER) in a memory cassette.

1. Instruction format

	FNC 293	
	LOGR	P


16-bit Instruction	Mnemonic	Operation Condition
11 steps	LOGR	$\left\llcorner\begin{array}{l}\text { Continuous } \\ \text { Operation }\end{array}\right.$
	LOGRP	Pulse (Single) Operation


32 -bit Instruction Mnemonic	Operation Condition
-	
-	

2. Set data

Operand Type		Description
$\mathrm{S} \cdot$	Head device number to be logged ${ }^{* 1}$	
m	Number of devices to be logged $[1 \leq \mathrm{m} \leq 8000]$	
D 1	Head device number used in logging	16-bit binary
n	Number of destination sectors of used for logging $[1 \leq \mathrm{n} \leq 16]$	
$\mathrm{D} 2 \cdot$	Number of logged data	

*1. C200 to C255 cannot be set.
3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \text { IG } \end{array}$	Index			$\begin{aligned} & \text { Con- } \\ & \text { stant } \end{aligned}$		Real Number E	Character String	$\begin{array}{\|c} \hline \text { Pointer } \\ \hline P \\ \hline \end{array}$
	X	Y	M	T	C	$\checkmark$	D Cb	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S.)												$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$					
m														$\checkmark$						$\checkmark$	$\checkmark$			
(D1)															$\checkmark$									
n																				$\checkmark$	$\checkmark$			
(D2.)														$\checkmark$					$\checkmark$					

## Explanation of function and operation

1. 16-bit operation (LOGR and LOGRP)

While the instruction is driven, " $m$ " devices starting from S. are logged until " $n$ " sectors of extension registers (R) starting from (D1 and extension file registers (ER) in a memory cassette are filled.
The number of logged data is stored to (D2•).
If a memory cassette is not used, data is not written to extension file registers (ER).
Command

$\xrightarrow{\text { input }}$	$\begin{aligned} & \hline \text { FNC293 } \\ & \text { LOGRP } \end{aligned}$	(5.)	m	(D1)	n	(D2.)

## Logging data format



The table below shows the head device number in each sector:

Sector   number	Head device   number	Written device range
Sector 0	R0	R0 to R2047,   ER0 to ER2047
Sector 1	R2048	R2048 to R4095,   ER2048 to ER4095
Sector 2	R4096	R4096 to R6143,   ER4096 to ER6143
Sector 3	R6144	R6144 to R8191,   ER6144 to ER8191
Sector 4	R8192	R8192 to R10239,   ER8192 to ER10239
Sector 5	R10240	R10240 to R12287,   ER10240 to ER12287
Sector 6	R12288	R12288 to R14335,   ER12288 to ER14335
Sector 7	R14336	R14336 to R16383,   ER14336 to ER16383


Sector   number	Head device   number	Written device range
Sector 8	R16384	R16384 to R18431,   ER16384 to ER18431
Sector 9	R18432	R18432 to R20479,   ER18432 to ER20479
Sector 10	R20480	R20480 to R22527,   ER20480 to ER22527
Sector 11	R22528	R22528 to R24575,   ER22528 to ER24575
Sector 12	R24576	R24576 to R26623,   ER24576 to ER26623
Sector 13	R26624	R26624 to R28671,   ER26624 to ER28671
Sector 14	R28672	R28672 to R30719,   ER28672 to ER30719
Sector 15	R30720	R30720 to R32767,   ER30720 to ER32767

## Cautions

## 1. LOGR instruction

The LOGR instruction executes logging in each operation cycle in the continuous operation type. When logging should be executed only once by one input, use the pulse operation type.

## 2. Caution on using a memory cassette

Flash memory is adopted in a memory cassette. Make sure to initialize the data storage area in sector units before starting logging.
If the LOGR instruction is executed without initializing the data storage area, an operation error (error code: K6770) may be caused.

*1 Specify the same device as (D1- in LOGR instruction.
*2 Specify the same number as ( n ) in LOGR instruction.

## 3. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- Data can be written to the memory cassette (flash memory) up to 10,000 times.

Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes. When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

- Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When any device number other than the head device number of a sector of extension file registers is set to S. (error code: K6706)
- While data is written, the remaining area and the data quantity to be written are compared with each other. If the remaining storage area is insufficient, only a limited amount of data is written. (error code: K6706)
- When the protect switch of the memory cassette is set to ON (error code: K6770)
- When the collation result after data writing is "mismatch" due to omission of initialization or for another reason (error code: K6770)
When this error occurs, the current values (data) of extension registers $(R)$ may be lost. To avoid the data loss, back up the data of extension registers ( R ) in advance using the following procedure:

1) Set the PLC mode to STOP.
2) Create a new project in GX Works2.

This step is not necessary if it is alright to overwrite the current project.
3) Read the contents of extension registers (R) to GX Works2.
[1] Select "Online" $\rightarrow$ "Read from PLC..." to display Online Data Operation dialog box.
[2] Click "PLC Parameter/Network Parameter" and "Device Data/File Register" to check mark each of them.
[3] Click [Execute] button.
[4] When reading is completed, save the project.

4) Change the current program inside the PLC to the program shown in "Cautions on using a memory cassette" in "Cautions" on the previous page.
5) To the PLC, write the data which was temporarily withdrawn to GX Works2.
[1] Select "Online" $\rightarrow$ "Write to PLC..." to display the Online Data Operation dialog box.
[2] Click "PLC Parameter/Network Parameter" and "MAIN" to check mark each of them.
[3] Click [Execute] button to execute writing.

6) Change the PLC mode from STOP to RUN, execute the program, and store the data to the extension file registers inside the memory cassette.

## Program example

In the program example shown below, D1 and D2 are logged to the area from R2048 to R6143 every time X001 turns ON.


### 33.5 FNC294 - RWER / Rewrite to ER

## Outline

This instruction writes the current values of an arbitrary number of extension registers (R) stored in the RAM in the PLC to extension file registers (ER) stored in a memory cassette (flash memory or EEPROM) or the EEPROM built into the PLC.
Because RWER (FNC294) instruction is not supported in FX3UC PLC before Ver. 1.30, use the SAVER (FNC291) instruction instead.
$\rightarrow$ For the SAVER (FNC291) instruction, refer to Section 33.2.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
$\mathrm{S} \cdot$	Device number of extension register storing data	$16-\mathrm{bit} \mathrm{binary}$
n	Number of devices   $[$ FX3G/FX3GC: $1 \leq \mathrm{n} \leq 24000, F X 3 \cup / F X 3 \cup C: 0 \leq n \leq 32767]$ to be written (transferred)	

3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number	Character String	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R	U $\square$ \G $\square$	V	Z	Modify	K	H	E	" $\square$ "	P
(s.)															$\checkmark$				$\checkmark$					
n														$\checkmark$						$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (RWER)
1) In $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX} 3 \cup с \mathrm{PLCs}$

The contents (current values) of " $n$ " extension registers (R) starting from S. are written (transferred) to extension file registers with the same device numbers in a memory cassette (flash memory).

2) In $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} \mathrm{X}_{3} \mathrm{Gc}$ PLCs
a) When a memory cassette is connected (A memory cassette can be connected only to FX3G PLC.)

The contents (current values) of " $n$ " extension registers ( R ) starting from are written (transferred) to extension file registers having with same device numbers in a memory cassette (flash memory).

*1. All points specified by the instruction are written (transferred).
b) When a memory cassette is not connected

The contents (current values) of " $n$ " extension registers (R) starting from S• are written (transferred) to extension file registers which are stored in the EEPROM built into the PLC and have the same device numbers.

*2. All points specified by the instruction are written (transferred).

## Cautions

1．Cautions on writing data to a memory cassette（flash memory）for FX3U／FX3uc PLCs
Memory cassettes use flash memory．Note the following contents when writing data to extension file registers in a memory cassette with the RWER（FNC294）instruction．
－Though extension file registers to be written can be specified arbitrarily，writing is executed in sector units． It takes about 47 ms to write one sector．If the extension file registers to be written are located in two sectors，the instruction execution time will be about 94 ms ．
Make sure to change the set value of the watchdog timer D8000 before executing this instruction．


The table below shows the head device number in each sector：

Sector number	Device range
Sector 0	ER0 to ER2047
Sector 1	ER2048 to ER4095
Sector 2	ER4096 to ER6143
Sector 3	ER8192 to ER10239
Sector 4	ER10240 to ER12287
Sector 5	ER12288 to ER14335
Sector 6	ER14336 to ER16383
Sector 7	


Sector number	Device range
Sector 8	ER16384 to ER18431
Sector 9	ER18432 to ER20479
Sector 10	ER20480 to ER22527
Sector 11	ER22528 to ER24575
Sector 12	ER24576 to ER26623
Sector 13	ER26624 to ER28671
Sector 14	ER28672 to ER30719
Sector 15	ER30720 to ER32767

－Do not turn OFF the power while this instruction is being executed．If the power is turned OFF，execution of this instruction may be aborted．If execution is aborted，the data may be lost．Make sure to back up the data before executing this instruction．
$\rightarrow$ For the backup method，refer to the next page．
2．Cautions on writing data to a memory cassette（EEPROM）for FX3G PLC
Memory cassettes adopt the EEPROM．Note the following contents when writing data to extension file registers in a memory cassette using the RWER（FNC294）instruction．
－Do not turn OFF the power while this instruction is being executed．If the power is turned OFF，execution of this instruction may be aborted．If execution is aborted，the data may be lost．Make sure to back up the data before executing this instruction．
$\rightarrow$ For the backup method，refer to the next page．

## 3. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- In FX3u/FX3uc PLCs

Data can be written to the memory cassette (flash memory) up to 10,000 times.
Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the
PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.

- In FX3G/FX3Gc PLCs

Data can be written to the memory cassette (EEPROM) up to 10,000 times, and to the built-in memory (EEPROM) up to 20,000 times.
Every time the RWER (FNC294) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

Execution of the LOADR (FNC290)instruction is not counted as a write to the memory.

## Data backup method

When the contents of extension file registers (ER) and extension registers (R) should not be lost, back up the current values (data) of extension file registers (ER) and extension registers ( $R$ ) in advance using the following procedure:

1) Set the PLC mode to STOP.
2) Create a new project in GX Works2.

This step is not necessary if it is alright to overwrite the current project.
3) Read the contents of extension file registers (ER) and extension registers (R) to GX Works2.
[1] Select "Online" $\rightarrow$ "Read from PLC..." to display the Online Data Operation dialog box.
[2] Click "PLC Parameter/Network Parameter" and "Device Data/File Register" to check mark each of them.

3] Click the [Detail] button of the device memory to display the "Device Data Detail Setting" dialog box.
[4] Enter the file name to be saved to "Device Data Name".
[5] Check "Ext. register" and "Ext. file register"*1 of "Device Data Name", and click the [OK] button.
[6] Click [Execute] button to execute reading.
[7] When reading is completed, save the project.
*1. The extension file register range cannot be set in GX Developer whose version is earlier than


## Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

- When the last device number to be transferred exceeds "32767*1" (error code: K6706)

At this time, data is read (and transferred) until the last device number R32767*1

- When a memory cassette is not connected (error code: K6771) ${ }^{*}$
- When the protect switch of the memory cassette is set to ON (error code: K6770)
*1. The last device number is 23,999 in FX3G/FX3GC PLCs.
*2. An operation error is not caused in FX3G PLC because the contents of extension file registers stored in the EEPROM built into the PLC are read if a memory cassette is not connected.


## Program example

In the program example shown below, the contents of extension registers R10 to R19 (sector 0) are transferred to extension file registers (ER) when X000 turns ON.

## Program



## Operation



### 33.6 FNC295 - INITER / Initialize ER

## Outline

This instruction initializes extension file registers (ER) to "HFFFF" (<K-1>) in a memory cassette (flash memory) before executing the SAVER (FNC291) instruction.
Because the INITER (FNC295) instruction is not supported in FX3UC PLC earlier than Ver. 1.30, use INITR (FNC292) instruction instead.
$\rightarrow$ For SAVER (FNC291) instruction, refer to Section 33.2. $\rightarrow$ For INITR (FNC292) instruction, refer to Section 33.3.

## 1. Instruction format



$$
\frac{16 \text {-bit Instruction }}{5 \text { steps }}
$$

Mnemonic
INITER
INITERP


2. Set data

Operand Type	Description	Data Type
$\mathrm{S} \cdot$	Head device number of extension register sector with the same device number as the   extension file register to be initialized	$16-\mathrm{bit}$ binary
n	Number of sectors of extension file registers to be initialized	

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitU $\square \backslash G \square$	Index			Constant		Real Number   E	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Charac- } \\ \text { ter String } \end{array} \\ \hline " \square " \\ \hline \end{array}$	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(5.)															$\checkmark$				$\checkmark$					
n																				$\checkmark$	$\checkmark$			

## Explanation of function and operation

1. 16-bit operation (INITER and INITERP)
" n " sectors of extension file registers (ER) in a memory cassette (flash memory) with the same device number as S. are initialized to "HFFFF" (<K-1>).

Initialization is executed in sectors.


The table below shows the head device number in each sector:

Sector   number	Head device   number	Initialized device range
Sector 0	R0	ER0 to ER2047
Sector 1	R2048	ER2048 to ER4095
Sector 2	R4096	ER4096 to ER6143
Sector 3	R6144	ER6144 to ER8191
Sector 4	R8192	ER8192 to ER10239
Sector 5	R10240	ER10240 to ER12287
Sector 6	R12288	ER12288 to ER14335
Sector 7	R14336	ER14336 to ER16383


Sector   number	Head device   number	Initialized device range
Sector 8	R16384	ER16384 to ER18431
Sector 9	R18432	ER18432 to ER20479
Sector 10	R20480	ER20480 to ER22527
Sector 11	R22528	ER22528 to ER24575
Sector 12	R24576	ER24576 to ER26623
Sector 13	R26624	ER26624 to ER28671
Sector 14	R28672	ER28672 to ER30719
Sector 15	R30720	ER30720 to ER32767

## Operation

- Extension file registers (ER) [inside the memory cassette]

Device number	Current value	
	Before execution	After execution
$\mathrm{S} \cdot$	H 1234	HFFFF
$\mathrm{S} \cdot+1$	H 5678	HFFFF
$\mathrm{S} \cdot+2$	H90AB	HFFFF
$\vdots$	$\vdots$	$\vdots$
$\mathrm{S} \cdot+(2048 \times n)-1$	HCDEF	HFFFF

## Caution

About 25 ms is required to initialize one sector.
When initializing two or more sectors, take either measure shown below.

- Set a large value to the watchdog timer D8000 using the following program

Initial pulse


## Guideline of the watchdog timer set value

A value acquired by the following procedure can be regarded as the guideline of the watchdog timer set value. If an acquired value is 200 ms or less, however, it is not necessary to change the watchdog timer set value.

1) Write a program to be executed from GX Works 2 to the PLC.
[Online] $\rightarrow$ [Write to PLC...]
2) Set the current value of D8000 (unit: ms) to "1000" using the [Modify Value] function in GX Works2.
[Debug] $\rightarrow$ [Modify Value]
3) Set the PLC mode to RUN, and execute the program. (Execute this instruction also.)
4) Monitor the maximum scan time D8012 (unit: 0.1 ms ) using the device/buffer memory batch monitor function in GX Works2.
5) Set the watchdog timer to the maximum scan time (D8012) or more. D8012 stores the maximum scan time in increments of 0.1 ms .
Rough guide to the watchdog timer set value D8000 (unit: ms) is the "value stored in D8012 divided by 10" added by 50 to 100

- Setting the WDT (FNC 07) instruction just before and after the INITER instruction as shown below:


If the processing time of the INITER command exceeds 200 ms , set the watchdog timer value D8000 (unit: ms) to the processing time or more.

## 2. Allowable number of writes to the memory

Note the following cautions on access to extension file registers.

- Data can be written to the memory cassette (flash memory) up to 10,000 times.

Every time the INITR (FNC292), RWER (FNC294) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.
When a continuous operation type instruction is used, data is written to the memory in every operation cycle of the PLC. To prevent this, make sure to use a pulse operation type instruction.
Writing data to the memory is executed also by writing data to file registers from peripheral equipment (programming software, handy programming panels, and display units).

- Execution of the LOADR (FNC290), SAVER (FNC291) or LOGR (FNC293) instruction is not counted as a write to the memory. However, it is necessary to initialize the writing target sector before executing the SAVER (FNC291) or LOGR (FNC293) instruction.
Every time the INITR (FNC292) or INITER (FNC295) instruction is executed, it is counted as a write to the memory. Make sure not to exceed the allowable number of writes.


## Errors

An operation error is caused in the following cases；The error flag M8067 turns ON，and the error code is stored in D8067．
－When any device number other than the head device number of a sector of extension file registers（ER）is set to （S•）（error code：K6706）
－When a device number to be initialized exceeds＂32767＂（error code：K6706） In this case，devices up to R32767（ER32767）are initialized．
－When the protect switch of the memory cassette is set to ON（error code：K6770）
－When a memory cassette is not connected（error code：K6771）

## Program example

In the program example shown below，the extension file registers ERO to ER2047 in sector 0 are initialized．

－Extension file registers（ER）［inside the memory cassette］

Device number	Current value				
	Before execution	After execution			
ER0	H1234	HFFFF			
ER1	H5678	HFFFF			
ER2	H90AB	HFFFF			
$\vdots$				$\vdots$	$\vdots$
ER2047	HCDEF	HFFFF			

## 34. FX3u-CF-ADP Applied Instructions - FNC300 to FNC305

FNC No.	Mnemonic	Symbol	Function	Reference
300	FLCRT		File create / check	Section 34.1
301	FLDEL		File delete / CF card format	Section 34.2
302	FLWR		Data write	Section 34.3
303	FLRD		Data read	Section 34.4
304	FLCMD		FX3U-CF-ADP command	Section 34.5
305	FLSTRD		FX3U-CF-ADP status read	Section 34.6

### 34.1 FNC300 - FLCRT / File create $\cdot$ check

## Outline

The FLCRT instruction creates a file inside the CompactFlash ${ }^{\text {TM }}$ card mounted in the FX3U-CF-ADP. When executed after creation of a new file, the FLCRT instruction checks the association with the file ID, and evaluates it.
$\rightarrow$ For explanation of the instruction, refer to the CF-ADP Manual.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S1•	File ID (Refer to Subsection 34.1.1)	16-bit binary
S2•	File name (Refer to Subsection 34.1.1)	Character string
S3•	File creation parameter (Refer to Subsection 34.1.1)	16 -bit binary
n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	$16-$ bit binary

3. Applicable devices

Operand Type	Bit Devices								Word Devices												Others				
	System User								Digit Specification				System User				Special   Unit   U $\square \backslash \square$	Index			Constant		Real   Number	Charac-ter String	PointerP
	X	Y	M	T	C			D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S1-)															$\triangle$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
(S2.)															-	$\checkmark$				$\checkmark$				$\checkmark$	
(3.)															-	$\checkmark$				$\checkmark$					
n																					$\checkmark$	$\checkmark$			

A: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (FLCRT)

Command


- When the file ID is "KO"

When S1•) is "K0", the FLCRT instruction creates a FIFO file.
When the PLC creates two or more files for FIFO file, and executes FIFO (first in, first out) in units of files.
The PLC keeps the latest file, and deletes older files so that the total capacity of FIFO files and other files does not exceed the specified capacity.

- When the file ID is "K1" to "K63"

When (S1- is "K1" to "K63", the FLCRT instruction creates a file having the specified file name.
Sequence programs use the file ID for specifying a file. Accordingly, each file name saved in the CompactFlash ${ }^{\text {TM }}$ card is associated with the file ID, and controlled by the file ID table.
If a file having the specified file name already exists and is registered in the file ID table, the PLC finishes the FLCRT instruction without executing any processing.
If a file having the specified name already exists but is not registered in the file ID table, the PLC only registers the existing file to the file ID table.

### 34.1.1 Detailed explanation of setting data

Details on the setting data in the FLCRT instruction are as shown below.

	Setting items	Description	Data Type
	(S1.)	File ID   This ID number is associated with the file name.   The FLCRT instruction creates a file, and associates the file name with the file ID at the same time. The user should use the file ID for specifying a file after that.   Allowable setting range : K0 to K63 ("K0" indicates "FIFO file".)	16-bit binary
	S2•)	File name   When $\mathrm{S}_{1}{ }^{-}$is "K0 (FIFO file)"   Not used (ignored)   Use an unused device. ( D or R )   When S1• is "K1" to "K63"   Specify the file name in up to 8 characters until "null" or "null + null".   Half-width alphanumeric characters and half-width symbols permitted in the MS-DOS are available.   Half-width symbols : !, \#, \$, \%, \&, ', (, ), +, -, @, ^, _, ', ~   The extension is fixed to "CSV"	Character string
	S3.)	Time stamp setting   Set whether or not the time stamp is added to the file. Specify the format when adding the time stamp.   K0 : None (NULL)   K1 : yyyy/mm/dd hh:mm:ss   K2 : yy/mm/dd hh:mm:ss   K3 : dd/mm/yyyy hh:mm:ss   K4 : dd/mm/yy hh:mm:ss   K5 : mm/dd/yyyy hh:mm:ss   K6 : mm/dd/yy hh:mm:ss   K7 : hh:mm:ss	16-bit binary
	S3• +1	Data type   Set the data type to be saved.   K0 : No data type specification (mixed type)   K1 : Bit type   K2 : Decimal type (16-bit)   K3 : Decimal type (32-bit)   K4 : Hexadecimal type (16-bit)   K5 : Hexadecimal type (32-bit)   K6 : Real numbers (Floating point data) Exponent expression type   K7 : Character string	16-bit binary
	(S3.) +2	Maximum number of lines Set the maximum number of lines. Allowable setting range : K1 to K32767*1	16-bit binary
	(S3.) +3	When S1• is "K0"   Set the CompactFlash ${ }^{\text {TM }}$ card use ratio.   Specify the ratio (\%) out of the whole CompactFlash ${ }^{\text {TM }}$ card capacity to be used.   Allowable setting range : 10 to 90 (\%)	16-bit binary
		When S1• is "K1" to "K63"   File processing to be executed when the specified maximum number of lines is reached. Set the file processing method to be executed when the number of lines reaches the specified maximum value.   K0 : Stops execution. (The line position remains the specified maximum line position.)   K 1 : Returns to the head (ring buffer file).	16-bit binary
	n	Channel number used by the CF-ADP   K1 : ch1   K2: ch2	16-bit binary

*1. Adjust the maximum number of lines to specify the file size available in the used application software used.

## Cautions

- When the file ID is "KO"

1) The CF-ADP can create up to 1000 files (within the CompactFlash ${ }^{\text {TM }}$ card capacity).
2) The file name is set to "FILE0000.CSV" to "FILE0999.CSV".

- When the file ID is "K1" to "K63"

1) The user can create up to 63 files (within the CompactFlash ${ }^{\top M}$ card capacity).
2) The FLCRT instruction is completed abnormally if different file names are specified for the same file ID or if the same file name is specified for different file IDs.

- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"IVCK (FNC270) to IVMC (FNC275)" instruction and an "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.


### 34.2 FNC301 - FLDEL / File delete•CF card format

## Outline

The FLDEL instruction deletes files stored in the CompactFlash ${ }^{\top M}$ card, or formats the CompactFlash ${ }^{\text {TM }}$ card.
$\rightarrow$ For explanation of the instruction, refer to the CF-ADP Manual.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
$\mathrm{S} 1 \cdot$	File ID (Refer to Subsection 34.2.1)	16-bit binary
$\mathrm{S} 2 \cdot$	File delete method (Refer to Subsection 34.2.1)	$16-$ bit binary
n	Used channel number [contents of setting : K1 $=$ ch1, K2 $=$ ch2]	$16-$ bit binary

3. Applicable devices


A: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (FLDEL)

Command


The FLDEL instruction deletes files stored in the CompactFlash ${ }^{\text {TM }}$ card, or formats the CompactFlash ${ }^{\text {TM }}$ card in the following method.

- Specify file deletion or file formatting using (S1-.
- When $\mathrm{S}_{1-}$ - is "K-1 (HOFFFF)", the FLDEL instruction deletes all files whose ID is 0 to 63.
- When S1- is "K0" to "K63", the FLDEL instruction deletes the file associated with the specified file ID.
- When S1- is "K512 (H200)", the FLDEL instruction formats the CompactFlash ${ }^{\text {TM }}$ card.
- Specify the file deletion method or format type using ©2•.
- When S1• is "K-1 (H0FFFF)" or "K0" to "K63", specify the deletion method

K0 : The FLDEL instruction deletes the specified file.
K1 : The FLDEL instruction deletes the association between the file name and the file ID (but does not delete the file itself).
However, when the file ID specified in $\mathrm{S}_{2 \cdot}$ is " 0 ", the FLDEL instruction deletes the file regardless of the setting of $\mathrm{S}_{2 \cdot}$.

- When S1• is "K512 (H200)", specify the format type.

K256(H100) : The FLDEL instruction formats the CompactFlash ${ }^{\text {TM }}$ card in FAT16 format.
For details, refer to Subsection 34.2.1.

### 34.2.1 Detailed explanation of setting data

Details on the setting data in the FLDEL instruction are as shown below.

Setting items	Description	Data Type
S1-	File ID   K-1(H0FFFF) : The FLDEL instruction deletes all files.   K0 to K63 : The FLDEL instruction deletes a file associated with the specified file ID. K512(H200) : The FLDEL instruction formats the CompactFlash ${ }^{\text {TM }}$ card.	16-bit binary
S2.)	When S1• is "K-1 (H0FFFF)" or "K0" to "K63"   Specify the deletion method.   K0 : The FLDEL instruction deletes the specified file.   K1 : The FLDEL instruction deletes the association between the file name and the file ID (but does not delete the file itself).   However, when the file ID specified in $\mathrm{S}_{1 \cdot}$ - is " 0 ", the FLDEL instruction deletes the file itself regardless of the setting of $\square$ S2•   When $\mathrm{S}_{1} \cdot$ is "K512 (H200)"   Specify the format type.   K256(H100) : The FLDEL instruction formats the CompactFlash ${ }^{\text {TM }}$ card in the FAT16 format.	16-bit binary
n	Channel number used by the CF-ADP   K1 : ch1   K2 : ch2	16-bit binary

## Cautions

- When the file ID "K0 (FIFO file)" or "K-1 (all files)" is specified, it may take approximately 1 minute to delete the files depending on the number of stored files.
- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"IVCK (FNC270) to IVMC (FNC275)" instruction and an "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.


### 34.3 FNC302 - FLWR / Data write

## Outline

The FLWR instruction writes data to the CompactFlash ${ }^{\text {TM }}$ card or to the buffer inside the FX3U-CF-ADP.
$\rightarrow$ For explanation of the instruction, refer to the CF-ADP Manual.

1. Instruction format

	FNC 302	
	$\ldots$	
FLWR	$\ldots$	


16-bit Instruction	Mnemonic	Operation Condition
11 steps	FLWR	$\text { L } \begin{aligned} & \text { Continuous } \\ & \text { Operation } \end{aligned}$


32-bit Instruction	Mnemonic	Operation Condition
-		
-		

2. Set data

Operand Type	Description	Data Type
S1•	File ID (Refer to Subsection 34.3.1)	16-bit binary
S2•	Head of devices which store data to be written (Refer to Subsection 34.3.1)	-
S3•	Data write parameter (Refer to Subsection 34.3.1)	16 -bit binary
(D•	Position after data writing (Refer to Subsection 34.3.1)	$16-$ bit binary
n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	16-bit binary

## 3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash \mid G \square \end{array}$	Index			$\begin{aligned} & \text { Con- } \\ & \text { stant } \end{aligned}$		Real   Number	Character String	$\begin{array}{\|c} \hline \text { Pointer } \\ \hline P \end{array}$
	X	Y	M	T	-	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		v	Z	Modify	K	H			
(51.)														4	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
(52.)	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$						$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$					
(S3.)														$\triangle$	$\checkmark$				$\checkmark$					
(D.)														4	$\checkmark$				$\checkmark$					
n																				$\checkmark$	$\checkmark$			

A: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (FLWR)


The FLWR instruction writes data specified by the device S2• to a file stored in the CompactFlash ${ }^{\top}{ }^{\mathrm{TM}}$ card specified by the file ID or to the buffer inside the CF-ADP. The FLWR instruction can overwrite data in the line position specified by the device $\mathrm{S}_{3} \cdot+1$, and can write additional data ( $\mathrm{K}-1$ ). When the writing destination is the buffer inside the CFADP, the FLWR instruction can only execute additional writing. When writing is completed, the line position and column position after writing are as follows.

- When data in 1 line is written additionally
- Line position after writing : Written line position + K1
- Column position after writing : K1
- When a line having existing data is overwritten
- Line position after writing :

Written line position if data is not written to the final column position of specified the line position Line position next to the written line position if data is written to the final column position of the line

- Column position after writing:

Column position next to the final written data point K1 if data is written to the final data point in the line "K1" if data is written to the final data point in the line

Both additional writing and overwriting are executed to the maximum number of lines specified during file creation. If data is written up to the final column position, the line position after writing varies depending on the file type and setting.

- When the processing is stopped by the maximum line position in a normal file

Line position after writing = Maximum line position + K1
$\mathrm{K}-32768$ when the maximum line position is "K32767"

- In the case of a normal file in which processing returns to the head of the file from the end of the file (ring buffer file) Line position after writing $=$ K1

In either case, the column position after writing is "K1".

### 34.3.1 Detailed explanation of setting data

Details on the setting data in the FLWR instruction are as shown below.

	Setting items	Description	Data Type
	S1.	File ID : K0 to K63	16-bit binary
	S2.	Head of devices which store data to be written.   Specify the head of devices which store the data to be written to the CompactFlash ${ }^{\mathrm{TM}}$ card.	-
	S3.	Specify the data writing type   K0: Mixed type   K1 : Bit type   K2 : Decimal type (16-bit)   K3 : Decimal type (32-bit)   K4 : Hexadecimal type (16-bit)   K5 : Hexadecimal type (32-bit)   K6 : Real numbers (Floating point data) Exponent expression type (32-bit)   K7 : Character string ( 512 half-width/full-width characters maximum)   K8 : Data name: Character string consisting of up to 32 half-width/full-width characters. Index, DATE TIME are added automatically.	16-bit binary
	(S3. +1	Specify the line position of the writing destination, or specify additional writing. Line position of the writing destination : K1 to specified maximum number of lines Additional writing : K-1	16-bit binary
	S3• +2	Specify the data column position in the writing destination.   Column position : K1 to K254   Additional writing : K-1	16-bit binary
	S3• +3	Number of written data points : K1 to K254	16-bit binary
	S3• +4	Writing destination   K0 : CompactFlash ${ }^{\text {TM }}$ card   K1 : Buffer inside the CF-ADP	16-bit binary
	(D•)	Line position after writing : K1 to specified maximum number of lines	16-bit binary
	(D.) +1	Column position after writing : K1 to K254	16-bit binary
	n	Channel number used by the CF-ADP   K1: ch1   K2: ch2	16-bit binary

## Cautions

- The FLWR instruction is completed abnormally if a CompactFlash ${ }^{\top \mathrm{TM}}$ card is not mounted.
- The user should pay close attention to the number of times data is written when the writing destination is set to the CompactFlash ${ }^{\text {M }}$ card because data is written every time the FLWR instruction is executed.
For example, if data is written to the CompactFlash ${ }^{\text {TM }}$ card every one minute, data is written 100,000 times in approximately 2 months.
- Even if the writing destination is set to the buffer inside the CF-ADP, data is written to the CompactFlash ${ }^{\top M}$ card in the case of overwriting.
- The FLWR instruction writes data to the CompactFlash ${ }^{\text {TM }}$ card after the internal buffer inside the CF-ADP becomes full when the writing destination is set to the buffer. Data stored in the internal buffer inside the CF-ADP is erased when a (instantaneous or long) power interruption occurs.
- When the data type is a data name (K8), the user can specify only the head line position before writing other data. Index and DATE TIME are added automatically.
- The FLWR instruction may require several scans to acquire data. Take proper measures such as saving acquired data in another device if data consistency is required.
- It is necessary to set the device number in multiples of 16 when a bit device is specified in $\mathrm{S}_{2 \cdot}$ and the data type is set to anything other than bit type. When a word device is specified in S2. and the data type is set to bit, the FLWR instruction acquires data to be written from the least significant bit of the specified device.
- When S3. is "K7" or "K8", 00 H , which indicates the end of the string, must be added to the end of the character string.
- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"IVCK (FNC270) to IVMC (FNC275)" instruction and an "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.


### 34.4 FNC303 - FLRD / Data read

## Outline

The FLRD instruction reads data from the CompactFlash ${ }^{\text {TM }}$ card.
$\rightarrow$ For explanation of the instruction, refer to the CF-ADP Manual.

1. Instruction format

32-bit Instruction Mnemonic Operation Condition
$\qquad$
2. Set data

Operand Type	Description	Data Type
S1•	File ID (Refer to Subsection 34.4.1)	16-bit binary
S2•	Data read parameter (Refer to Subsection 34.4.1)	16-bit binary
D1•	Device which stores the read data (Refer to Subsection 34.4.1)	-
$\mathrm{D} 2 \cdot$	Number of data points existing in the specified line (Refer to Subsection 34.4.1)	16 -bit binary
n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	16-bit binary

3. Applicable devices

Operand Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Special } \\ \text { Unit } \end{array} \\ \hline \text { U } \square \backslash G \square \\ \hline \end{array}$	Index			Constant			Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
S1-														$\Delta$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
S2.														-	$\checkmark$				$\checkmark$					
(D1-)		$\checkmark$	$\checkmark$			$\checkmark$								$\checkmark$	$\checkmark$				$\checkmark$					
(D2.)														$\Delta$	$\checkmark$				$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (FLRD)


The FLRD instruction reads corresponding number of data from the position determined by the line position and column position in the file specified by the file ID, and stores the read data to a device specified in (D1.).

### 34.4.1 Detailed explanation of setting data

Details on the setting data in the FLRD instruction are as shown below.

	Setting items	Description	Data Type
	S1.	File ID : K0 to K63	16-bit binary
	S2.)	Specify the data reading type   K0 : Mixed type   K1: Bit type   K2 : Decimal type (16-bit)   K3 : Decimal type (32-bit)   K4 : Hexadecimal type (16-bit)   K5 : Hexadecimal type (32-bit)   K6 : Real numbers (Floating point data) Exponent expression type (32-bit)   K7 : Character string ( 512 half-width/full-width characters maximum)	16-bit binary
	(S2• +1	Specify the line position from which data is read. Line position : K1 to specified maximum number of lines	16-bit binary
	(S2. +2	Specify the column position from which data is read. Column position : K1 to K254	16-bit binary
	(S2- +3	Read points : K1 to K254	16-bit binary
	(D1-)	Device which stores the read data   Specify the head of devices which store the data read from the CompactFlash ${ }^{\text {TM }}$ card.	16-bit binary
	(D2.)	Number of data points existing in the specified line K1 to K254   K0 : No data	16-bit binary
	n	Channel number used by the CF-ADP   K1 : ch1   K2 : ch2	16-bit binary

## Cautions

- The FLRD instruction is completed abnormally if a CompactFlash ${ }^{\text {TM }}$ card is not mounted.
- The FLRD instruction may require several scans to acquire data. Use the acquired data only after confirming completion of the FLRD instruction if data consistency is required.
- It is necessary to set the device number in a multiple of 16 when a bit device is specified in D1. and the read data type is anything other than bit. When a word device is specified in D1. and the read data type is bit, the FLRD instruction stores data read from the least significant bit of the specified word device.
- When the data type is anything other than character string and the number of devices which store the read data is insufficient, the FLRD instruction does not read data from the CF-ADP. An error occurs.
When the data type is a character string, the character string length is unknown. The PLC stores as much read data as possible. When reading is not completed even after the final device is reached, an error occurs.
- It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"IVCK (FNC270) to IVMC (FNC275)" instruction and an "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.


### 34.5 FNC304 - FLCMD / FX3U-CF-ADP command

## Outline

The FLCMD instruction gives instruction for operation to the FX3U-CF-ADP.
$\rightarrow$ For explanation of the instruction, refer to the CF-ADP Manual.

## 1. Instruction format


2. Set data

Operand Type	Description	Data Type
$\mathrm{S} \cdot$	Instruction for operation (Refer to Subsection 34.5.1)	16 -bit binary
n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	16 -bit binary

## 3. Applicable devices

Operand   Type	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special Unit	Index			Constant		Real Number E	Character String	Pointer   P
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(S•)														-	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
n																				$\checkmark$	$\checkmark$			

A: Except special data register (D)

## Explanation of function and operation

1. 16-bit operation (FLCMD)


The FLCMD instruction gives instruction for operation to the CF-ADP.
The contents of instruction are as follows.

- When (S• is "K-1", the FLCMD instruction forcibly writes all buffered data (stored in the buffer inside the CF-ADP) to the CompactFlash ${ }^{\text {TM }}$ card.
- When S. is "K0" to "K63", the FLCMD instruction forcibly writes the buffered data of the specified file ID (stored in the buffer inside the CF-ADP) to the CompactFlash ${ }^{\text {TM }}$ card.
- When (S. is "K256 (H100)", the FLCMD instruction sets the CompactFlash ${ }^{T M}$ card to the mounted status if it is in the unmounted status.
- When S. is "K512 (H200)", the FLCMD instruction sets the CompactFlash ${ }^{\text {TM }}$ card to the unmounted status if it is in the mounted status.
- When © ${ }^{(\cdot)}$ is "K1280 (H500)", the FLCMD instruction clears error codes stored in the CF-ADP.

For details, refer to Subsection 34.5.1.

### 34.5.1 Detailed explanation of setting data

Details on the setting data in the FLCMD instruction are as shown below.

Setting items	Description	Data Type
(S•)	Contents of instruction for operation   K0 to K63 : Forcibly writes the buffered data of the specified file ID to the CompactFlash ${ }^{\text {TM }}$ card. $^{\text {ch }}$.   K-1 : Forcibly writes all buffered data to the CompactFlash ${ }^{\text {TM }}$ card.   K256(H100) : Sets the CompactFlash ${ }^{\text {TM }}$ card to the mounted status ${ }^{* 1}$.   K512(H200) : Sets the CompactFlash ${ }^{\text {TM }}$ card to the unmounted status ${ }^{*}$.   K1280(H500) : Clears error codes stored in the CF-ADP.	16-bit binary
n	Channel number used by the CF-ADP   K1 : ch1   K2: ch2	16-bit binary

*1. The CompactFlash ${ }^{\text {TM }}$ card is available in the "mounted" status.
*2. The CompactFlash ${ }^{\text {TM }}$ card is unavailable in the "unmounted" status.

## Cautions

It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"IVCK (FNC270) to IVMC (FNC275)" instruction and an "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.

### 34.6 FNC305 - FLSTRD / FX3U-CF-ADP status read

Outline
The FLSTRD instruction reads the status (including the error information and file information) of the FX3U-CF-ADP.

1. Instruction format

2. Set data

Operand Type	Description	Data Type
S•	Contents of status to be read (Refer to Subsection 34.6.1)	16-bit binary
$\mathrm{D} \cdot$	Head device to which the read status is written (Refer to Subsection 34.6.1)	16 -bit binary
n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	16 -bit binary

3. Applicable devices

$\begin{aligned} & \text { Oper- } \\ & \text { and } \\ & \text { Type } \end{aligned}$	Bit Devices							Word Devices												Others				
	System User							Digit Specification				System User				Special   UnitUपIGロ	Index			Con-   stant		Real   Number   E	Character String"口"	Pointer
	X	Y	M	T	C	S	D $\square . \mathrm{b}$	KnX	KnY	KnM	KnS	T	C	D	R		V	Z	Modify	K	H			
(s.)														$\Delta$	$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$			
(D.)														-	$\checkmark$				$\checkmark$					
n																				$\checkmark$	$\checkmark$			

©: Except special data register (D)

## Explanation of function and operation

## 1. 16-bit operation (FLSTRD)

Command


The FLSTRD instruction reads the status information of the CF-ADP. The following contents can be read.
The number of data stored in $\mathrm{D}^{-}$varies depending on the contents of the read status.

- When (S. is "K0" to "K63" the FLSTRD instruction reads the final line position and final column position of each file.
- When S. is "K256 (H100)" the FLSTRD instruction reads file IDs stored in the CompactFlash ${ }^{\text {TM }}$ card.
- When (S. is "K512 (H200)" the FLSTRD instruction reads the data capacity.
- When S. is "K768 (H300)" the FLSTRD instruction reads the version information of the CF-ADP.
- When (S. is "K1024 (H400)" the FLSTRD instruction reads the error information (error flag) for errors having occurred in the CF-ADP.
- When S. is "K1280 (H500)" the FLSTRD instruction reads error codes and error code details. Up to 5 of the latest error codes and error code details can be stored.

For details, refer to Subsection 34.6.1.

### 34.6.1 Detailed explanation of setting data

Details on the setting data in the FLSTRD instruction are as shown below.

Setting items	Description	Data Type
(S.)	Contents of status to be read   K0 to K63 : Final line position of each file   K256(H100) : File IDs stored in the CompactFlash ${ }^{\text {TM }}$ card   K512(H200) : Capacity of the CompactFlash ${ }^{\text {TM }}$ card   K768(H300) : Version of the CF-ADP   K1024(H400) : Error information (error flag)   K1280(H500) : Error codes	16-bit binary
(D.)	Head device to which the read status is written   The number of data points stored in $\square$ varies depending on the contents of the read status.	16-bit binary
n	Channel number used by the CF-ADP   K1 : ch1   K2: ch2	16-bit binary

- When (S• is "K0" to "K63"

The FLSTRD instruction reads the final line position and final column position of each file.

Setting items	
D•	Final line position   K1 to the specified maximum line position
$\left(D^{\cdot}+1\right.$	Final column position

- When (S• is "K256 (H100)"

The FLSTRD instruction reads file IDs stored in the CompactFlash ${ }^{T M}$ card. For a file ID corresponding to the read data, refer to the file ID correspondence table shown below.
When a file exists, a bit corresponding to the file ID turns ON.

Setting items		Description
(D.)	Stores the existence of file IDs.	
(D.) +1		
(D.) +2		
(D.) +3		

File ID correspondence table

Setting items	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
(D.)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(D.) +1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(D.) +2	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
(D.) +3	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48

- When (S. is "K512 (H200)"

The FLSTRD instruction reads the data capacity, used space and free space of the CompactFlash ${ }^{\text {TM }}$ card to the following devices respectively.

Setting items	
D• +1, D•	Data capacity of the CompactFlash ${ }^{T M}$ card   (kB) Units, If the data capacity is less than $1 \mathrm{kB}, " 1 "$ is stored.
D• +3, D• +2	Used space of the CompactFlash ${ }^{T M}$ card   (kB) Units, If the data size is less than $1 \mathrm{kB}, " 1 "$ is stored.
D• +5, D• +4	Free space of the CompactFlash ${ }^{T M}$ card   (kB) Units, If the data size is less than $1 \mathrm{kB}, " 1 "$ is stored.

- When (S. is "K768 (H300)"

The FLSTRD instruction reads the version information of the CF-ADP.

Setting items		Description
D•	Stores the version of CF-ADP.   (Example) K100 = Ver. 1.00	

- When (S. is "K1024 (H400)"

The FLSTRD instruction reads the error information (error flag).

Setting items	
	Error detection signal
b0 : The CompactFlash ${ }^{\text {TM }}$ card is not mounted.	
b1 : The CompactFlash ${ }^{\text {TM }}$ card is full.	
b2 : An error has occurred in the CF-ADP.	
b3 : CF-ADP H/W error	
b4 : CompactFlash ${ }^{\text {TM }}$ card error	
	b5 to b15 : Not used

- When (S. is "K1280 (H500)"

The FLSTRD instruction reads the error code and error code details for errors having occurred in the CF-ADP. Up to 5 of the latest error codes and error code details can be stored.

Setting items	Description
(D.)	Error code 1
(D.) +1	Error code details 1
(D.) +2	Error code 2
(D.) +3	Error code details 2
(D.) +4	Error code 3
(D.) +5	Error code details 3
(D.) +6	Error code 4
(D. +7	Error code details 4
(D.) +8	Error code 5
(D.) +9	Error code details 5

## Cautions

It is not permitted to use an "RS (FNC 80)/RS2 (FNC 87)"/"ADPRW (FNC276)"/"IVCK (FNC270) to IVMC (FNC275)" instruction and an "FLCRT (FNC300) to FLSTRD (FNC305)" instruction for the same port.

## 35. SFC Program and Step Ladder

This chapter explains the programming procedures and sequence operations for the "SFC" and "step ladder" programming methods in GX Works2 and GX Developer.

### 35.1 SFC Program

### 35.1.1 Outline

Sequence control using the SFC (sequential function chart) is available in FX PLCs.
In SFC programs, the role of each process and the overall control flow can be expressed easily based on machine operations, so sequence design is easy. Accordingly, machine operations can be easily transmitted to any person, and created programs are efficient in maintenance, specifications changes and actions against problems.
When SFC programs and step ladder instructions are programmed conforming to the same rules, they are compatible with each other
As a result, the same contents can be handled in relay ladder charts which are familiar and easy to understand.

### 35.1.2 Explanation of function and operation

In SFC programs, a state relay State $S$ is regarded as one control process, and the input conditions and output control sequence are programmed in each process.
Because the preceding process is stopped when the program execution proceeds to the next process, a machine can be controlled using simple sequences for each process.

## Operation of state relay State $\mathbf{S}$ and driven instruction

In SFC programs, each process performed by the machine is expressed by a state relay.
Operations of internal circuits connected to state relays are classified into three types, execution in the contact ON status, execution in the contact OFF status (for one operation cycle) and non-execution.

- Execution in the contact ON status:

When a state relay turns ON, a connected circuit (internal circuit) is activated with a STL contact.

- Execution in the contact OFF status (for one operation cycle): When a condition (transfer condition) provided between state relays is satisfied, the next state relay turns ON, and the state relay which has been ON before hand turns OFF (transfer operation). In the state relay ON status transfer process, both state relays are ON only momentarily (for one operation cycle). In the next operation cycle after the ON status is transferred to the next state relay, the former state relay is reset to OFF. A drive instruction connected to the bus line of the reset state relay is executed in the contact OFF status in one operation cycle regardless of the actual contact status before the drive instruction. When the transfer state relay $S$ is used in a contact instruction, however, the contact image is executed in the OFF status immediately after the transfer condition is satisfied.
- Non-execution:

An instruction is not executed in the contact OFF status after the operation cycle where the instruction was executed in the contact OFF status (jump status).

- The figure below shows the timing chart of the state relay (internal circuit) activation status.

Execution in the contact ON status


- A state relay number can only be used once.

*1. Output coils can be used again in different state relays.


### 35.1.3 SFC program creating procedure

Create an SFC program using the following procedure:

## 1. Operation example



1) When the start pushbutton switch is pressed, the truck moves forward. When the limit switch LS1 turns ON, the truck immediately starts to move backward.
(The limit switch LS1 is normally OFF, and turns ON when the truck reaches the forward limit. Other limit switches function in the same way.)
2) When the truck moves backward and the limit switch LS2 turns ON, the truck stops for 5 seconds, and then starts to move forward again. When the limit switch LS3 turns ON, the truck immediately starts to move backward.
3) When LS2 turns ON after that, the truck driving motor stops.
4) When the start pushbutton switch is pressed again after a series of operations finish, the above operation is repeated.

## 2. Creating a process drawing

Create the process drawing shown on the right using the following procedure:

1) Divide the operation described in the above example into individual processes, and express each process in a rectangle in the order of operation from top to bottom.
2) Connect each process with vertical lines, and write the condition for each proceeding process. When performing repeated operations, indicate with an arrow the process the truck will return to after a series of operations finish.
3) Write the operation performed in each process on the right side of each rectangle indicating a process.


## 3. Assigning devices

Assign devices of a PLC in the created process drawing.

1) Assign a state relay $\mathrm{S}^{\bullet}$ to a rectangle indicating a process. At this time, assign a state relay ( S 0 to S 9 ) to the initial process. After the first process, arbitrarily assign state relay numbers (S20 to S899) except the initial state relays.
(There is no relationship between state relay numbers and order of processes.)
There are latched (battery backed) type state relays whose ON/ OFF status is stored against power failure.
The state relays S10 to S19 are used for special purposes when the IST (FNC 60) instruction is used.
2) Assign a device (input terminal number connected to a pushbutton switch or limit switch, timer number, etc.) to each transfer condition.
NO contact and NC contact are available for a transfer condition.
If there are two or more transfer conditions, AND circuit or OR circuit is available.
3) Assign a device (output terminal number connected to external equipment, timer number, etc.) used for an operation performed in each process.
Many devices such as timers, counters and auxiliary relays are provided in a PLC, and can be used arbitrarily.
The timer T0 is used here. Because T0 works by the 0.1 sec clock, the output contact turns ON five seconds after a coil is driven when the set value is K50.
If there are two or more loads such as timers and counters which are driven at the same time, two or more circuits can be assigned to one state relay.
4) When performing repeated operations or skipping some
 processes (jump operation), use " $\llcorner$ " and specify the jump destination state relay number.

In this example, only the SFC program creating procedure is explained. In practical cases, a circuit for setting the initial state relay to ON is required to execute the SFC program.
Create a circuit for setting the initial state relay to ON using the relay ladder.
At this time, use SET instruction to set the initial state relay to ON.


## 4. Inputting and indicating a program using GX Works2 and GX Developer

- Input a circuit for setting the initial state relay to ON using the relay ladder.

In this example, the initial state relay S 0 is set to ON in a ladder block using the special auxiliary relay M8002 which turns ON momentarily when the PLC mode is changed from STOP to RUN.

- When inputting a program using GX Works2 and GX Developer, write a relay ladder program to a ladder block, and write an SFC program to an SFC block.
- Programs expressing operations in state relays and transfer conditions are handled as internal circuits of the state relays and transfer conditions.
Create each one using a relay ladder.
For details on the programming procedure, refer to the following manual.
$\rightarrow$ GX Developer Version 8 Operating Manual $\rightarrow$ GX Works2 Version 1 Operating Manual (Simple Project)

Write a circuit not belonging to SFC to a ladder block using a relay ladder.


Write an SFC program to an SFC block.

When a program is input using GX Works2 and GX Developer, "RET" and "END" are automatically written.

### 35.1.4 Handling and role of initial state relay

## Handling of the initial state relay

- A state relay located at the head of an SFC program is the initial state relay. Only state relays S 0 to S 9 are available.
- The initial state relay is driven by way of another state relay (S24 in the example shown below). But it is necessary to drive the initial state relay in advance by another measure at the start of operation.
- In the example shown below, the initial state relay is driven by the special auxiliary relay M8002 which turns ON and remains ON only momentarily when the PLC mode is changed from STOP to RUN.
- General state relays other than initial state relays should be driven by another state relay. They cannot be driven by any other device.
- The state relay which may be driven by a contact other than the STL instruction is there by defined as the initial state relay, and should be described at the top of the flow.



## Role of the initial state relay

## 1. Used as an identification device for inverse conversion

- In inverse conversion from an instruction list into an SFC program, it is necessary to identify the top of the flow. For this purpose, use the initial state relay S0 to S 9 . If any other state relay number is used, inverse conversion is disabled
- Program the STL instruction for the initial state relay before the STL instructions for subsequent state relays. Program the RET instruction at the end. By this programming method, if there are two or more independent flows, they the separated from each other.


## 2. Used to prevent double start

- In the above example, even if the start button is pressed while the state relay S 24 is ON, the command is invalid (S0 does not turn ON).
As a result, double start is prevented.


### 35.1.5 Latched (battery backed) type state relays

In the latched (battery backed) type state relays, the ON/OFF status is backed up by the battery or EEPROM memory against power failure.
Use this type of state relay if the operation should be restarted from the last point before power failure.

### 35.1.6 Role of the RET instruction

- Use the RET instruction at the end of an SFC program

When inputting an SFC program using GX Works2 and GX Developer, however, it is not necessary to input the RET instruction (because RET instruction is automatically written).

- In a PLC, two or more SFC blocks can be put between step 0 and the END instruction. When there are ladder blocks and SFC blocks, put a RET instruction at the end of each SFC program.


### 35.1.7 Preliminary knowledge for creating SFC program

## List of sequence instructions available in states

		Instruction		
State relay		LD/LDI/LDP/LDF,   AND/ANI/ANDP/ANDF,   OR/ORI/ORP/ORF,   INV,MEP/MEF,OUT,   SET/RST,PLS/PLF	ANB/ORB/MPS/MRD/   MPP	MC/MCR

- STL instruction cannot be used in interrupt programs and subroutine programs.
- When using SFC programs (STL instruction), do not drive state relays S using SET or OUT instructions in an interrupt program.
- It is not prohibited to use jump instructions in state relays. However, it is not recommended to use jump instructions because complicated movements will result.
*1. The MPS instruction cannot be used immediately after a state relay (STL instruction), even in a drive processing circuit.


## Special auxiliary relays

For efficiently creating SFC programs, it is necessary to use some special auxiliary relays. The table below shows major ones.

Device   number	Name	Function and application
M8000	RUN monitor	This relay is normally ON while the PLC is in the RUN mode.   Use this relay as the program input condition requiring the normally driven status or for indicating the PLC   operation status.
M8002	Initial pulse	This relay turns ON and remains ON only momentarily when the PLC mode is changed from STOP to   RUN.   Use this relay for the initial setting of a program or for setting the initial state relay.
M8040	STL transfer   disable	When this relay is set to ON, transfer to the ON status is disabled among all state relays.   Because programs in state relays are operating even in the transfer disabled status, output coils do not   turn OFF automatically.
M8046*2	STL state ON	Use this relay to prevent simultaneous startup of another flow or as a process ON/OFF flag.   When M8047 is OFF, M8046 is normally OFF.   When M8047 is ON, M8046 operates as follows:   FX3S PLC   When at least one among the state relays S0 to S255 is ON: ON   When all of the state relays S0 to S255 are OFF: OFF   FX3G/FX3GC/FX3U/FX3UC PLCs   When at least one among the state relays S0 to S899 and S1000 to S4095 is ON: ON   When all of the state relays S0 to S899 and S1000 to S4095 are OFF: OFF
M8047*2	Enable STL   monitoring	When this relay is driven, the device number of a state relay in the ON status having the smallest device   number among S0 to S255(FX3S PLC), S0 to S899 and S1000 to S4095(FX3G/FX3GC/FX3U/FX3UC   PLCs) is stored to D8040, and the state relay number in the ON status having the next smallest device   number is stored to D8041. In this way, up to eight state relays in the ON status are stored in registers up   to D8047.   In the FX-PCS/WIN(-E), FX-30P, FX-20P(-E), and FX-10P(-E), when this relay is driven, the state
relays in the ON status are automatically read and displayed.		
For details, refer to the appropriate peripheral equipment manual.		
In the SFC monitor in GX Works2 and GX Developer, the automatic scroll monitoring function is valid		
even if this relay is not driven.		

*2. Processed when the END instruction is executed.

## Operation of state relays and use of an output two or more times

- In different state relays, the same output device (Y002 in this example) can be programmed as shown in the right figure. In this case, when S21 or S22 is ON, Y002 is output. However, if the same output coil (Y002) in a state relay is programmed in a ladder block program or if the same output coil is programmed twice in one state relay, it is handled in the same way as general double coil.



## Interlock of outputs

- In the state relay ON status transfer process, both states turn ON at the same time only momentarily (during one operation cycle).
Accordingly, between a pair of outputs which should not be set to ON at the same time, provide an interlock outside the PLC in conformance to the handy manual of the PLC so that simultaneous driving can be prevented. In addition, provide on interlock in the program as shown in
 the right figure.


## Use of a timer two or more times

- In the same way as an output coil, a timer coil can be programmed in different state relays. However, it is not permitted to program the same timer coil in adjacent state relays. If the same timer coil is programmed in adjacent state relays, the timer coil is not set to OFF at process transfer, so the current value is not reset.


## Output driving method



- It is not permitted to program an instruction without a contact after an LD or LDI instruction from a bus line in a state relay.
Change such a circuit as shown below.



## Operation of " $৬$ " and " $\nabla$ "

Use " $\llcorner$ " to express transfer to a state relay in an upper position (repeat), transfer to a state relay in a lower position (jump), or transfer to a state relay in a separate flow.
Use " $\nabla$ " to express reset of a state relay.

1) Transfer source program



## Resetting multiple state relays at one time and output disable

For output disability corresponding to emergency stop, follow "Cautions on safety" described in the PLC manual.

1) Resetting multiple state relays at one time by specifying a range Resetting fifty-one state relays from S0 to S50 are reset time.

2) Disabling arbitrary outputs of state relays in the ON status

3) Turning OFF all output relays ( Y ) in a PLC

While the special auxiliary relay M8034 is ON, the sequence program is executed continuously, but all output relays $(\mathrm{Y})$ turn OFF. (These output relays are in the ON status in the monitor.)


While the special auxiliary relay M8034 is ON, the sequence program is executed continuously, but all output relays $(\mathrm{Y})$ turn OFF.

## Position of the MPS, MRD and MPP instructions

The MPS, MRD or MPP instructions cannot be used directly from a bus line in a state relay inside the STL. Program MPS, MRD or MPP instructions after LD or LDI instructions as shown below.


## Programming complicated transfer conditions

In a transfer condition circuit, the ANB, ORB, MPS, MRD and MPP instructions are not available.
Program the circuit as shown below:


## Processing of state relay whose transfer condition is already satisfied

In some cases, it is necessary to execute the next transfer after the limit switch X030 (working as the transfer condition) in the ON status is set to OFF once, and then set to ON again.
In such a case, make the transfer condition into pulses as shown below so that transfer is not executed by M100 when S30 turns ON for the first time.


To achieve such a transfer, it is necessary to convert the transfer signal into pulses in programming.
The following two methods are available to convert the transfer condition into pulses:

## 2. Procedure using a pulse contact instruction (M2800 to M3071)

By using an auxiliary relay M2800 to M3071 in a rising/falling edge detection instruction (LDP, LDF, ANDP, ANDF, ORP or ORF), the ON status can be efficiently transferred by the same signal.
When M2800 or later is specified as a device in a rising/falling edge detection instruction, only the first rising/falling edge detection instruction after a coil instruction is executed. Accordingly, when X001 is set to ON, only the transfer condition in a state relay currently in the ON status is ON during one operation cycle, and then the ON status is transferred to the next state relay.

*1. It is allowable to program a device number used in LD,
LDI, OR or ORI instructions after a corresponding coil in the ladder block. However, if the same device number is programmed in a LDP, LDF, ANDP, ANDF, ORP or ORF instruction, the priority is given to such an instruction and the transfer condition is not effective.

## Caution on using a rising/falling edge detection contact

When a rising/falling detection contact in a LDP, LDF, ANDP, ANDF, ORP or ORF instruction is used in a state relay, the contact whose status was changed while the state relay was OFF is detected when the state relay turns ON the next time.
When it is necessary to immediately detect the rising edge or falling edge for a condition which may change while a state relay is OFF, change the program as shown below:


When the ON status is transferred to S70 at the falling edge of X013 and then X014 turns OFF after that, the falling edge of X014 is not detected at this point because S3 is OFF. When S3 turns ON the next time, the falling edge of X014 is detected
Accordingly, when S3 turns ON the next time, the ON status is immediately transferred to S70.

## 35．1．8 SFC flow formats

This section shows operation patterns of single flows and operation patterns when selective branches and parallel branches are combined in SFC programs．

1．Jump and repeat flows
1）Jump
Direct transfer to a state relay in a lower position or transfer to a state relay in a different flow is called jump，and the transfer destination state relay is indicated by＂$\llcorner$＂．


2）Repeat
Transfer to a state relay in an upper position is called repeat，and the transfer destination state relay is indicated by＂$\longrightarrow$＂in the same way as＂jump＂．


## Separation of flow

When creating an SFC program having two or more initial state relays, separate the blocks for each initial state relay. The ON status can be transferred among SFC programs created by block separation (jump to a different flow).
A state relay in a program created in a different block can be used as a contact for the internal circuit or transfer condition of another state relay.

## 1. Separation of flow



## 2. Jump to another flow


3. Using a state relay in a program created in a different block


## Composite flows with branches and recombination

The single flow format is the fundamental style in process transfer control. Only single flow is sufficient in sequence control for simple operations. When various input conditions and operator manipulations intervene, however, complicated conditions can be easily handled by using selective branches and parallel branches.
A branch for selectively processing many processes depending on a condition is called selective branch. A branch for processing many processes at the same time is called parallel branch.

1. Selective branch

Either one among many flows is selected and executed.


### 35.1.9 Program of branch/recombination state relays

## Selective branch

After making a branch, create a transfer condition.


## Selective recombination

After creating a transfer condition, recombine.


## Parallel branch

After creating a transfer condition, make a branch.


## Parallel recombination

After recombining, create a transfer condition.


### 35.1.10 Rule for creating branch circuit

## Limitation in the number of branch circuits

In one parallel branch or selective branch, up to eight circuits can be provided.
When there are many parallel branches and selective branches, however, the total number of circuits per initial state is limited to 16 or less.


It is not permitted to execute transfer or reset from a recombination line or state relay before recombination to a branch state relay.
Make sure to provide a dummy state, then execute transfer or reset from a branch line to a separate state relay.

## Composition of branches/recombination and dummy state

1. When a recombination line is directly connected to a branch line without a state relay

When a recombination line is directly connected to a branch line without a state relay as shown below, it is necessary to provide a dummy state relay between the lines.
There are no dedicated numbers for dummy state relays.
Use a state relay number not used in a program as a dummy state relay.


Deform it
as follows


 40

2. When there are selective branches continuously, reduce the number of branches.

3. It is not permitted to provide a selective transfer condition * after parallel branches or to recombine parallel branches after a transfer condition <*>.

4. In the flow shown below, it is not determined whether a selective or parallel branch is provided. Change it as shown below.

5. The following flows are allowed.

Flow B is alright. In flow A, however, note that an operation is paused at a point where parallel branches are recombined.

6. It is not permitted to cross flows in SFC programs.

Change a flow on the left to a flow on the right. This change enables inverse conversion from a program on the instruction word basis into an SFC program. (The flow on the left cannot be converted into an SFC program.)


### 35.1.11 Program examples

## Examples of single flows

## 1. Example of flicker circuit

1) When the PLC mode is changed from STOP to RUN, the state relay S3 is driven by the initial pulse (M8002).
2) The state relay S 3 outputs Y 000 . One second later, the ON status transfers to the state relay S 20 .
3) The state relay S20 outputs Y001. 1.5 seconds later, the ON status returns to the state relay S3.


## 2. Example of fountain control

1) Cyclic operation (X001 = OFF, $\mathrm{X} 002=\mathrm{OFF}$ )

When the start button X000 is pressed, the outputs turn ON in the order "Y000 (wait indication) $\rightarrow$ Y001 (center lamp) $\rightarrow$ Y002 (center fountain) $\rightarrow$ Y003 (loop line lamp) $\rightarrow$ Y007 (loop line fountain) $\rightarrow$ Y000 (wait indication)", and then the outputs return to the wait status.
Each output is switched in turn every 2 seconds by a timer.
2) Continuous operation $(\mathrm{XOO1}=\mathrm{ON})$

Y001 to Y007 turn ON in turn repeatedly.
3) Stepping operation ( $\mathrm{X} 002=\mathrm{ON}$ )

Every time the start button is pressed, each output turns ON in turn.


## 3．Example of cam shaft turning control

The limit switches X013 and X011 are provided in two positions，large forward rotation angle and small forward rotation angle．
The limit switches X012 and X010 are provided in two positions，large backward rotation angle and small backward rotation angle．
When the start button is pressed，the cam shaft performs the operation＂small forward rotation $\rightarrow$ small backward rotation $\rightarrow$ large forward rotation $\rightarrow$ large backward rotation＂，and then stops．

The limit switches X010 to X013 are normally OFF． When the cam shaft reaches a specified angle，a corresponding limit switch turns ON．
－When M8047 turns ON，the operation state monitoring becomes valid．If either one among S0 to S899 and S1000 to S4095 is ON，M8046 turns ON after the END instruction is executed．
－This SFC program adopts latched（battery backed） type state relays so that the operation is restarted from this process when the start button is pressed even after the power is interrupted in the middle of operation． However，all outputs except Y 020 are disabled until the start button is pressed．

＜M8034：All outputs disable＞
When M8034 is set to ON，all outputs to the outside turn OFF even though the PLC is executing each program in RUN mode．

## 4. Example of sequential start and stop

The motors M1 to M4 are started in turn by a timer, and stopped in turn in the reverse order.
This SFC flow is based on a single flow, and has jumps of state relays.


This SFC program shows an example in which a part of the flow is skipped according to a condition, and the execution is transferred to a state in a lower position.
The execution can be transferred to a state in an upper position.

The partial skip flow shown on the previous page can be expressed in a flow of selective branches and recombination as shown below.
Make sure that a flow proceeds from top to bottom, and that a flow does not cross except branch lines and recombination lines.

> Ladder block


## SFC block








o N N


RET

## Dummy state relay

For example, if X001 turns ON while the state relay S 20 is ON, the state relay S32 turns ON; The contact of S32 turns ON, and the ON status is immediately transferred to the state relay S27. Because one or more state relays are required in a branch line, dummy states are provided for this purpose.

## Examples of flows having selective branches and recombination

## 1. Operation of selective branch

- When two or more flows are provided and either one is selected and executed, it is called a selective branch.
- In the example shown on the right, X000, X010 and X020 should not turn ON at the same time.
- For example, when X000 turns ON while S20 is ON, the ON status is transferred to S21; S20 turns OFF, and S21 turns ON. Accordingly, even if X010 or X020 turns ON after that, S31 and S41 do not turn ON.
- The recombination state relay S50 is driven by either S22, S32 or S42.


2. Example of selecting and carrying large and small balls

The figure below shows a mechanism which selects and carries large and small balls using conveyors.
The upper left position is regarded as the origin, and the mechanism performs in the order "moving down $\rightarrow$ suction $\rightarrow$ moving up $\rightarrow$ moving rightward $\rightarrow$ moving down $\rightarrow$ release $\rightarrow$ moving up $\rightarrow$ moving leftward".
When the arm moves down and the electromagnet pushes a large ball, the lower limit switch LS2 turns OFF. When the electromagnet pushes a small ball, LS2 turns ON.


In an SFC program for selecting large or small products and judging products as either accepted or rejected, selective branches and recombination are adopted as shown in the figure below.


- When a product is small (when X002 turns ON), the left flow is valid. When a product is large, the right flow is valid.

- The ON status is transferred to the recombination state relay S30 when X004 turns ON in the case of a small product, or when X005 turns ON in the case of a large product.



## Example of flows having parallel branches and recombination

## 1. Operation of parallel branch

- Branches in which all flows proceed at the same time are called parallel branches.
- In the example shown on the left, when X000 turns ON while S20 is ON, S21, S24 and S27 turn ON at the same time and the operation is started in each flow.
- When the operation is finished in each flow and X007 turns ON, the recombination state relay S30 turns ON. S23, S26 and S29 turn OFF.
- Such recombination is sometimes called wait recombination. (The original flow continues its operation until all flows finish their operations and join the original flow.)

When the parts $A, B$ and $C$ are processed in parallel and then assembled afterward, flows having parallel branches and recombination are used.


## 2. Example of pushbutton type crosswalk

A pushbutton type crosswalk shown in the figure below can be expressed in flows having parallel branches and recombination.
Y003: Green Y002: Yellow Y001: Red


The SFC program for a pushbutton type crosswalk is as shown below. In this example, a partial flow (jump to a state relay located in an upper position) is repeated for blinking the green lamp on the crosswalk.

- When the PLC mode is changed from STOP to RUN, the initial state relay SO turns ON. Normally, the green lamp is ON for the road and the red lamp is ON for the sidewalk.
- When the crossing button X000 or X001 is pressed, the state relay S21 specifies "road: green" and the state relay S30 specifies "sidewalk: red". The signal lamp status is not changed.
- 30 seconds later, the yellow lamp turns ON for the road. 10 seconds later after that, the red lamp turns ON for the road.
- When the timer T2 (5 seconds) reaches timeout after that, the green lamp turns ON for the sidewalk.
- 15 seconds later, the green lamp starts to blink for the sidewalk. (S32 turns OFF the green lamp, and S33 turns ON the green lamp.)
- While the green lamp is blinking, S32 and S33 turn ON and OFF repeatedly. When the counter C0 (set value: 5) turns ON, S34 turns ON. 5 seconds after the red lamp turns ON for the sidewalk, the signal lamps return to the initial state
- Even if the crossing button X 000 or X 001 is pressed in the middle of operation, the pressing is ignored.


SFC block


### 35.2 Step Ladder

### 35.2.1 Outline

In programs using step ladder instructions, a state relay State $S$ is assigned to each process based on machine operations, and sequences of input condition and output control are programmed as circuits connected to contacts (STL contacts) of state relays in the same way as SFC programs.
The concept of program creation and the types and operations of state relays are the same as for SFC programs. However, because the contents can be expressed in the ladder format, step ladder programs can be handled as familiar relay ladder charts even though the actual contents are the same as those of SFC programs.
In step ladder programs, the list format is also available.
SFC programs and step ladder programs can be converted inter changeably if they are programmed according to the same rules.

This section explains the expressions and cautions of step ladder programs in comparison with SFC programs, and the input order in the list format.

### 35.2.2 Explanation of function and operation

In a step ladder program, a state relay State $S$ is regarded as one control process, and a sequence of input conditions and output controls are programmed in a state relay.
Because the preceding process is stopped when the program execution proceeds to the next process, a machine can be controlled using simple sequences for each process.

## Operation of step ladder instructions

In a step ladder program, each process performed by the machine is expressed by a state relay.
A state relay consists of a drive coil and contact (STL contact) in the same way as other relays.
Use SET or OUT instructions to drive a coil, and use STL instructions for a contact.
Operations of internal circuits connected to state relays are classified into three types, execution in the contact ON status, execution in the contact OFF status (for one operation cycle) and non-execution.

- Execution in the contact ON status:

When a state relay turns ON, a connected circuit (internal circuit) is activated with a STL contact.

- Execution in the contact OFF status (for one operation cycle):

When a condition (transfer condition) provided between state relays is satisfied, the next state relay turns ON, and the state relay which has been ON before hand turns OFF (transfer operation). In the state relay ON status transfer process, both state relays are ON only momentarily (for one operation cycle). In the next operation cycle after the ON status is transferred to the next state relay, the former state relay is reset to OFF. A drive instruction connected to the bus line of the reset state relay is executed in the contact OFF status in one operation cycle regardless of the actual contact status before the drive instruction. When the transfer state relay $S$ is used in a contact instruction, however, the contact image is executed in the OFF status immediately after the transfer condition is satisfied.

- Non-execution:

An instruction is not executed in the contact OFF status after the operation cycle where the instruction was executed in the contact OFF status (jump status).

- The figure below shows the timing chart of the state relay (internal circuit) activation status.

Execution in the
contact ON status


- One state relay number can only be used once.

*1. Output coils can be used again in different state relays.
*2. It is not possible to place a pointer immediately after the STL instruction. If a pointer is placed, a circuit error (Error code: 6617) occurs.
*3. The contact instruction can be omitted only immediately after the STL instruction. If the contact instruction is omitted, the contact status follows the status of the corresponding state relay.


### 35.2.3 Expression of step ladder

Step ladder programs and SFC programs are substantially the same as described above, but actual programs are expressed as shown below.
A step ladder program is expressed as a relay ladder, but it can be created according to the machine control flow using state relays.

```
<Step ladder> <SFC program>
```



### 35.2.4 Creation of step ladder program (SFC program $\rightarrow$ STL program)

The figure on the left shows one state relay extracted as an example from an SFC program.
Each state relay has three functions, driving a load, specifying a transfer destination and specifying a transfer condition.
The step ladder shown on the right expresses this SFC program as a relay sequence.
In this program, a load is driven, and then the ON status is transferred.
In a state relay without any load, the drive processing is not required.
For the program creation procedure, refer to the description on SFC programs.
$\rightarrow$ For the program creation procedure, refer to Subsection 35.1.3. $\rightarrow$ For the handling and role of initial state relays, refer to Subsection 35.1.4. $\rightarrow$ For latched (battery backed) type state relays, refer to Subsection 35.1.5. $\rightarrow$ For RET instruction, refer to Subsection 35.1.6.

<Step ladder>

The above program can be expressed in the list format
<List program>

0	STL	S20
1	OUT	Y010
2	LD	X010
3	OR	X011
4	OUT	Y011
5	LD	X000
6	ANI	X001
7	SET	S21 $^{* 1}$

The segment from the STL instruction to the RET instruction is handled as a step ladder program.

2. Program for the transfer destination

There is no change in programming especially for the transfer destination.

<List program>

STL	S52
LD	X004
OUT	Y002
LD	X005
SET	S53

### 35.2.5 Preliminary knowledge for creating step ladder programs

$\rightarrow$ For the preliminary knowledge for creating SFC programs, refer to Subsection 35.1.7.

## List of sequence instructions available between the STL instruction and RET instruction

		Instruction		
State relay		LD/LDI/LDP/LDF, AND/ANI/ANDP/ANDF, OR/ORI/ORP/ORF, INV,MEP/MEF,OUT, SET/RST,PLS/PLF	ANB/ORB/MPS/MRD/ MPP	MC/MCR
Initial/general state relay		Available	Available* ${ }^{*}$	Not available
Branch/recombination state relay	Drive processing	Available	Available ${ }^{* 1}$	Not available
	Transfer processing	Available	Not available	Not available

- The STL instruction cannot be used in interrupt programs and subroutine programs.
- When using SFC programs (STL instruction), do not drive state relays S using SET or OUT instructions in an interrupt program.
- It is not prohibited to use jump instructions in state relays, but it is not recommended because complicated movements will result.
*1. MPS instruction cannot be used immediately after an STL instruction, even in a drive processing circuit.


## Special auxiliary relays

For efficiently creating step ladder programs, it is necessary to use some special auxiliary relays. The table below shows major ones.
The special auxiliary relays shown below are the same as those available in SFC programs.

Device   number	Name	Function and application
M8000	RUN monitor	This relay is normally ON while the PLC is in the RUN mode.   Use this relay as the program input condition requiring the normally driven status or for indicating the PLC   operation status.
M8002	Initial pulse	This relay turns ON and remains ON only momentarily when the PLC mode is changed from STOP to   RUN.   Use this relay for the initial setting of a program or for setting the initial state relay.
M8040	STL transfer   disable	When this relay is set to ON, transfer of the ON status is disabled among all state relays.   Because programs in state relays are operating even in the transfer disabled status, output coils do not   turn OFF automatically.
M8046*1	STL state ON	Use this relay to prevent simultaneous startup of another flow or as a process ON/OFF flag.   When M8047 is OFF, M8046 is normally OFF.   When M8047 is ON, M8046 operates as follows:   FX3S PLC   When at least one among the state relays S0 to S255 is ON: ON   When all of the state relays S0 to S255 are OFF: OFF   FX3GG/FXGC/FX3U/FX3UC PLCs   When at least one among the state relays S0 to S899 and S1000 to S4095 is ON: ON   When all of the state relays S0 to S899 and S1000 to S4095 are OFF: OFF
M8047*1	Enable STL   monitoring	When this relay is driven, the device number of a state relay in the ON status having the smallest device   number among S0 to S255(FX3S PLC), S0 to S899 and S1000 to S4095(FX3G/FX3GC/FX3U/FX3UC   PLCs) is stored to D8040, and the state relay number in the ON status having the next smallest device   number is stored to D8041. In this way, up to eight state relays in the ON status are stored in registers up   to D8047.   In the FX-PCS/WIN(-E), FX-30P, FX-20P(-E), and FX-10P(-E), when this relay is driven, the state   relays in the ON status are automatically read and displayed.
For details, refer to the appropriate peripheral equipment manual.		
In the SFC monitor in GX Works2 and GX Developer, the automatic scroll monitoring function is valid		
even if this relay is not driven.		

*1. Processed when END instruction is executed.

## Block

A step ladder program is created as ladder circuits in the same way as relay ladder. Accordingly, different from SFC programs, it is not necessary to divide blocks for relay ladder parts and SFC parts.
When there are ladder blocks and SFC blocks, put a RET instruction at the end of each step ladder program.
A PLC starts the step ladder processing by a STL instruction, and returns to the relay ladder processing from the step ladder processing by a RET instruction.
However, when consecutively programming a step ladder in a different flow (when there is no relay ladder before the step ladder in the different flow), a RET instruction between flows can be omitted, and a RET instruction can be programmed only at the end of the last flow.


## Output driving method

It is required to include a LD or LDI instruction before the last OUT instruction in a state relay. Change such a circuit as shown below.


## State relay transfer method

Each OUT and SET instruction in state relays automatically resets the transfer source, and has the self-holding function.
OUT instructions can only be used for transfer to a separate state relay in an SFC program.


## Replacing " $\llcorner$ " and " $\nabla$ "

Replace the symbol " $৬$ " used in SFC programs to express repeat, jump or transfer to a state relay in another separate flow with the OUT instruction.
Replace the symbol " $\nabla$ " (used to express reset of a state relay) with the RST instruction.
<SFC program>

<Step ladder>


### 35.2.6 Program with state relays in branches and recombination

1. Example of selective branch

Do not use MPS, MRD, MPP, ANB and ORB instructions in a transfer processing program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.
In the same way as programs for general state relays, program the drive processing first, and then program the transfer processing.
Continuously program all transfer processing.
<SFC program>

<Step ladder>

<List program>
STL S20
OUT Y000
LD X000
SET S21
LD X001
SET S31
LD X002
SET S41

## 2. Example of selective recombination

Do not use MPS, MRD, MPP, ANB and ORB instructions in a transfer processing program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.
Pay attention to the programming order so that a branch line does not cross a recombination line.
<SFC program>


Before recombination, first program the drive processing of state relays.
After that, program only the transfer processing to recombination state relays.
This rule should be observed to enable inverse conversion into an SFC program.

## 3. Example of parallel branch

Do not use MPS, MRD, MPP, ANB and ORB instructions in a program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.
In the same way as programs for general state relays, program the drive processing first, and then program the transfer processing.
Continuously program all transfer processing.
<SFC program>

<Step ladder>

<List program>
STL S20
OUT Y000
LD X000
SET S21
SET S31
SET S41

## 4．Example of parallel recombination

Do not use MPS，MRD，MPP，ANB and ORB instructions in a program with branches and recombination． Even in a load driving circuit，MPS instructions cannot be used immediately after STL instructions．
Pay attention to the programming order so that a branch line does not cross a recombination line．
＜SFC program＞


＜List program＞
STL S29
OUT Y010
STL S39
OUT Y011
STL S49
OUT Y012
STL S29
STL S39
STL S49
LD X010
AND X011
AND X012
SET S50
2) Parallel recombination and parallel branch

<List program>
STL S20
STL S30
LD X000
SET S101
STL S101
LD S101
SET S50
SET S60
3) Selective recombination and parallel branch
<SFC program>

4) Parallel recombination and selective branch


<Step ladder>

	STL	S20
$\times$	STL	S30
	SET	S103
	STL	S103
X001	SET	S40
$\times 1$	SET	S50

<List program>
STL S20
LD X000
SET S102
STL S30
LD X001
SET S102
STL S102
LD S102
SET S40
SET S50
<List program>
STL S20
STL S30
LD X000
SET S103
STL S103
LD X001
SET S40
LD X002
SET S50

### 35.2.7 Program examples

## Examples of single flows

1. Example of flicker circuit

- When the PLC mode is changed from STOP to RUN, the state relay S3 is driven by the initial pulse (M8002).
- The state relay S3 outputs Y000. 1 second later, the ON status transfers to the state relay S20.
- The state relay S 20 outputs Y001. 1.5 seconds later, the ON status returns to the state relay S3.



## 2. Example of fountain control

1) Cyclic operation (X001 = OFF, $X 002=O F F)$

When the start button X000 is pressed, the outputs turn ON in the order "Y000 (wait indication) $\rightarrow$ Y001 (center lamp) $\rightarrow$ Y002 (center fountain) $\rightarrow$ Y003 (loop line lamp) $\rightarrow$ Y007 (loop line fountain) $\rightarrow$ Y000 (wait indication)", and then the outputs return to the wait status.
Each output is switched in turn every 2 seconds by a timer
2) Continuous operation $(X 001=O N)$

Y001 to Y007 turn ON in turn repeatedly.
3) Stepping operation $(\mathrm{XOO2}=\mathrm{ON})$

Every time the start button is pressed, each output turns ON in turn.


## Examples of flows with selective branches and recombination

1. Example of selecting and carrying large and small balls

The figure below shows a mechanism which selects and carries large and small balls using conveyors.
The upper left position is regarded as the origin, and the mechanism performs in the order "moving down $\rightarrow$ suction $\rightarrow$ moving up $\rightarrow$ moving rightward $\rightarrow$ moving down $\rightarrow$ release $\rightarrow$ moving up $\rightarrow$ moving leftward".
When the arm moves down and the electromagnet pushes a large ball, the lower limit switch LS2 turns OFF. When the electromagnet pushes a small ball, LS2 turns ON.


The figure below shows a step ladder program for selecting the product size and judging products as either accepted or rejected.
<Step ladder>



- The ON status is transferred to the recombination state relay S30 when X004 turns ON in the case of a small product, or when X005 turns ON in the case of a large product.
- When the special auxiliary relay M8040 is driven, all transfers to any state relay are disabled.
In each of the state relays S24, S27 and S33, an interlock contact is connected in series respectively to the rightward movement output Y003 and leftward movement output Y004.
<List program>

LD	M8002	34	SET	Y001	65	SET	S30
SET	S0	35	OUT	T1 K10	67	STL	S30
LD	X001	38	LD	T1	68	OUT	Y000
AND	X003	39	SET	S26	69	LD	X002
ANI	Y001	41	STL	S233	70	SET	S31
OUT	Y007	42	OUT	Y002	72	STL	S31
STL	S0	43	LD	T3	73	RST	Y001
LD	X026	44	SET	S24	74	OUT	T2 K10
AND	Y007	46	STL	S26	77	LD	T2
SET	S21	47	OUT	Y002	78	SET	S32
STL	S21	48	LD	X003	80	STL	S32
OUT	Y000	49	SET	S27	81	OUT	Y002
OUT	T0 K20	51	STL	S24	82	LD	X003
LD	T0	52	LDI	X004	83	SET	S33
AND	X002	53	ANI	Y004	85	STL	S33
SET	S22	54	OUT	Y003	86	LDI	X001
LD	T0	55	STL	S27	87	ANI	Y003
ANI	X002	56	LDI	X005	88	OUT	Y004
SET	S25	57	ANI	Y004	89	LD	X001
STL	S22	58	OUT	Y003	90	OUT	S0
SET	Y001	59	STL	S24	92	RET	
OUT	T1 K10	60	LD	X004	93	END	
LD	T1	61	SET	S30			
SET	S23	63	STL	S27			
STL	S25	64	LD	X005			

## Example of flows with parallel branches and recombination

When the parts $A, B$ and $C$ are processed in parallel and then assembled, flows having parallel branches and recombination are used.

## 1. Example of pushbutton type crosswalk

A pushbutton type crosswalk shown in the figure below can be expressed in flows having parallel branches and recombination.
Y003: Green Y002: Yellow Y001: Red


The SFC program for a pushbutton type crosswalk is as shown below. In this example, a partial flow (jump to a state relay located in an upper position) is repeated for blinking the green lamp on the crosswalk.

- When the PLC mode is changed from STOP to RUN, the initial state relay SO turns ON. Normally, the green lamp is ON for the road and the red lamp is ON for the sidewalk.
- When the crossing button X000 or X001 is pressed, the state relay S21 specifies "road: green" and the state relay S30 specifies "sidewalk: red". The signal lamp status is not changed.
- Thirty seconds later, the yellow lamp turns ON for the road. Ten seconds later after that, the red lamp turns ON for the road.
- When the timer T2 (5 seconds) reaches timeout after that, the green lamp turns ON for the sidewalk.
- Fifteen seconds later, the green lamp starts to blink for the sidewalk. (S32 turns OFF the green lamp, and S33 turns ON the green lamp.)
- While the green lamp is blinking, S32 and S33 turn ON and OFF repeatedly. When the counter C0 (set value: 5) turns ON, S34 turns ON. Five seconds after the red lamp turns ON for the sidewalk, the signal lamps return to the initial state
- Even if the crossing button X000 or X001 is pressed in the middle of operation, the pressing is ignored.



## 36. Interrupt Function and Pulse Catch Function

This chapter explains the built-in interrupt function and pulse catch function in FX PLC.

### 36.1 Outline

This section explains the function to immediately execute an interrupt program (interrupt routine) without affecting the operation cycle of the sequence program (main) while using a interrupt function as a trigger. The delay by operation cycle and machine operation affected by uneven time intervals in normal sequence program process can be improved.

1. Input interrupt function (interrupt of external signal input $(X))^{* 1}$

By the input signal from an input (X000 to X005), the main sequence program is paused, and an interrupt routine program is executed with priority.
The input interrupt execution timing can be specified on the rising edge or falling edge of the signal by the pointer number.
$\rightarrow$ For details, refer to Section 36.3.
2. Input interrupt delay function (interrupt of external signal input ( $X$ )) ${ }^{* 1}$

By the input signal from an input (X000 to X005), the main sequence program is paused, and an interrupt routine program is executed with priority after the delay time (set in units of 1 ms ).
The input interrupt execution timing can be specified on the rising edge or falling edge of the signal by the pointer number.
$\rightarrow$ For details, refer to Section 36.4.

## 3. Timer interrupt function (timer interrupt activated in a constant cycle)

The main sequence program is paused in a constant cycle of 10 to 99 ms , and an interrupt routine program is executed with priority.
$\rightarrow$ For details, refer to Section 36.5.
4. High-speed counter interrupt function (interrupt function given at counting up) ${ }^{* 1}$

When the current value of a high-speed counter reaches a specified value, the main sequence program is paused and an interrupt routine program is executed with priority.
$\rightarrow$ For details, refer to Section 36.6.

## 5. Pulse catch function ${ }^{* 1}$

When the input signal from an input (X000 to X007) turns from OFF to ON, a special auxiliary relay M8170 to M8177 is immediately set to ON by interrupt processing. Relays M8170 to M8177 are used in a normal sequence program. A relay remains ON after its input signal turns OFF, so a short pulse can be easily received.
When processing such a signal that turns ON and OFF several times in one operation cycle, however, use the input interrupt function.
$\rightarrow$ For details, refer to Section 36.7.
6. Pulse width/Pulse period measurement function

When the input signal from an input (X000, X001, X003 or X004) turns from OFF to ON, the value of the $1 / 6 \mu$ ring counter at the input signal rising edge is stored in special data registers.
When the input signal turns OFF from ON, the value of the $1 / 6 \mu$ s ring counter at the input signal falling edge is stored in special data registers. At the same time, the difference in the counter value between the rising edge and the falling edge is divided by " 60 ", and the pulse width in units of $10 \mu \mathrm{~s}$ is stored in special data registers.
In the pulse period measurement mode, when the input signal turns from OFF to ON, the difference between the previous rising of the input signal and the current rising of the input signal is divided by " 60 ", and then the pulse period in units of $10 \mu \mathrm{~s}$ is stored in special data registers.
$\rightarrow$ For details, refer to Section 36.8.
*1. This function is supported only in DC input type.

### 36.2 Common Items

### 36.2.1 How to disable interrupt function

This section describes how to disable the interrupt function.

1. Limiting the program interrupt range [interrupt function]
1) Programming method Program the FNC 05 (DI) instruction to set the interrupt disabled zone. Even if an interrupt is generated between the DI instruction and El instruction (interrupt disabled zone), the interrupt is executed after the El instruction.
2) Program example

3) Cautions
a) The interrupt inputs with special auxiliary relay for interrupt disable (M8050 to M8059) turned ON are excluded.
b) When the disabled zone is long, interrupts are accepted, but the interrupt processing is started after considerable time.
When the interrupt disabling setting is not required, program only El instruction. It is not always necessary to program DI instruction.

## 2. Disabling interrupt pointers (for each interrupt routine) [interrupt function]

1) Programming method

The special auxiliary relays M8050 to M8059 for disabling interrupt are provided.
While an interrupt disable flag (M8050 to M8059) is ON, a corresponding interrupt program is not executed even if the interrupt disable flag is set to OFF after a corresponding interrupt is generated.

Input interrupt	The input interrupts X000 to X005 correspond to M8050 to M8055   M80 respectively. When a relay M8050 to
M8055 turns ON, a corresponding input interrupt is disabled.	

*1. Cleared when the PLC mode is changed from RUN to STOP.
2) Program example

In the program example shown below, when M8053 is set to ON by M20, the interrupt input I301 triggered by X003 is disabled.


## 1. Using the I/O refresh function (REF instruction)

When controlling an input relay or output relay in an interrupt program, the I/O refresh instruction REF (FNC 50) can be used to acquire the latest input information and immediately output the operation result. As a result, high-speed control is achieved without being affected by the operation cycle of the PLC.
2. Interrupt operation while FROM/TO instruction is executed The interrupt operation is executed as follows depending on the ON/OFF status of the special auxiliary relay M8028.

1) While M8028 is OFF

While FROM/TO instructions are being executed, interrupts are automatically disabled. Input interrupts and timer interrupts are not executed.
Interrupts generated during this period are immediately executed when the execution of FROM/TO instructions are completed.
FROM/TO instruction can be used in an interrupt program when M8028 is OFF.
2) While M8028 is ON

When an interrupt is generated while a FROM/TO instruction is being executed, execution of the FROM/TO instruction is paused and the interrupt is immediately executed.
FROM/TO instructions cannot be used in an interrupt routine program when M8028 is ON.

### 36.2.3 Cautions on use (common)

This section explains common cautions on using the interrupt function or pulse catch function.
Specific cautions on each interrupt function are explained in the description of each interrupt function.

1. Processing when many interrupts are generated

When many interrupts are generated in turn, priority is given to the first one. When many interrupts are generated at the same time, priority is given to the one having the smallest pointer number.
While an interrupt routine is being executed, other interrupts are disabled.
2. When double interrupt (interrupt during another interrupt) is required [interrupt function]

Usually, interrupts are disabled in an interrupt routine (program).
When the EI (FNC 04) and DI (FNC 05) instructions are programmed in an interrupt routine in FX3U/FX3Uc PLCs, up to two interrupts can be accepted.
Double interrupts are not available in FX3S/FX3G/FX3GC PLCs.

## 3. Operation when a timer is used [interrupt function]

Make sure that counting using a general timer is disabled, even a 1 ms retentive type timer.
In an interrupt routine, use timers for subroutine program T192 to T199.
FX3S PLCs are not equipped with timers for subroutine program.
4. Non-overlap of input [input interrupt (with/without delay function) and pulse catch function] The inputs X000 to X007 can be used for high-speed counters, input interrupts, pulse catch, SPD, ZRN, DSZR and DVIT instructions and for general-purpose inputs.
Make sure inputs do not overlap with each other.
When using SFC program (STL instruction), do not drive state relays $S$ in a SET or OUT instruction in an interrupt program.

## 5. When using SFC program (STL instruction)

When using SFC programs (STL instruction), do not drive state relays S using SET or OUT instructions in an interrupt program.
6. Operation of devices latched in the ON status [interrupt function]

Devices which were set to ON in an interrupt routine are held in the ON status even after the interrupt routine is finished.
When the RST instruction for a timer or counter is executed, the reset status of the timer or counter is also held.
To turn OFF a device held in the ON status or for canceling such a timer or counter held in the reset status, reset such a device or deactivate the RST instruction respectively inside or outside the routine.

## Example in which outputs are latched

In the program example shown below, the counter C0 is provided to count X001. When X001 turns from OFF to ON, the interrupt program 1001 is executed only in one scan, and then the counter C 0 is reset and Y 007 is output.

1) Program example

2) Timing chart


Example in which latched outputs are reset (countermeasures)

1) Program example

2) Timing chart

Execution of interrupt
program 1001 triggered
by $\times 000$


### 36.3 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]

### 36.3.1 Input interrupt (interrupt triggered by external signal) [without delay function]

## 1. Outline

An interrupt routine is executed by the input signal from an input X000 to X 005 .

## 2. Application

Because the external input signal can be processed without being affected by the operation cycle of the PLC, this interrupt is suitable to high-speed control and receiving of short pulses.
3. Basic program (programming procedure)
Main program
Interrupt inputs are accepted after El instruction.
It is not necessary to program DI (disable
interrupt) instruction if there is no zone where
input interrupts should be disabled.
4. Number and operation of (six) interrupt pointers


Input number	Pointer number		Interrupt disable command
	Interrupt at rising edge	Interrupt at falling edge	
X000	1001	1000	M8050*1
X001	1101	1100	M8051 ${ }^{* 1}$
X002	1201	1200	M8052*1
X003	1301	1300	M8053*1
X004	1401	1400	M8054*1
X005	1501	1500	M8055*1

[^3]
## 5. How to disable each interrupt input

When any among M8050 to M8055 is set to ON in a program, interrupts from the corresponding input number are disabled.
(Refer to the previous page table for the correspondence.)

## 6. Cautions

1) Do not use an input two or more times

Make sure that an input relay number used as an interrupt pointer is not used in high-speed counters, pulse catch functions and applied instructions such as the SPD (FNC 56) speed detection instruction which use the same input range.
2) Automatic adjustment of the input filter

When an input interrupt pointer $I \square 0 \square$ is specified, the input filter of the input relay is automatically changed to the input filter for high-speed receiving.
Accordingly, it is not necessary to change the filter value using the REFF (FNC 51) instruction or special data register D8020 (input filter adjustment).
The input filter of an input relay not being used as an input interrupt pointer operates at 10 ms (initial value).
3) Pulse width of input interrupt

For executing input interrupt by an external signal, it is necessary to input the ON or OFF signal having the duration shown in the table below or more.
A digital filter is built into the input $X$ as follows. The filter time can be changed in 1 ms units using the REFF instruction (FNC 51) or the special data register (D8020). When the filter time is set to " 0 ", the input filter value is as follows.

PLC	Input number	Input filter value when "0" is set
FX3S	X000,X001	$10 \mu \mathrm{~s}$
	$\mathrm{X} 002, \mathrm{X003,X004,X005}$	$50 \mu \mathrm{~s}$
FX3G, FX3GC	$X 000, X 001, X 003, X 004$	$10 \mu \mathrm{~s}$
	$X 002, X 005$	$50 \mu \mathrm{~s}$
FX3U, FX3UC	X000 to X005	$5 \mu \mathrm{~s}^{* 1}$

*1. When using the input filter at the filter value of $5 \mu \mathrm{~s}$ or when receiving a pulse whose response frequency is 50 k to 100 kHz using a high-speed counter, perform the following:

- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of $1.5 \mathrm{k} \Omega$ ( 1 W or more) to an input terminal, and make sure that the load current of the open collector transistor output in the counterpart equipment is 20 mA or more including the input current in the main unit.

4) Using a pointer number two or more times

It is not possible to program an interrupt at the rising edge and an interrupt at the falling edge for an input such as I001 or 1000.

## 7. Program examples

1) When using both an external input interrupt at the rising edge and the output refresh (REF instruction) In the program example shown below, the output Y 000 immediately turns ON when the rising edge of the external input X000 is detected.


Interrupts are enabled by the El instruction. The main program is described.

The main program is finished by the FEND instruction.

When an interrupt routine is executed by turning ON of X 000 , YOOO is set to ON unconditionally.

The outputs Y000 to Y007 are overwritten with the latest information by the output refresh instruction.
If the output refresh instruction is not provided, Y000 turns ON after the END instruction after the program execution returned to the main routine.

If "SET YOOO" is changed to "RST YOOO", YOOO is immediately set to OFF by turning ON of X000.
*2. Make sure to specify a multiple of "8" for the number of inputs/outputs to be refreshed by the REF (FNC 50) instruction.
If any value other than a multiple of " 8 " is specified, an operation error occurs and the REF (FNC 50) instruction is not executed.
2) When using both an input interrupt and the input refresh (REF instruction)

In the program example shown below, an interrupt is processed using the latest input information.


Interrupts are enabled by El instruction. The main program is described.

The main program is finished by FEND instruction.

When an interrupt routine is executed by turning X001 to ON, the input refresh is executed unconditionally, and the ON/OFF information of X010 to X017 at the current time is received.

Y001 is set to ON or OFF according to the ON/ OFF status of X010.
*1. Make sure to specify a multiple of "8" as the number of inputs/outputs to be refreshed by REF (FNC 50) instruction.
If any value other than a multiple of " 8 " is specified, an operation error occurs and REF (FNC 50) instruction is not executed.
3) When counting the number of times of input generation (in the same way as 1-phase high-speed counter) In the program example shown below, external inputs are counted.


Interrupts are enabled by El instruction.
The main program is described.

The main program is finished by FEND instruction.

When X002 turns ON, " 1 " is added to the value of DO.
INC instruction executes increment in every operation cycle, but the interrupt routine is executed only once by an input signal. Accordingly, it is not necessary to use INCP (pulse operation type) instruction.
4) When catching a short pulse

In the program example shown below, the ON status is held for a certain period of time after a short pulse turns ON.


Interrupts are enabled by El instruction.
The ON/OFF signal in M0 is utilized in this program.

The period of time to hold MO is specified.

After the timer time, M 0 is reset.

The main program is finished by FEND instruction.

When X003 turns ON and the interrupt routine is executed, M0 is set to ON unconditionally.

### 36.3.2 Examples of practical programs (programs to measure short pulse width)

By using a 1 ms retentive type timer or the special data register D8099 (high-speed ring counter), the short pulse width can be measured in 1 ms or 0.1 ms units.

1. Example of program to measure the short pulse width using a retentive type 1 ms timer



Interrupts are enabled by the El instruction. The main program is described.

The main program is finished by the FEND instruction.

When X000 turns ON, the 1 ms timer T246 is started up by the interrupt I001.

When X001 turns OFF, the current value of T246 is transferred to the data register D0 for storing the measured value by the interrupt I100, and M0 for the complete signal is set to ON.
"T246" is set to OFF, and the timer is stopped.

## -Timing chart


2. Example of program to measure the short pulse width using a high-speed ring counter (only in FX3U/FX3Uc PLCs)


### 36.4 Input interrupt (Interrupt by External Signal) [With Delay Function]

$F X_{3}$

1. Outline

An input interrupt has the function to delay execution of an interrupt routine in units of 1 ms .
The delay time can be specified using the pattern program shown below.
By using the delay function, the mounting position of a sensor used for input interrupts can be adjusted electrically without changing the actual position.
2. Programming procedure


- Delay time specification program

Make sure to describe the delay time specification program shown on the left at the head of an interrupt routine program. Do not add, change, or delete this routine program when writing during RUN. Interrupt programs may not operate normally. Because this program is a pattern program, change only the delay time ([1]).
Only a constant (K) or data register (D) is available for specifying the time here*. If any other device or constant is used, the delay time setting becomes invalid and the interrupt functions as a normal input interrupt. If the contents of the set data register (D) are " 0 ", the delay time is regarded as " 0 ".

- End of interrupt program.

3. Timing chart


### 36.5 Timer Interrupt (Interrupt in Constant Cycle)

### 36.5.1 Timer interrupt (interrupt in constant cycle)

1. Outline

An interrupt routine is executed at every 10 to 99 ms without being affected by the operation cycle of a PLC.

## 2. Application

This type of interrupt is suitable when a certain program should be executed at high-speed while the main program operation time is long or when a program should be executed at a constant time interval in sequence operations.
3. Basic program (programming procedure)


## Main program

Timer interrupts are enabled after the El instruction. It is not necessary to program DI (disable interrupt) if there is no zone where input interrupts should be disabled

The FEND instruction indicates the end of the main program.
Make sure to describe an interrupt routine after the FEND instruction.

Interrupt subroutine
The interrupt routine is executed at every 20 ms .
Create a program to be executed as interrupt.
The IRET instruction returns the program execution to the main program.
4. Number and operation of (three) timer interrupt pointers


An interrupt routine program is executed at every specified interrupt cycle time ( 10 to 99 ms ). Use the type of interrupt in control requiring cyclic interrupt processing regardless of the operating cycle of a PLC.

Input number	Interrupt cycle (ms)	Interrupt disable Flag
$16 \square \square$	An integer ranging from 10 to 99 is put in " $\square \square$ " in the pointer name. Example: "I610" indicates a timer interrupt at every 10 ms .	M8056*1
$17 \square \square$		M8057 ${ }^{* 1}$
$18 \square \square$		M8058*1

*1. Cleared when the PLC mode is changed from RUN to STOP.

## Caution

If the timer interrupt time is set to 9 ms or less, the timer interrupt processing may not be executed in an accurate cycle in the following cases. Therefore, using a time that is over 10 ms is recommended.

- When the interrupt program processing time is long
- When the main program contains an applied instruction which processing time is long


## 5. Cautions

- Each pointer number ( 16,17 or 18 ) can only be used once.
- When M8056 to M8058 is set to ON in a program, a corresponding timer interrupt is disabled.


## 6. Program example

$\rightarrow$ For program examples in which RAMP (FNC 67) or HKY (FNC 71) instructions are combined, refer to Subsection 36.5.2
In the program example shown below, data is added and the addition result is compared with the set value every 10 ms.

1) Program example


Interrupts are enabled by El instruction.
The main program is described.
When M3 is set to ON, INC (FNC 24) instruction becomes valid.

The main program is finished by FEND instruction.
"1" is added to the current value of D0 at every 10 ms .

When the current value of DO reaches "1000", M3 is reset.

The current value of DO is ramp data which changes from "0" to "1000" in 10 seconds.
In the program example using RAMP
(FNC 67) instruction shown later, the ramp data is made using a dedicated applied instruction.

### 36.5.2 Examples of practical program (timer interrupt programs using applied instruction)

RAMP (FNC 67), HKY (FNC 71), SEGL (FNC 74), ARWS (FNC 75) and PR (FNC 77) instructions execute a series of operations in synchronization with the scan time.
Because the total time may be too long or time fluctuation may cause a problem in these instructions, it is recommended to execute these instructions at a constant time interval using the timer interrupt function. When not using the timer interrupt function, use the constant scan mode.

1. Timer interrupt processing of HKY (FNC 71) instruction
$\rightarrow$ For HKY (FNC 71) instruction, refer to Section 15.2.


Interrupts are enabled by El instruction. The main program is described.

The main program is finished by FEND instruction.

The latest input information is received from X000 to X007.

HKY (FNC 71) is executed in one scan.

Y000 to Y007 are refreshed to the latest output information.
2. Timer interrupt processing of RAMP (FNC 67) instruction

The ramp signal output circuit shown below is programmed using the timer interrupt function executed every 10 ms .
$\rightarrow$ For the use method of the instruction execution complete flag M8029, refer to Subsection 6.5.2. $\rightarrow$ For RAMP (FNC 67) instruction, refer to Section 14.8.

1) Ramp output pattern

D4 is occupied as a register for counting the number of times of execution.

2) Program


Interrupts are enabled by El instruction.
The main program is described.
With M8026 turned ON, when the value of (D3) reaches the final value (D2), the final value is latched.

As soon as the start command is given, the initial value (D1) and target value (D2) are transferred.

The main program is finished by FEND instruction.

While the instruction is executed 1000 times (in 10 seconds), the contents of D3 are changed from the value of D1 to the value of D2.

When the instruction execution complete flag M8029 turns ON, RAMP instruction drive input is set to OFF.
If RAMP (FNC 67) instruction is
continuously executed while M8026 is OFF,
the value of D3 returns to the initial value (D1) immediately after it reaches the final value (D2), and then the same operation is repeated.
This program is not necessary when M8026 is ON .

## 3. Cautions

1) When the HKY (FNC 71), SEGL (FNC 74) or PR (FNC 77) instruction is used in an interrupt program, the instruction turns ON M8029 in the interrupt program.
When M8029 is referred to in the main program as shown below, M8029 may be changed by an interrupt program depending on the interrupt timing, even if M8029 is referred to immediately after an instruction. As a result, whether the instruction is executed completely cannot be determined properly.
program example

2) Countermeasures

Disable interrupts using the DI instruction in the section from the instruction which uses M8029 in the main program to the point after M8029 is referred to.

Countermeasures program example


### 36.6 Counter Interrupt - Interrupt Triggered by Counting Up of High-Speed Counter

## 1. Outline

This type of interrupt utilizes the current value of a high-speed counter.

## 2. Application

This type of interrupt is used together with the comparison set instruction DHSCS (FNC 53). When the current value of a high-speed counter reaches the specified value, an interrupt routine is executed.
3. Basic program (programming procedure)
When the current value of C255 changes from "999" to "1000", the interrupt routine is executed. For an interrupt routine use example, refer to the input interrupt function described in the preceding section.

Main program
Interrupts are enabled after EI (FNC 04)
instruction.
The main program is described.
*1. When the comparison value specified by a data register, etc. is changed, the current value is actually changed to the specified value when END instruction is executed.
4. Number and operation of (six) counter interrupt pointers


Counter interrupt pointer (1 to 6)

### 36.7 Pulse Catch Function [M8170 to M8177]

If the El instruction is anywhere in the sequence program, the pulse catch function is always enabled. When an input relay X000 to X007 turns from OFF to ON, a special auxiliary relay M8170 to M8177 is immediately set to ON by interrupt processing.
The EI (FNC 04) instruction is not required in $\mathrm{FX}_{3} \mathrm{~S} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs.

1. Assignment of input numbers and special auxiliary relays

Pulse catch input	Pulse catch relay
X000	M8170*1
X001	M8171*1
X002	M8172*1
X003	M8173*1
X004	M8174*1
X005	M8175
X006	M8176
X007	M8177

*1. Cleared when the PLC mode is changed from STOP to RUN.
*2. This function is supported only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs.
2. Program example


PLC	Input number	Input pulse width
FX3S	X000, X001	$10 \mu \mathrm{~s}$ or more
	X002 to X005	$50 \mu$ or more
FX3G/FX3GC	$\begin{aligned} & \mathrm{X000}, \mathrm{X} 001, \\ & \mathrm{X003,} \mathrm{X004} \end{aligned}$	$10 \mu \mathrm{~s}$ or more
	X002, X005	$50 \mu$ s or more
FX3U/FX3UC	X000 to X005	$5 \mu \mathrm{~s}^{* 3}$ or more
	X006, X007	$50 \mu$ s or more

*3. When using the pulse catch function at $5 \mu$ s or when receiving a pulse whose response frequency is 50 k to 100 kHz using a high-speed counter, perform the following:

- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of $1.5 \mathrm{k} \Omega$ ( 1 W or more) to the input terminal, and make sure that the load current of the open collector transistor output in the counterpart equipment is 20 mA or more including the input current in the main unit.


## 3. Cautions on use

1) When receiving an input again, it is necessary to reset the device which was once set using a program. Accordingly, until a device is reset, a new input cannot be received.
2) When it is necessary to receive continuous short pulses (input signals), use the external input interrupt function or high-speed counter function
3) A filter adjustment program is not required.
4) The pulse catch function is executed regardless of the operations of the special auxiliary relays M8050 to M8055 for disabling interrupts.

### 36.8 Pulse width/Pulse period measurement function [M8075 to M8079, D8074 to D8097]

The pulse width/pulse period measurement function stores the values of $1 / 6 \mu$ s ring counters at the input signal rising edge and falling edge to special data registers. This function also divides by " 60 " the difference in the counter value (pulse width) between the rising edge and the falling edge or the difference in the counter value (pulse period) between the previous rising edge and the current rising edge, and stores the obtained pulse width or pulse period in units of $10 \mu$ s to special data registers.

The pulse width/pulse period measurement function becomes valid when a program is described using M8075 as a contact. Specify the pulse width measurement flag in the subsequent OUT instruction, and set an input terminal to be used.
When the pulse width/pulse period measurement function is valid, it always operates while the PLC mode is RUN.
Assignment of special auxiliary relays and special data registers

Pulse input	Pulse width/ Pulse period measurement flag	Pulse period measurement mode ${ }^{* 1}$	Ring counter value for rising edge* ${ }^{*}$ [Unit: $1 / 6 \mu \mathrm{~s}$ ]	Ring counter value for falling edge ${ }^{* 1}$ [Unit: 1/6 $\mu \mathrm{s}$ ]	Pulse width   /Pulse period ${ }^{* 1 * 2}$   [Unit: $10 \mu \mathrm{~s}$ ]
X000	M8076	M8080	D8075,D8074	D8077,D8076	D8079,D8078
X001	M8077	M8081	D8081,D8080	D8083,D8082	D8085,D8084
X003	M8078	M8082	D8087,D8086	D8089,D8088	D8091,D8090
X004	M8079	M8083	D8093,D8092	D8095,D8094	D8097,D8096

*1. Cleared when the PLC mode switches from STOP to RUN.
*2. The measurable pulse width is $10 \mu \mathrm{~s}$ minimum and 100 s maximum.
The measurable pulse period is $20 \mu \mathrm{~s}$ minimum and 100 s maximum.

## 1. Program example

1) Pulse width measurement

The pulse width of the input signal from X 000 is measured.

interrupts are enabled after El (FNC 04) instruction.
The main program is described.
X000 is used for the pulse width/pulse period measurement function.
2) Pulse period measurement

The pulse period of the input signal from X000 is measured.


- Timing chart

The pulse period is not measured when the input signal rises for the first time after the PLC mode is changed from STOP to RUN, or when the input signal rises for the first time after the pulse period measurement mode (M8080) is set to from OFF to ON. (Accordingly, D8078 and D8079 are not updated.)
The pulse period is measured when the input signal rises at the next time. (As a result, D8078 and D8079 are updated.)

Make the pulse width/pulse period measurement setting flag (M8080) remain OFF for 1 operation cycle or more when discontinuing the pulse input.
If M8080 does not remain OFF for 1 operation cycle or more, the "a" period shown below is stored as the pulse period.



The pulse period is measured. (D8078 and D8079 are updated.)

The pulse period is measured. (D8078 and D8079 are updated.)
3) Signal delay time measurement

The delay time from the rising edge of the input signal from X000 to the rising edge of the input signal from X001 is measured.

*1. The ring counter offers 32-bit data including the most significant bit.
The DSUB (FNC21) instruction does not give a correct value because it handles the most significant bit as the sign bit. To obtain a correct value, add the processing inside the dotted frame.

## 2. Cautions on use

- The pulse width/pulse period measurement function and input interrupts can be used at the same time in the same input terminal.
- When the same input terminal is used by the pulse width/pulse period measurement function and the SPD (FNC56), DSZR (FNC150) or ZRN (FNC156) instruction, an operation error occurs when the instruction is executed.
- The input terminal used for the pulse width/pulse period measurement function cannot be used for the pulse catch function.
- When the same input terminal is used by the pulse width/pulse period measurement function and a high-speed counter, a grammatical error occurs.
- Make sure that the total frequency of four input channels is 50 kHz or less when using the pulse width/pulse period measurement function.
- When the pulse width/pulse period measurement function and a high-speed counter are used together, the overall frequency of the high-speed counter is affected.
$\rightarrow$ For details on high-speed counters, refer to Subsection 4.7.7.


## 37. Operation of Special Devices (M8000 -, D8000 -)

### 37.1 Special Device List (M8000 -, D8000 -)

The device numbers and functions of the special auxiliary relays (indicated as "special M " in tables) and special data registers (indicated as "special D" in tables) are shown below.
Note that functions of certain devices vary depending on the series of the PLC.
Do not use the undefined / blank special auxiliary relays and special data registers in the sequence program since they are occupied by the CPU.
In addition, do not activate or write to the devices with brackets on the first letter such as [M]8000 or [D]8001 in the program.
$\rightarrow$ Refer to Section 37.2 for supplementary information on analog special adapter devices.

### 37.1.1 Special Auxiliary Relay (M8000 to M8511)

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
PLC Status												
[M]8000   RUN monitor NO contact		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8001 RUN monitor NC contact		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8002 Initial pulse NO contact		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8003 Initial pulse NC contact		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8004   Error occurrence	- FX3S/FX3G/FX3GC/FX3U/FX3UC ON when either M8060, M8061, M8064, M8065, M8066, or M8067 is ON.   - FX1S/FX1N/FX1NC/FX2N/FX2NC ON when either M8060, M8061, M8063, M8064, M8065, M8066, or M8067 is ON.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8004	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M] 8005   Battery voltage low	ON when battery voltage is below the value set in D8006.   $\rightarrow$ Refer to Subsection 37.2.3.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8005	-	-	-	$\checkmark$	$\checkmark$
[M]8006 Battery error latch	It is set when battery voltage low is detected. $\rightarrow$ Refer to Subsection 37.2.3.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8006	-	-	-	$\checkmark$	$\checkmark$
[M]8007   Momentary power failure	ON for 1 scan, when momentary power failure is detected   Even if M8007 turns ON, PLC continues to RUN as long as the duration of power loss is within the time period specified in D8008.   $\rightarrow$ Refer to Subsection 37.2.4.	-	-	-	$\checkmark$	$\checkmark$	$\begin{aligned} & \text { D8007 } \\ & \text { D8008 } \end{aligned}$	-	-	-	$\checkmark$	$\checkmark$
[M]8008   Power failure detected	It is set when momentary power failure is detected.   If power loss time is longer than the time period specified in D8008, M8008 is reset and PLC is switched to STOP mode. (M8000=OFF).   $\rightarrow$ Refer to Subsection 37.2.4.	-	-	-	$\checkmark$	$\checkmark$	D8008	-	-	-	$\checkmark$	$\checkmark$
$\begin{aligned} & \hline[\mathrm{M}] 8009 \\ & 24 \mathrm{~V} \text { DC down } \end{aligned}$	ON when 24 V DC power fails in an I/O extension unit or special function block.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8009	-	-	-	$\checkmark$	$\checkmark$


Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Clock												
[M]8010	Not used	-	-	-	-	-	-	-	-	-	-	-
[M] 8011   10 ms clock pulse	ON and OFF in 10 ms cycles   (ON: 5 ms, OFF: 5 ms )   $\rightarrow$ Refer to Subsection 37.2.6.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8012   100 ms clock pulse	ON and OFF in 100 ms cycles   (ON: $50 \mathrm{~ms}, \mathrm{OFF}: 50 \mathrm{~ms}$ )   $\rightarrow$ Refer to Subsection 37.2.6.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8013   1 sec clock pulse	ON and OFF in 1 sec cycles (ON: 500 ms , OFF: 500 ms ) $\rightarrow$ Refer to Subsection 37.2.6.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8014   1 min clock pulse	ON and OFF in 1 min cycles   (ON: $30 \mathrm{sec}, \mathrm{OFF}: 30 \mathrm{sec}$ )   $\rightarrow$ Refer to Subsection 37.2.6.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8015	Clock stop and preset For real time clock $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$
M 8016	Time read display is stopped   For real time clock   $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$
M 8017	$\pm 30$ seconds correction   For real time clock   $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$
[M]8018	Installation detection (Always ON) For real time clock $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-			Iways	N) ${ }^{*}$	
M 8019	Real time clock (RTC) error For real time clock   $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$
Flag												
$\begin{aligned} & {[\mathrm{M}] 8020} \\ & \text { Zero } \end{aligned}$	ON when the result of addition/subtraction is 0 . $\rightarrow$ Refer to Subsection 6.5.2 for usage.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8021   Borrow	ON when the result of subtraction is less than the min. negative number.   $\rightarrow$ Refer to Subsection $\mathbf{6 . 5} \mathbf{2}$ for usage.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8022   Carry	ON when 'carry' occurs in result of addition or when an overflow occurs in result of shift operation.   $\rightarrow$ Refer to Subsection $\mathbf{6 . 5 . 2}$ for usage.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8023	Not used	-	-	-	-	-	-	-	-	-	-	-
M $8024{ }^{* 1}$	BMOV direction specification (FNC 15)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M $8025{ }^{*}$	$\begin{aligned} & \text { HSC mode } \\ & \text { (FNC } 53 \text { to 55) } \end{aligned}$	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M $8026{ }^{*}{ }^{2}$	RAMP mode   (FNC 67)	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M $8027{ }^{*}$	PR mode (FNC 77)	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M 8028	$100 \mathrm{~ms} / 10 \mathrm{~ms} \mathrm{timer}$ changeover	$\checkmark$	-	-	-	-	-	$\checkmark$	-	-	-	-
	Interrupt permission during FROM/TO (FNC 78 and 79) instruction execution	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
[M]8029 Instruction execution complete	ON when operation such as DSW (FNC 72) is completed.   $\rightarrow$ Refer to Subsection $\mathbf{6 . 5} \mathbf{2}$ for usage.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*1. The operation varies according to PLC:

- Not cleared in an FX1N/FX1NC/FX2N/FX2nc PLCs.
- Cleared in an $F_{3}$ /FX3G/FX3Gc/FX3U/FX3Uc PLCs when PLC switches from RUN to STOP.
*2. The operation varies according to PLC:
- Not cleared in an FX2N/FX2NC PLCs.
- Cleared in an FX3U/FX3Uc PLCs when PLC switches from RUN to STOP.
*3. The FX2NC PLC requires the optional memory board (with the real time clock).

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
PLC Mode												
M 8030*1   Battery LED OFF	When M8030 set to ON, LED on PLC is not lit even if battery voltage low is detected.   $\rightarrow$ Refer to Subsection 37.2.10.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M 8031*1   Non-latch memory all clear	If this special auxiliary relay is activated, the ON/OFF image memory of Y, M, S, T, and C, and present values of T, C, D, special data registers ${ }^{* 3}$, and $R^{* 2}$ are cleared to zero. However, file registers (D) in program memory and extension file registers (ER)* ${ }^{*}$ in the memory cassette are not cleared.   $\rightarrow$ Refer to Subsection 37.2.12.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8032*1 Latch memory all clear		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8033   Memory hold STOP	When PLC is switched from RUN to STOP, image memory and data memory are retained.   $\rightarrow$ Refer to Subsection 37.2.13.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$\text { M } 8034^{* 1}$   All outputs disable	All external output contacts of PLC are turned OFF.   $\rightarrow$ Refer to Subsection 37.2.14.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$\begin{aligned} & \hline \text { M } 8035 \\ & \text { Forced RUN mode } \end{aligned}$	$\rightarrow$ Refer to Subsection 37.2.15 for details.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8036 Forced RUN signal		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8037    Forced   signal STOP		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8038   Parameter setting	Communication parameter setting flag (for $\mathrm{N}: \mathrm{N}$ network setting)   $\rightarrow$ Refer to Data Communication Edition.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{gathered} \text { D8176 to } \\ \text { D8180 } \end{gathered}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark$
M 8039   Constant scan mode	When M8039 is ON, PLC waits until scan time specified in D8039 and then executes cyclic operation.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8039	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*1. It is executed when END instruction is executed.
*2. $R$ and $E R$ are available only in $F X_{3 G} / F X_{3 G C} / F X_{3} U / F X_{3} U C$ PLCs.
*3. Special data registers are not cleared in FX1s/FX1N/FX1NC/FX2N/FX2NC PLCs.
*4. It is available in Ver. 2.00 or later.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Step Ladder and Annunciator (Refer to ANS (FNC 46), ANR (FNC 47), IST (FNC 60), and Chapter 35 for details.)												
$\begin{aligned} & \text { M } 8040 \\ & \text { Transfer disable } \end{aligned}$	While M8040 is turned ON, transfer between states is disabled.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8041*1   Transfer start	Transfer from initial state is enabled in automatic operation mode.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8042   Start pulse	Pulse output is given in response to a start input.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8043*1   Zero return complete	Set this in the last state of zero return mode.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8044*1   Zero point condition	Set this when machine zero return is detected.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8045   All output reset disable	Disables the 'all output reset' function when the operation mode is changed.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$[\mathrm{M}] 8046^{* 2}$   STL state ON	ON when M8047 is ON and any state SO to S899 or S1000 to S4095*3 is active.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8047	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8047 ${ }^{*}$ STL monitoring enable	D8040 to D8047 are enabled when M8047 is ON.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{array}{\|c} \hline \text { D8040 to } \\ \text { D8047 } \end{array}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$[\mathrm{M}] 8048^{* 2}$   Annunciator operate	ON when M8049 is ON and any annunciator S900 to S999 is ON.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M 8049*1   Annunciator enable	D8049 is enabled when M8049 is ON.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{aligned} & \text { D8049 } \\ & \text { M8048 } \end{aligned}$	-	-	-	$\checkmark$	$\checkmark$

*1. Cleared when the PLC switches from RUN to STOP.
*2. Executed at END instruction.
*3. S1000 to S4095 are available only in the FX3G/FX3GC/FX3U/FX3uc Series PLCs.

M8050 (input interrupt) $100 \square$ disable ${ }^{*}$	- If an input interrupt or timer interrupt occurs while a special auxiliary relay for that interrupt (M8050 - M8058) is ON, the interrupt will not operate.   For example, turning M8050 ON disables the $100 \square$ interrupt; hence, the interrupt routine is not processed even in an allowable program area.   - If an input interrupt or timer interrupt occurs while a special auxiliary relay for that interrupt (M8050-M8058) is OFF,   a) The interrupt will be accepted.   b) The interrupt routine will be processed promptly if it is permitted by the El (FNC 04) instruction. However, if the DI (FNC 05) instruction disables interrupts, the interrupt program will not be processed until EI (FNC 04) permits the interrupts.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M8051 (input interrupt) I10 $\square$ disable $^{* 4}$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M8052 (input interrupt) $120 \square$ disable $^{*} 4$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M8053 (input interrupt) $130 \square$ disable ${ }^{*} 4$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M8054   (input interrupt) $140 \square \text { disable }{ }^{*} 4$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M8055 (input interrupt) $150 \square$ disable $^{*}{ }^{4}$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M8056   (Timer interrupt)   16 $\square \square$ disable $^{* 4}$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M8057   (Timer interrupt)   17 $\square \square$ disable $^{* 4}$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M8058 (Timer interrupt) I8 $\square \square$ disable $^{* 4}$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M8059   Counter interrupt disable ${ }^{*} 4$	Interrupt of I010 to I060 disabled	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$

*4. Cleared when the PLC switches from RUN to STOP.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Error Detection (Refer to Chapter 38 for details.)												
[M]8060	I/O configuration error	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8060	-	-	-	$\checkmark$	$\checkmark$
[M]8061	PLC hardware error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8061	-	-	-	$\checkmark$	$\checkmark$
[M]8062	PLC/PP communication error	$\checkmark^{* 1}$	-	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	D8062	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
	Serial communication error 0 [ch0] ${ }^{*}$	-	$\checkmark$	$\checkmark$	-	-	D8062	-	-	-	-	-
[M]8063 ${ }^{* 3 * 4}$	Serial communication error 1 [ch1]	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8063	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8064	Parameter error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8064	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8065	Syntax error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8065 D8069 D8314 D8315	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8066	Ladder error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8066 D8069 D8314 D8315	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8067*5	Operation error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{aligned} & \text { D8067 } \\ & \text { D8069 } \\ & \text { D8314 } \\ & \text { D8315 } \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8068	Operation error latch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{aligned} & \hline \text { D8068 } \\ & \text { D8312 } \\ & \text { D8313 } \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8069*6	I/O bus check	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$

*1. It truns on, only when a memory access error (6230) occurs in FX3s/FX3u/FX3uc PLCs.
*2. Cleared when PLC power supply is turned from OFF to ON.
*3. The operation varies according to PLC:

- Cleared in an FX1s/FX1N/FX1NC/FX2N/FX2NC PLCs when PLC switches from STOP to RUN.
- Cleared in an FX3s/FX3G/FX3GC/FX3U/FX3uc PLCs when PLC power supply from OFF to ON.
*4. Serial communication error 2 [ch2] is detected by M8438 in FX3G/FX3GC/FX3U/FX3uc PLCs.
*5. Cleared when PLC switches from STOP to RUN.
*6. When M8069 is ON, I/O bus check is executed. <Refer to Chapter 38 for details.>

*7. Cleared when PLC switches from STOP to RUN.

Sampling Trace [FX3U/FX3UC/FX2N/FX2NC]												
[M]8074	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8075	Ready request for sampling trace	-	-	-	$\checkmark$	$\checkmark$	$\begin{gathered} \text { D8075 to } \\ \text { D8098 } \end{gathered}$	-	-	-	$\checkmark$	$\checkmark$
[M]8076	Start request for sampling trace	-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[M]8077	ON during sampling trace	-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[M]8078	ON when sampling trace is completed	-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[M]8079	Sampling trace system area	-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$


Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Pulse width/Pulse period measurement [FX3G/FX3GC PLCs ]												
[M]8074	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8075	Pulse width/Pulse period measurement setting flag	-	$\checkmark^{* 1}$	$\checkmark$	-	-	-	-	-	-	-	-
[M]8076	[X000] Pulse width/Pulse period measurement flag	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c\|} \hline \text { D8074 to } \\ \text { D8079 } \end{array}$	-	-	-	-	-
[M]8077	[X001] Pulse width/Pulse period measurement flag	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c\|} \hline \text { D8080 to } \\ \text { D8085 } \end{array}$	-	-	-	-	-
[M]8078	[X003] Pulse width/Pulse period measurement flag	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c\|} \hline \text { D8086 to } \\ \text { D8091 } \end{array}$	-	-	-	-	-
[M]8079	[X004] Pulse width/Pulse period measurement flag	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c} \hline \text { D8092 to } \\ \text { D8097 } \end{array}$	-	-	-	-	-
M 8080	[X000] Pulse period measurement mode	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c} \hline \text { D8074 to } \\ \text { D8079 } \end{array}$	-	-	-	-	-
M 8081	[X001] Pulse period measurement mode	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{aligned} & \text { D8080 to } \\ & \text { D8085 } \end{aligned}$	-	-	-	-	-
M 8082	[X003] Pulse period measurement mode	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c} \hline \text { D8086 to } \\ \text { D8091 } \end{array}$	-	-	-	-	-
M 8083	[X004] Pulse period measurement mode	-	$\checkmark^{* 1}$	$\checkmark$	-	-	$\begin{array}{\|c} \hline \text { D8092 to } \\ \text { D8097 } \end{array}$	-	-	-	-	-
[M]8084 to [M]8089	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Available in Ver. 1.10 or later.

Flag												
[M]8090	BKCMP (FNC194 to FNC199) instructions Block comparison signal	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-	-	-	-	-
M 8091	COMRD (FNC182) and BINDA (FNC261) instructions - Output character quantity selector signal	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-	-	-	-	-
[M]8092	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8093		-	-	-	-	-	-	-	-	-	-	-
[M]8094		-	-	-	-	-	-	-	-	-	-	-
[M]8095		-	-	-	-	-	-	-	-	-	-	-
[M]8096		-	-	-	-	-	-	-	-	-	-	-
[M]8097		-	-	-	-	-	-	-	-	-	-	-
[M]8098		-	-	-	-	-	-	-	-	-	-	-
High-Speed Ring Counter												
M 8099*3	High-speed ring counter operation (in units of $0.1 \mathrm{~ms}, 16$ bits)	-	-	-	$\checkmark$	$\checkmark$	D8099	-	-	-	$\checkmark$	$\checkmark$
[M]8100	Not used	-	-	-	-	-	-	-	-	-	-	-

*2. Available in Ver. 2.20 or later.
*3. For FX2N/FX2NC PLCs, 0.1 ms high-speed ring counter D8099 will operate after END instruction is executed with after M8099 is driven.
For FX3u/FX3uc PLCs, 0.1 ms high-speed ring counter D8099 will operate after M8099 is driven.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Memory Information												
[M]8101	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8102		-	-	-	-	-	-	-	-	-	-	-
[M]8103		-	-	-	-	-	-	-	-	-	-	-
[M]8104	ON when function extension memory is installed.	-	-	-	-	-	$\begin{aligned} & \hline \text { D8104 } \\ & \text { D8105 } \end{aligned}$	-	-	-	$\checkmark^{*} 2$	$\checkmark{ }^{*}{ }^{2}$
[M]8105	ON during writing in RUN mode*1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8106	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8107	Device comment registration check	-	-	-	$\checkmark$	$\checkmark$	D8107	-	-	-	-	-
[M]8108	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. For FX3U/FX3UC PLCs, available only when a memory cassette is connected.
*2. Available in Ver. 3.00 or later.
Output Refresh Error (Refer to Chapter 38 for details.)

[M]8109	Output refresh error	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8109	-	-	-	$\checkmark$	$\checkmark$
[M]8110	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8111		-	-	-	-	-	-	-	-	-	-	-
Expansion Board [For FX3S/FX3G]												
[M]8112	FX3G-4EX-BD: BX0 input	$\checkmark^{* 3}$	$\checkmark^{*} 4$	-	-	-	-	-	-	-	-	-
[M]8113	FX3G-4EX-BD: BX1 input	$\checkmark{ }^{*} 3$	$\checkmark^{*} 4$	-	-	-	-	-	-	-	-	-
[M]8114	FX3G-4EX-BD: BX2 input	$\checkmark^{* 3}$	$\checkmark^{*} 4$	-	-	-	-	-	-	-	-	-
[M]8115	FX3G-4EX-BD: BX3 input	$\checkmark^{* 3}$	$\checkmark^{*} 4$	-	-	-	-	-	-	-	-	-
M 8116	FX3G-2EYT-BD: BY0 output	$\checkmark^{*}$	$\checkmark^{*} 4$	-	-	-	-	-	-	-	-	-
M 8117	FX3G-2EYT-BD: BY1 output	$\checkmark^{* 3}$	$\checkmark^{*} 4$	-	-	-	-	-	-	-	-	-
[M]8118	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8119		-	-	-	-	-	-	-	-	-	-	-

*3. Available in Ver. 1.10 or later.
*4. Available in Ver. 2.20 or later.

[Expansion Board [For FX1S/FX1N]												
M 8112	FX1N-4EX-BD: BX0 input	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
	FX1N-2AD-BD: ch1 input mode change	-	-	-	-	-	D8112	$\checkmark$	$\checkmark$	-	-	-
M 8113	FX1N-4EX-BD: BX1 input	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
	FX1N-2AD-BD: ch2 input mode change	-	-	-	-	-	D8113	$\checkmark$	$\checkmark$	-	-	-
M 8114	FX1N-4EX-BD: BX2 input	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
	FX1N-1DA-BD: output mode change	-	-	-	-	-	D8114	$\checkmark$	$\checkmark$	-	-	-
M 8115	FX1N-4EX-BD: BX3 input	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
M 8116	FX1N-2EYT-BD: BY0 output	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
M 8117	FX1N-2EYT-BD: BY1 output	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
[M]8118	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8119		-	-	-	-	-	-	-	-	-	-	-
RS (FNC 80) and Computer Link [ch1] (Refer to Data Communication Edition for details.)												
[M]8120	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8121*5	RS (FNC 80) instruction: Send wait flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M $8122^{* 5}$	RS (FNC 80) instruction: Send request	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8122	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M $8123^{* 5}$	RS (FNC 80) instruction: Receive complete flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8123	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8124	RS (FNC 80) instruction: Carrier detection flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8125	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8126	Computer link [ch1] Global ON	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{aligned} & \text { D8127 } \\ & \text { D8128 } \\ & \text { D8129 } \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8127	Computer link [ch1] On-demand send processing	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
M 8128	Computer link [ch1] On-demand error flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8129	Computer link [ch1]   On-demand Word / Byte changeover   RS (FNC 80) instruction: Time-out check flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*5. Cleared when PLC switches from RUN to STOP or RS instruction is OFF.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
High-Speed Counter Comparison, High-Speed Table, and Positioning [Positioning is supported in FX3S/FX3G/FX3GC/FX1S/FX1N/FX1NC]												
M 8130	HSZ (FNC 55) instruction: Table comparison mode	-	-	-	$\checkmark$	$\checkmark$	D8130	-	-	-	$\checkmark$	$\checkmark$
[M]8131	HSZ (FNC 55) instruction:   Table comparison mode completion flag	-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
M 8132	HSZ (FNC 55) and PLSY (FNC 57) instructions: Speed pattern mode	-	-	-	$\checkmark$	$\checkmark$	$\begin{array}{\|c\|} \hline \text { D8131 to } \\ \text { D8134 } \end{array}$	-	-	-	$\checkmark$	$\checkmark$
[M]8133	HSZ (FNC 55) and PLSY (FNC 57) instructions: Speed pattern mode completion flag	-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[M]8134	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8135		-	-	-	-	-	-	-	-	-	-	-
[M]8136		-	-	-	-	-	-	-	-	-	-	-
[M]8137		-	-	-	-	-	-	-	-	-	-	-
[M]8138	HSCT (FNC280) instruction: Instruction execution complete flag	-	-	-	$\checkmark$	$\checkmark$	D8138	-	-	-	-	-
[M]8139	HSCS (FNC 53), HSCR (FNC 54), HSZ (FNC 55), HSCT (FNC280) instructions:   High-speed counter comparison instruction executing	-	-	-	$\checkmark$	$\checkmark$	D8139	-	-	-	-	-
M 8140	ZRN (FNC156) instruction: CLR signal output function enable	-	-	-	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
[M]8141	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8142		-	-	-	-	-	-	-	-	-	-	-
[M]8143		-	-	-	-	-	-	-	-	-	-	-
[M]8144		-	-	-	-	-	-	-	-	-	-	-
M 8145	[Y000] Pulse output stop command	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
M 8146	[Y001] Pulse output stop command	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
[M]8147	[Y000] Pulse output monitor (BUSY/READY)	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
[M]8148	[Y001] Pulse output monitor (BUSY/READY)	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
[M]8149	Not used	-	-	-	-	-	-	-	-	-	-	-
Inverter Communication Function (Refer to Data Communication Edition for details.)												
[M]8150	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8151	Inverter communication in execution [ch1]	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark$	$\checkmark$	$\checkmark$	D8151	-	-	-	-	-
[M]8152*1	Inverter communication error [ch1]	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark$	$\checkmark$	$\checkmark$	D8152	-	-	-	-	-
[M]8153*1	Inverter communication error latch [ch1]	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark$	$\checkmark$	$\checkmark$	D8153	-	-	-	-	-
[M]8154*1	IVBWR (FNC274) instruction error [ch1]	-	-	-	$\checkmark$	$\checkmark$	D8154	-	-	-	-	-
[M]8154	Defined per use of EXTR (FNC180)	-	-	-	-	-	-	-	-	-	$\checkmark{ }^{*}{ }^{2}$	$\checkmark{ }^{*} 2$
[M]8155	EXTR (FNC180) is using communicating port	-	-	-	-	-	D8155	-	-	-	$\checkmark{ }^{*}$	$\checkmark{ }^{*} 2$
[M]8156	Inverter communication in execution [ch2]	-	$\checkmark{ }^{*} 3$	$\checkmark$	$\checkmark$	$\checkmark$	D8156	-	-	-	-	-
[M]8156	Communication error or parameter error in EXTR (FNC180) instruction	-	-	-	-	-	D8156	-	-	-	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$
[M]8157*1	Inverter communication error [ch2]	-	$\checkmark^{* 3}$	$\checkmark$	$\checkmark$	$\checkmark$	D8157	-	-	-	-	-
	Communication error in EXTR (FNC180) instruction is latched.	-	-	-	-	-	D8157	-	-	-	$\checkmark{ }^{*} 2$	$\checkmark{ }^{*} 2$
[M]8158*1	Inverter communication error latch [ch2]	-	$\checkmark^{* 3}$	$\checkmark$	$\checkmark$	$\checkmark$	D8158	-	-	-	-	-
[M]8159*1	IVBWR (FNC274) instruction error [ch2]	-	-	-	$\checkmark$	$\checkmark$	D8159	-	-	-	-	-

*1. Cleared when PLC switches from STOP to RUN.
*2. Available in Ver. 3.00 or later.
*3. Available in Ver. 1.10 or later.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Advanced Function												
M 8160*1	SWAP function of XCH (FNC 17)	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M 8161*1*2	8-bit process mode	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8162	High-speed parallel link mode	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8163	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8164*1	FROM (FNC 78), TO (FNC 79) instructions: Transfer points variable mode	-	-	-	-	-	D8164	-	-	-	$\checkmark$ *3	$\checkmark$
M 8165*1	SORT2 (FNC149) instruction: Sorting in descending order	-	-	-	$\checkmark$	$\checkmark{ }^{*} 4$	-	-	-	-	-	-
[M]8166	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8167*1	HKY (FNC 71) instruction: HEX data handling function	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
M 8168*1	SMOV (FNC 13) instruction: HEX data handling function	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$
[M]8169	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Cleared when the PLC switches from RUN to STOP.
*2. Applicable to ASC (FNC 76), RS (FNC 80), ASCI (FNC 82), HEX (FNC 83), CCD (FNC 84), and CRC (FNC188) instructions ${ }^{* 5}$.
*3. Available in Ver. 2.00 or later.
*4. Available in Ver. 2.20 or later.
*5. CRC (FNC188) instruction is available only in $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs.

Pulse Catch (Refer to Section 36.7 for details.)

M 8170*6	Input X000 pulse catch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8171*6	Input X001 pulse catch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8172*6	Input X002 pulse catch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8173**	Input X003 pulse catch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8174*6	Input X004 pulse catch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8175*6	Input X005 pulse catch	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8176*6	Input X006 pulse catch	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8177*6	Input X007 pulse catch	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*6. Cleared when PLC switches from STOP to RUN.
FX3U/FX3UC/FX2N/FX2NC PLCs: EI (FNC 04) instruction is necessary.
FX3S/FX3G/FX3GC/FX1S/FX1N/FX1NC PLCs: El (FNC 04) instruction is unnecessary.

M 8178	Parallel link channel switch (OFF: ch1/ON: ch2)	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8179	$\mathrm{N}: \mathrm{N}$ network channel switch ${ }^{*} 7$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*7. The channel is specified by either setting or not setting M8179 in the setting program.
$\rightarrow$ For setting program, Refer to Data Communication Edition

- ch1: M8179 is not set in program
- ch2: M8179 is set in program

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
N:N Network (Refer to FX Series User's Manual - Data Communication Edition for details.)												
[M]8180	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8181		-	-	-	-	-	-	-	-	-	-	-
[M]8182		-	-	-	-	-	-	-	-	-	-	-
[M]8183*1	Data communication error (Master station)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{gathered} \text { D8201 to } \\ \text { D8218 } \end{gathered}$	(M504)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[M]8184*1	Data communication error (Slave station No.1)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M505)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[M] $8185{ }^{* 1}$	Data communication error (Slave station No.2)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M506)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[M] $8186{ }^{* 1}$	Data communication error (Slave station No.3)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M507)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[M] $8187^{* 1}$	Data communication error (Slave station No.4)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M508)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[M] $8188{ }^{* 1}$	Data communication error (Slave station No.5)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M509)	$\checkmark$	$\checkmark$	$\checkmark^{*}$	$\checkmark$
[M]8189*1	Data communication error (Slave station No.6)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M510)	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 2$	$\checkmark$
[M]8190*1	Data communication error (Slave station No.7)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M511)	$\checkmark$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark$
[M]8191*1	Data communication in execution	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(M503)	$\checkmark$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark$
[M]8192	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8193		-	-	-	-	-	-	-	-	-	-	-
[M]8194		-	-	-	-	-	-	-	-	-	-	-
[M]8195		-	-	-	-	-	-	-	-	-	-	-
[M]8196		-	-	-	-	-	-	-	-	-	-	-
[M]8197		-	-	-	-	-	-	-	-	-	-	-

*1. In FX1s PLC, use numbers shown inside parentheses.
*2. Available in Ver. 2.00 or later.

M 8198*3*4	C251, C252, C254: 1/4 edge count selector	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8199{ }^{* 3 *}$	C253, C255, or C253 (OP): 1/4 edge count selector	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*3. OFF: 1 edge count
ON: 4 edge count
*4. Cleared when the PLC switches from RUN to STOP.

Number and name	Operation and function		Applicable model										
			FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Counter Up/down Counter Counting Direction (Refer to Section 4.6 for details.)													
M 8200	C200	When M8 $\square \square \square$ is ON, the corresponding $C \square \square \square$ is changed to down mode.   - ON: Down count operation   - OFF: Up count operation	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8201	C201		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8202	C202		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8203	C203		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8204	C204		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8205	C205		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8206	C206		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8207	C207		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8208	C208		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8209	C209		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8210	C210		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8211	C211		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8212	C212		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8213	C213		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8214	C214		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8215	C215		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8216	C216		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8217	C217		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8218	C218		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8219	C219		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8220	C220		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8221	C221		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8222	C222		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8223	C223		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8224	C224		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8225	C225		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8226	C226		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8227	C227		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8228	C228		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8229	C229		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8230	C230		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8231	C231		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8232	C232		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8233	C233		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8234	C234		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$


	Operation and function		Applicable model										
Number and name			FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
High-Speed Counter Up/down Counter Counting Direction (Refer to Section 4.7 or 4.8 for details.)													
M 8235	C235	When M8 $\square \square \square$ is $O N$, the corresponding $C \square \square \square$ is changed to down mode.   - ON: Down count operation   - OFF: Up count operation	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8236	C236		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8237	C237		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8238	C238		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8239	C239		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8240	C240		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8241	C241		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8242	C242		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8243	C243		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8244	C244		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
M 8245	C245		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
High-Speed Counter Up/down Counter Monitoring (Refer to Section 4.7 or 4.8 for details.)													
[M]8246	C246	When C $\square \square \square$ of 1-phase 2-input or 2phase 2-input counter is in down mode, the corresponding M8 $\square \square \square$ turns ON.   - ON: Down count operation   - OFF: Up count operation	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8247	C247		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8248	C248		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8249	C249		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8250	C250		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8251	C251		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8252	C252		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8253	C253		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8254	C254		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8255	C255		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[M]8256 to [M]8259	Not us		-	-	-	-	-	-	-	-	-	-	-
Analog Special Adapter [FX3U/FX3UC] (Refer to Subsection 37.2.19 for applicability of each analog special adapter.)													
M 8260 to M 8269	1st sp	ecial adapter ${ }^{* 1}$	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-		-	-	-
M 8270 to M 8279	2nd sp	pecial adapter*1	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-	-	-	-	-
M 8280 to M 8289	3rd spe	ecial adapter*1	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-	-	-	-	-
M 8290 to M 8299	4th spe	ecial adapter*1	-	-	-	$\checkmark$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
Analog Special Adapter [FX3S/FX3G/FX3GC], Analog Expansion Board [FX3S/FX3G] (Refer to Subsection 37.2 .18 for applicability of each analog special adapter, and analog expansion board)													
M 8260 to M 8269	1st exp	pansion board ${ }^{*}$	$\checkmark$	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-	-
M 8270 to M 8279	2nd ex	xpansion board ${ }^{*}{ }^{*} 5$	-	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-	-
M 8280 to M 8289	1st spe	ecial adapter ${ }^{* 1}$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
M 8290 to M 8299	2nd sp	pecial adapter ${ }^{* 1 * 5}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-

*1. Count the number of connected analog special adapter from the main unit.
*2. Available in Ver. 1.20 or later.
*3. Expansion board connected to the BD1 connector of a FX3G PLC (40-point and 60-point type) or the BD connector of a FX3G PLC (14-point and 24-point type) and FX3S PLC.
*4. Expansion board connected to the BD2 connector of a FX3G PLC (40-point and 60-point type).
*5. Only a FX3G PLC (40-point and 60-point type) can be connected.
*6. Available in Ver. 1.10 or later.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Flags												
[M]8300 to [M]8303	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8304 Zero	ON when the multiplication and division calculated result is 0	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[M]8305	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8306 Carry	ON when the division calculated result overflows	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[M]8307 to [M]8311	Not used	-	-	-	-	-	-	-	-	-	-	-
Unconnected I/O Designation Error (Refer to Chapter 38 for details.) and flag												
[M]8312*2	Real time clock data lost error	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[M]8313 to [M]8315	Not used	-	-	-	-	-	-	-	-	-	-	-
[M18316*3	Unconnected I/O designation error	-	-	-	$\checkmark$	$\checkmark$	$\begin{aligned} & \text { D8316 } \\ & \text { D8317 } \end{aligned}$	-	-	-	-	-
[M]8317	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8318	BFM initialization failure   ON when a FROM/TO error has occurred in a special function unit/block as specified in the BFM initialization function at changing PLC from STOP to RUN.   When M8318 turns ON, the unit number in which the error has occurred is stored in D8318, and the BFM number is stored in D8319.	-	-	-	$\checkmark$	$\checkmark$ *	$\begin{aligned} & \text { D8318 } \\ & \text { D8319 } \end{aligned}$	-	-	-	-	-
[M]8319 to [M]8321	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8322	```FX3UC-32MT-LT/FX3UC-32MT-LT-2 model indicator 1:FX3UC-32MT-LT-2 0:FX3UC-32MT-LT```	-	-	-	-	$\checkmark$ *	-	-	-	-	-	-
[M]8323	CC-Link/LT configuration required	-	-	-	-	$\checkmark$ *5	-	-	-	-	-	-
[M]8324	CC-Link/LT configuration completed	-	-	-	-	$\checkmark{ }^{*} 5$	-	-	-	-	-	-
[M]8325 to [M]8327	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8328	Instruction non-execution	-	-	-	$\checkmark$	$\checkmark{ }^{*} 4$	-	-	-	-	-	-
[M]8329	Instruction execution abnormal end	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*1. Available in Ver. 2.30 or later.
*2. M8312 is EEPROM backed up against power failure, and is automatically cleared when it is cleared or when the clock data is set again. For details on backup against power failure, refer to Section 2.6.
*3. If the I/O device numbers are unavailable, M8316 turns ON when its directly designated to device numbers including LD, AND, OR, and OUT instructions or indirectly designated by index.
*4. Available in Ver. 2.20 or later.
*5. Only the FX3Uc-32MT-LT-2 is applicable.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Timing Clock (Refer to Section 24.3 for details.) and Positioning [FX3S/FX3G/FX3GC/FX3U/FX3UC] (Refer to Positioning Control Edition for details.)												
[M]8330	DUTY (FNC186) instruction: Timing clock output 1	-	-	-	$\checkmark$	$\checkmark^{* 1}$	D8330	-	-	-	-	-
[M]8331	DUTY (FNC186) instruction: Timing clock output 2	-	-	-	$\checkmark$	$\checkmark{ }^{* 1}$	D8331	-	-	-	-	-
[M]8332	DUTY (FNC186) instruction: Timing clock output 3	-	-	-	$\checkmark$	$\checkmark{ }^{* 1}$	D8332	-	-	-	-	-
[M]8333	DUTY (FNC186) instruction: Timing clock output 4	-	-	-	$\checkmark$	$\checkmark{ }^{* 1}$	D8333	-	-	-	-	-
[M]8334	DUTY (FNC186) instruction: Timing clock output 5	-	-	-	$\checkmark$	$\checkmark{ }^{* 1}$	D8334	-	-	-	-	-
[M]8335	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8336*2	DVIT (FNC151) instruction: Interrupt input specification function enabled	-	-	-	$\checkmark$	$\checkmark{ }^{*} 3$	D8336	-	-	-	-	-
[M]8337	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8338*2	PLSV (FNC157) instruction: Acceleration/deceleration operation	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8339	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8340	[YOOO] Pulse output monitor (ON: BUSYI OFF: READY)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8341*2	[Y000] Clear signal output function enable	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8342*2	[Y000] Zero return direction specification	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8343	[Y000] Forward limit	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8344	[Y000] Reverse limit	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8345{ }^{*}$	[Y000] DOG signal logic reverse	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8346{ }^{*}$	[Y000] Zero point signal logic reverse	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8347* ${ }^{\text {2 }}$	[Y000] Interrupt signal logic reverse	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8348	[Y000] Positioning instruction activation	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8349*2	[Y000] Pulse output stop command	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8350	[Y001] Pulse output monitor (ON: BUSYI OFF: READY)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8351{ }^{*}{ }^{\text {2 }}$	[Y001] Clear signal output function enable	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8352*2	[Y001] Zero return direction specification	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8353	[Y001] Forward limit	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8354	[Y001] Reverse limit	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8355*2	[Y001] DOG signal logic reverse	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8356*2	[Y001] Zero point signal logic reverse	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8357{ }^{*}$	[Y001] Interrupt signal logic reverse	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8358	[Y001] Positioning instruction activation	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8359*2	[Y001] Pulse output stop command	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8360	[YO02] Pulse output monitor (ON: BUSYI OFF: READY)	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8361*2	[Y002] Clear signal output function enable	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8362*2	[Y002] Zero return direction specification	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8363	[Y002] Forward limit	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8364	[Y002] Reverse limit	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8365*2	[Y002] DOG signal logic reverse	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8366*2	[Y002] Zero point signal logic reverse	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8367* ${ }^{\text {2 }}$	[Y002] Interrupt signal logic reverse	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8368	[Y002] Positioning instruction activation	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8369*2	[Y002] Pulse output stop command	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*1. Available in Ver. 2.20 or later.
*2. Cleared when the PLC switches from RUN to STOP.
*3. Available in the Ver. 1.30 or later.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Positioning [FX3U] (Refer to Positioning Control Manual for details.)												
[M]8370	[Y003] Pulse output monitor (ON: BUSY/ OFF: READY)	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
M 8371*1	[Y003] Clear signal output function enable	-	-	-	$\checkmark{ }^{*} 2$	-	-	-	-	-	-	-
M 8372*1	[Y003] Zero return direction specification	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
M 8373	[Y003] Forward limit	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
M 8374	[Y003] Reverse limit	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
M $8375{ }^{* 1}$	[Y003] DOG signal logic reverse	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
M $8376{ }^{* 1}$	[Y003] Zero point signal logic reverse	-	-	-	${ }^{*}{ }^{2}$	-	-	-	-	-	-	-
M $8377^{* 1}$	[Y003] Interrupt signal logic reverse	-	-	-	$\checkmark{ }^{*}{ }^{\text {2 }}$	-	-	-	-	-	-	-
[M]8378	[Y003] Positioning instruction activation	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
M 8379*1	[Y003] Pulse output stop command	-	-	-	$\checkmark^{* 2}$	-	-	-	-	-	-	-
RS2 (FNC 87) [ch0] [FX3G/FX3GC] (Refer to Data Communication Edition for details.)												
[M]8370	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8371*1	RS2 (FNC 87) [ch0] instruction: Send wait flag	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
M 8372*1	RS2 (FNC 87) [ch0] instruction: Send request	-	$\checkmark$	$\checkmark$	-	-	D8372	-	-	-	-	-
M $8373{ }^{* 1}$	RS2 (FNC 87) [ch0] instruction: Receive complete flag	-	$\checkmark$	$\checkmark$	-	-	D8373	-	-	-	-	-
[M]8374 to [M]8378	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8379	RS2 (FNC 87) [ch0] instruction: Time-out check flag	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-

*1. These devices are cleared when the PLC mode switches from RUN to STOP or when the RS2 instruction [ch0] turns OFF.
*2. Available only when two FX3U-2HSY-ADP units are connected to an FX3U PLC.

High-Speed Counter Function (Refer to Subsection 4.7.5 and 4.8.5 for details.)												
[M]8380 ${ }^{\text {* }}$	Operation status of C235, C241, C244, C246, C247, C249, C251, C252, and C254	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M] 8381 * ${ }^{\text {a }}$	Operation status of C236	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8382*3	Operation status of C237, C242, and C245	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M] $8383{ }^{*}{ }^{\text {a }}$	Operation status of C238, C248, C248 (OP), C250, C253, and C255	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M] $8384{ }^{*}{ }^{\text {a }}$	Operation status of C239 and C243	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M] $8385{ }^{*}{ }^{\text {a }}$	Operation status of C240	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M] $8386{ }^{*} 3$	Operation status of C244 (OP)	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M] $8387{ }^{*}$	Operation status of C245 (OP)	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8388	Contact for high-speed counter function change	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8389	External reset input logic reverse	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8390	Function changeover device for C244	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8391	Function changeover device for C245	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M 8392	Function changeover device for C248 and C253	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*3. Cleared when PLC switches from STOP to RUN.

*4. 1 ms ring counter (D8399, D8398) will operate after M8398 turns ON.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
RS2 (FNC 87) [ch1] (Refer to Data Communication Edition for details.)												
[M]8400	Not used	-	-	-	-	-	-	-	-	-	-	-
[M] $8401{ }^{* 1}$	RS2 (FNC 87) [ch1] Send wait flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8402{ }^{* 1}$	RS2 (FNC 87) [ch1] Send request	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8402	-	-	-	-	-
M $8403{ }^{* 1}$	RS2 (FNC 87) [ch1] Receive complete flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8403	-	-	-	-	-
[M]8404	RS2 (FNC 87) [ch1] Carrier detection flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8405	RS2 (FNC 87) [ch1] Data set ready (DSR) flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
[M]8406 to [M]8408	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8409	RS2 (FNC 87) [ch1] Time-out check flag	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
RS2 (FNC 87) [ch2] and Computer Link [ch2] (Refer to the Data Communication Edition for details.)												
[M]8410 to [M]8420	Not used	-	-	-	-	-	-	-	-	-	-	-
[M] $8421{ }^{*}{ }^{\text {2 }}$	RS2 (FNC 87) [ch2] Send wait flag	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
M $8422{ }^{*}$	RS2 (FNC 87) [ch2] Send request	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8422	-	-	-	-	-
M $8423{ }^{*}$	RS2 (FNC 87) [ch2] Receive complete flag	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8423	-	-	-	-	-
[M]8424	RS2 (FNC 87) [ch2] Carrier detection flag	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[M]8425	RS2 (FNC 87) [ch2] Data set ready (DSR) flag	-	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark{ }^{* 3}$	-	-	-	-	-	-
[M]8426	Computer link [ch2] Global ON	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{aligned} & \text { D8427 } \\ & \text { D8428 } \\ & \text { D8429 } \end{aligned}$	-	-	-	-	-
[M]8427	Computer link [ch2] On-demand send processing	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		-	-	-	-	-
M 8428	Computer link [ch2] On-demand error flag	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		-	-	-	-	-
M 8429	Computer link [ch2]   On-demand Word / Byte changeover   RS2 (FNC 87) [ch2]   Time-out check flag	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		-	-	-	-	-

*1. These devices are cleared when the PLC mode switches from RUN to STOP or when the RS2 instruction [ch1] turns OFF.
*2. These devices are cleared when the PLC mode switches from RUN to STOP or when the RS2 instruction [ch2] turns OFF.
*3. Available in Ver. 2.30 or later.
MODBUS communication [ch1] (Refer to MODBUS Communication Edition for details.)

[M]8401	MODBUS request in process	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark$ *5	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8402	MODBUS communication error	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark * 5$	$\checkmark{ }^{*}$	D8402	-	-	-	-	-
[M]8403	MODBUS communication error (latched)	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	D8403	-	-	-	-	-
[M]8404	Listen only mode	-	-	-	$\checkmark * 5$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8405 to [M]8407	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8408	Retry	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark * 5$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8409	Timeout	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8410	Not used	-	-	-	-	-	-	-	-	-	-	-
MODBUS communication [ch2] (Refer to MODBUS Communication Edition for details.)												
[M]8421	MODBUS request in process	-	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark$ *5	$\checkmark$ *	-	-	-	-	-	-
[M]8422	MODBUS communication error	-	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark * 5$	$\checkmark{ }^{*}$	D8422	-	-	-	-	-
[M]8423	MODBUS communication error (latched)	-	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark{ }^{* 5}$	$\checkmark{ }^{*}$	D8423	-	-	-	-	-
[M]8424	Listen only mode	-	-	-	$\checkmark * 5$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8425 to [M]8427	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8428	Retry	-	$\checkmark^{*} 4$	$\checkmark$	$\checkmark^{* 5}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8429	Timeout	-	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark{ }^{*} 5$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8430	Not used	-	-	-	-	-	-	-	-	-	-	-
MODBUS communication [ch1, ch2] (Refer to MODBUS Communication Edition for details.)												
M 8411	MODBUS configuration request flag	$\checkmark$	$\checkmark^{*} 4$	$\checkmark$	$\checkmark^{* 5}$	$\checkmark{ }^{*}$	-	-	-	-	-	-

*4. Available in Ver. 1.30 or later.
*5. Available in Ver. 2.40 or later.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
FX3U-CF-ADP [ch1] (Refer to CF-ADP Manual for details.)												
[M]8400 to [M]8401	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8402	CF-ADP instruction executing	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8403	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8404	CF-ADP unit ready	-	-	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8405	CF card mount status	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[M]8406 to [M]8409	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8410	CF-ADP status renewal stop	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[M]8411 to [M]8417	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8418	CF-ADP instruction error ${ }^{*}$	-	-	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8419	Not used	-	-	-	-	-	-	-	-	-	-	-
FX3U-CF-ADP [ch2] (Refer to CF-ADP Manual for details.)												
[M]8420 to [M]8421	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8422	CF-ADP instruction executing	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8423	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8424	CF-ADP unit ready	-	-	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8425	CF card mount status	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[M]8426 to [M]8429	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8430	CF-ADP status renewal stop	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8431 to [M]8437	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8438	CF-ADP instruction error ${ }^{*}$	-	-	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	-	-	-	-	-	-
[M]8439	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Available in Ver. 2.61 or later.
*2. Cleared when PLC switches from STOP to RUN.
FX3U-ENET-ADP [ch1] (Refer to ENET-ADP Manual for details.)

[M]8063	Error occurrence	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark^{*} 4$	$\checkmark{ }^{*}$	$\checkmark * 5$	-	-	-	-	-	-
[M]8400 to [M]8403	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8404	FX3U-ENET-ADP unit ready	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark^{*} 4$	$\checkmark{ }^{*}$	$\checkmark$ *	-	-	-	-	-	-
[M]8405	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8406*3	Time setting execution	$\checkmark$	$\checkmark^{*} 4$	$\checkmark^{*} 4$	$\checkmark{ }^{*}$	$\checkmark^{* 5}$	-	-	-	-	-	-
[M]8407 to [M]8410	Not used	-	-	-	-	-	-	-	-	-	-	-
M $8411{ }^{*}$	Execute time setting	$\checkmark$	$\checkmark{ }^{*} 4$	$\checkmark^{*} 4$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[M]8412 to [M]8415	Not used	-	-	-	-	-	-	-	-	-	-	-

FX3U-ENET-ADP [ch2] (Refer to ENET-ADP Manual for details.)
[M]8420 to [M]8423 Not used

[M]8424	FX3U-ENET-ADP unit ready	-	$\checkmark^{*} 4$	$\checkmark * 4$	$\checkmark{ }^{*}$	$\checkmark * 5$	-	-	-	-	-	-
[M]8425	Not used	-	-	-	-	-	-	-	-	-	-	-
[M] $8426{ }^{*}$	Time setting execution	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	$\checkmark^{*}$	$\checkmark^{*} 5$	-	-	-	-	-	-
[M]8427 to [M]8430	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8431*3	Execute time setting	-	$\checkmark^{*} 4$	$\checkmark{ }^{*} 4$	$\checkmark^{* 5}$	$\checkmark * 5$	-	-	-	-	-	-
[M]8432 to [M]8435	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8438	Error occurrence	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	$\checkmark{ }^{*}$	$\checkmark * 5$	-	-	-	-	-	-
FX3U-ENET-ADP [ch1, ch2] (Refer to ENET-ADP Manual for details.)												
[M]8490 to [M]8491	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8492	IP address storage area write request	$\checkmark$	$\checkmark^{*} 6$	$\checkmark^{*} 6$	-	-	-	-	-	-	-	-
[M]8493	IP address storage area write completion	$\checkmark$	$\checkmark^{*} 6$	$\checkmark^{*} 6$	-	-	-	-	-	-	-	-
[M]8494	IP address storage area write error	$\checkmark$	$\checkmark^{*} 6$	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-
M 8495	IP address storage area clear request	$\checkmark$	$\checkmark^{*} 6$	$\checkmark^{*} 6$	-	-	-	-	-	-	-	-
[M]8496	IP address storage area clear completion	$\checkmark$	$\checkmark^{*} 6$	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-
[M]8497	IP address storage area clear error	$\checkmark$	$\checkmark^{*} 6$	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-
[M]8498	IP address change function enable flag	$\checkmark$	$\checkmark^{*} 6$	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-

*3. Used when the SNTP function setting is set to "Use" in the time setting parameters.
*4. Available in Ver. 2.00 or later.
*5. Available in Ver. 3.10 or later.
*6. Available in Ver. 2.10 or later.

Number and name	Operation and function	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Error Detection (Refer to Chapter 38 for details.)												
[M]8430 to [M]8437	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8438	Serial communication error 2 [ch2]*1	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	D8438	-	-	-	-	-
[M]8439 to [M]8448	Not used	-	-	-	-	-	-					
[M]8449	Special block error flag	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 2$	D8449					
[M]8450 to [M]8459	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Cleared when PLC power supply is turned from OFF to ON.
*2. Available in Ver. 2.20 or later.
Positioning [FX3S/FX3G/FX3GC/FX3U/FX3UC] (Refer to Positioning Control Edition for details.)

M 8460	DVIT (FNC151) instruction [Y000] User interrupt input command	-	-	-	$\checkmark$	$\checkmark^{* 3}$	D8336	-	-	-	-	-
M 8461	DVIT (FNC151) instruction [Y001] User interrupt input command	-	-	-	$\checkmark$	$\checkmark{ }^{*} 3$	D8336	-	-	-	-	-
M 8462	DVIT (FNC151) instruction [Y002] User interrupt input command	-	-	-	$\checkmark$	$\checkmark{ }^{*} 3$	D8336	-	-	-	-	-
M 8463	DVIT (FNC151) instruction [Y003] User interrupt input command	-	-	-	$\checkmark^{*} 4$	$\checkmark^{* 3}$	D8336	-	-	-	-	-
M 8464	DSZR (FNC150), ZRN (FNC156) instructions [Y000]   Clear signal device specification function enabled	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$	D8464	-	-	-	-	-
M 8465	$\begin{aligned} & \text { DSZR (FNC150), ZRN (FNC156) instructions } \\ & \text { [Y001] } \\ & \text { Clear signal device specification function enabled } \end{aligned}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 3$	D8465	-	-	-	-	-
M 8466	$\begin{aligned} & \text { DSZR (FNC150), ZRN (FNC156) instructions } \\ & \text { [Y002] } \\ & \text { Clear signal device specification function enabled } \end{aligned}$	-	$\checkmark$	-	$\checkmark$	$\checkmark{ }^{*} 3$	D8466	-	-	-	-	-
M 8467	DSZR (FNC150), ZRN (FNC156) instructions [Y003]   Clear signal device specification function enabled	-	-	-	$\checkmark^{*} 4$	-	D8467	-	-	-	-	-

*3. Available in Ver. 2.20 or later.
*4. Available only when two FX3U-2HSY-ADP adapters are connected to an FX3U PLC.

Error Detection												
[M]8468 to [M]8483	Not used	-	-	-	-	-	-	-	-	-	-	-
M 8484*5	Forcible stop at extension bus error occurrence	-	$\checkmark * 6$	$\checkmark^{*} 6$	$\checkmark^{* 7}$	$\checkmark^{* 7}$	-	-	-	-	-	-
[M]8485 to [M]8486	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8487	USB communication error	$\checkmark$	-	-	-	-	D8487	-	-	-	-	-
[M]8488	Not used	-	-	-	-	-	-	-	-	-	-	-
[M]8489	Special parameter error	$\checkmark$	$\checkmark^{* 8}$	$\checkmark^{*} 8$	$\checkmark^{* 9}$	$\checkmark^{* 9}$	D8489	-	-	-	-	-
[M]8490 to [M]8511	Not used	-	-	-	-	-	-	-	-	-	-	-

*5. An extension bus error is detected when M8484 is on. (Refer to Chapter 38 for details.)
*6. Available in Ver. 2.30 or later.
*7. Available in Ver. 3.20 or later.
*8. Available in Ver. 2.00 or later.
*9. Available in Ver. 3.10 or later.

### 37.1.2 Special Data Register (D8000 to D8511)


*1. The corresponding special data register D8101 is available only in $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs. No corresponding device is available in FX1s/FX1N/FX1NC/FX2N/FX2NC PLCs.
*2. "4" is displayed even when the memory capacity is set to 16 K steps in the parameter setting.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
PLC Status												
[D]8007   Momentary power failure count	Operation frequency of M8007 is stored. Cleared at power-off.	-	-	-	$\checkmark$	$\checkmark$	M8007	-	-	-	$\checkmark$	$\checkmark$
D8008   Power failure detection	Default:* ${ }^{*}$   - FX3U/FX2N PLCs: 10 ms (AC power supply type)   - FX3UC/FX2NC PLCs: 5 ms (DC power supply type)	-	-	-	$\checkmark$	$\checkmark$	M8008	-	-	-	$\checkmark$	$\checkmark$
$[\mathrm{D}] 8009$   24 V DC   deviled   device	Lowest input device number of the I/O extension units in which 24 V DC power has failed	-	$\checkmark$	-	$\checkmark$	-	M8009	-	-	-	$\checkmark$	$\checkmark$

*1. The power failure detection time in FX2N/FX2NC PLCs is as follows.
For $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{CLCs}$, refer to Subsection 37.2.4.

- $\quad 10 \mathrm{~ms}$ for FX2N PLC used with a 100 V AC power supply system. D8008 is set to 10 ms by default.
- 100 ms maximum for FX2N PLC used with a 200 V AC power supply system. D8008 can be set ranging from 10 to 100 ms .
- $\quad 5 \mathrm{~ms}$ for FX2N PLC used with a DC power supply type. Write "K-1" to D8008 for correction.
- 5 ms for FX2NC PLC used with a DC power supply type. System writes "K-1" to D8008 for correction. Do not make any change in a sequence program.

Clock												
[D]8010   Present scan time	Accumulated instruction-execution time from step 0   (in 0.1 -ms units)   $\rightarrow$ Refer to Subsection 37.2.5.	Same as on the right	Same   as on the right	-	Indicated value includes waiting time of constant scan operation (when M8039 is activated).							
[D]8011   Minimum scan time	Minimum value of scan time (in 0.1 -ms units)   $\rightarrow$ Refer to Subsection 37.2.5.						-					
$[\mathrm{D}] 8012$    Maximum    time	Maximum value of scan time (in 0.1 -ms units)   $\rightarrow$ Refer to Subsection 37.2.5.						-					
D8013   Second data	0 to 59 seconds (for real time clock) $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$
D8014   Minute data	0 to 59 minutes (for real time clock) $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$
D8015   Hour data	0 to 23 hours (for real time clock) $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$
D8016   Day data	1 to 31 days (for real time clock) $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*}{ }^{2}$
D8017   Month data	1 to 12 months (for real time clock) $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*}{ }^{2}$
$\begin{aligned} & \text { D8018 } \\ & \text { Year data } \end{aligned}$	2 digits of year data (0 to 99) (for real time clock)   $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$
D8019   Day-of-the-week data	0 (Sunday) to 6 (Saturday) (for real time clock)   $\rightarrow$ Refer to Subsection 37.2.7.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$

*2. A memory board having the real time clock function is required in FX2NC PLC.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Input Filter												
D 8020 Input filter adjustment	Input filter value of X000 to X017 *1   (Default: 10 ms )   $\rightarrow$ Refer to Subsection 37.2.9.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8021	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8022		-	-	-	-	-	-	-	-	-	-	-
[D]8023		-	-	-	-	-	-	-	-	-	-	-
[D]8024		-	-	-	-	-	-	-	-	-	-	-
[D]8025		-	-	-	-	-	-	-	-	-	-	-
[D]8026		-	-	-	-	-	-	-	-	-	-	-
[D]8027		-	-	-	-	-	-	-	-	-	-	-
Index Register $\mathbf{Z 0}$ and V0												
[D]8028	Value of Z0 (Z) register*2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8029	Value of V0 (V) register*2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*1. In FX3G/FX3GC/FX1N/FX1NC PLCs the input filter can be adjusted in X000 to X007.
*2. The values of Z 1 to Z 7 and V 1 to V 7 are stored in D8182 to D8195.
Analog Volume [FX3S/FX3G/FX1S/FX1N]

[D]8030	Value of analog volume VR1 (Integer from 0 to 255)	$\checkmark * 3$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
[D]8031	Value of analog volume VR2 (Integer from 0 to 255)	$\checkmark{ }^{*} 3$	$\checkmark$	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
Constant Scan												
[D]8032	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8033		-	-	-	-	-	-	-	-	-	-	-
[D]8034		-	-	-	-	-	-	-	-	-	-	-
[D]8035		-	-	-	-	-	-	-	-	-	-	-
[D]8036		-	-	-	-	-	-	-	-	-	-	-
[D]8037		-	-	-	-	-	-	-	-	-	-	-
[D]8038		-	-	-	-	-	-	-	-	-	-	-
D 8039   Constant scan duration	Default: 0 ms (in 1 ms steps) (Writes from system ROM at power ON) Can be overwritten by program $\rightarrow$ Refer to Subsection 37.2.16	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8039	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*3. This function is not supported in the $\mathrm{FX} 3 \mathrm{~S}-30 \mathrm{M} \square / \mathrm{E} \square-2 \mathrm{AD} \mathrm{PLC}$.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Stepladder and Annunciator												
$\text { [D] } 8040 * 1$   ON state number 1	The smallest number out of active state ranging from S0 to S899 and S1000 to S4095*2 is stored in D8040 and the secondsmallest state number is stored in D8041.   Active state numbers are then sequentially stored in registers up to D8047 (Max. 8 points).	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8047	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8041*1   ON state number 2		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8042*1   ON state number 3		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$[D] 8043^{* 1}$   ON state number 4		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8044*1   ON state number 5		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$[D] 8045^{* 1}$   ON state number 6		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$[\mathrm{D}] 8046^{* 1}$   ON state number 7		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8047*1   ON state number 8		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8048	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8049*1   On state minimum number	When M8049 is ON, the smallest number out of active annunciator relay ranging from S 900 to S999 is stored in D8049.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8049	-	-	-	$\checkmark$	$\checkmark$
[D]8050 to [D]8059	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Executed at END instruction.
*2. S1000 to S4095 are available only in FX3G/FX3GC/FX3U/FX3UC PLCs.

Error Detection (Refer to Chapter 38 for details.)												
[D]8060	If the unit or block corresponding to a programmed I/O number is not actually loaded, M8060 is set to ON and the first device number of the erroneous block is written to D8060.   Example: If X020 is unconnected.	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8060	-	-	-	$\checkmark$	$\checkmark$
[D]8061	Error code for PLC hardware error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8061	-	-	-	$\checkmark$	$\checkmark$
	Error code for PLC/PP communication error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8062	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8062	Error code for serial communication error 0 [ch0] ${ }^{* 4}$	-	$\checkmark$	$\checkmark$	-	-	M8062	-	-	-	-	-
[D]8063*5	Error code for serial communication error 1 [ch1]	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8063	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8064	Error code for parameter error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8064	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8065	Error code for syntax error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8065	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8066	Error code for ladder error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8066	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8067*6	Error code for operation error	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8067	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D 8068	Operation error step number latched	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{* 7}$	$\checkmark{ }^{* 7}$	M8068	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8069*6	Error step number of M8065 to M8067	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$ *8	$\checkmark$ *8	$\begin{gathered} \text { M8065 to } \\ \text { M8067 } \end{gathered}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*3. 10 to 337 in $F^{2} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{C} / F X_{2 N} / F X_{2 N C}$ PLCs, and 10 to 177 in FX3G/FX3Gc PLCs.
*4. Cleared when PLC power supply is turned from OFF to ON.
*5. The operation varies according to PLC:

- Cleared in an FX1s/FX1N/FX1NC/FX2N/FX2NC when PLC switches from STOP to RUN.
- Cleared in an FX3s/FX3G/FX3Gc/FX3u/FX3uc PLCs when PLC power supply from OFF to ON.
*6. Cleared when PLC switches from STOP to RUN.
*7. In case of 32K steps or more, step number is stored in [D8313, D8312].
*8. In case of 32K steps or more, step number is stored in [D8315, D8314].

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Parallel Link (Refer to Data Communication Edition for details.)												
[D]8070	Parallel link error time-out check time: 500 ms	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8071	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8072		-	-	-	-	-	-	-	-	-	-	-
[D]8073		-	-	-	-	-	-	-	-	-	-	-
Sampling Trace ${ }^{* 1}$ [FX3U/FX3UC/FX2N/FX2NC]												
[D]8074	These devices are occupied by the PLC system when the sampling trace function is used in a connected personal computer*1.	-	-	-	$\checkmark$	$\checkmark$	$\begin{gathered} \text { M8075 to } \\ \text { M8079 } \end{gathered}$	-	-	-	$\checkmark$	$\checkmark$
[D]8075		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8076		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8077		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8078		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8079		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8080		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8081		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8082		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8083		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8084		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8085		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8086		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8087		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8088		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8089		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8090		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8091		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8092		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8093		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8094		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8095		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8096		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8097		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$
[D]8098		-	-	-	$\checkmark$	$\checkmark$		-	-	-	$\checkmark$	$\checkmark$

*1. The sampling trace devices are used by peripheral equipment.

Number and name	Content of register		Applicable model										
			FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Pulse width/Pulse period measurement [FX3G/FX3GC] (Refer to Section 36.8 for details.)													
D 8074*1	Lower	[X000]   Ring counter value for rising edge (1/6 $\mu \mathrm{s}$ unit)	-	$\checkmark{ }^{\star} 2$	$\checkmark$	-	-	$\begin{aligned} & \text { M8076 } \\ & \text { M8080 } \end{aligned}$	-	-	-	-	-
D $8075{ }^{* 1}$	Upper					-	-		-	-	-	-	-
D 8076*1	Lower	[X000]   Ring counter value for falling edge (1/6 $\mu \mathrm{s}$ unit)	-	$\checkmark^{* 2}$	$\checkmark$	-	-		-	-	-	-	-
D $8077{ }^{* 1}$	Upper					-	-		-	-	-	-	-
D 8078*1	Lower	$\begin{array}{\|l} \hline \text { X000] } \\ \text { Pulse width/Pulse period } \\ (10 \mu \mathrm{~s} \text { unit }) \end{array}$	-	$\checkmark{ }^{*} 2$	$\checkmark$	-	-		-	-	-	-	-
D 8079*1	Upper					-	-		-	-	-	-	-
D 8080*1	Lower	[X001]   Ring counter value for rising edge ( $1 / 6 \mu \mathrm{~s}$ unit)	-	$\checkmark{ }^{*} 2$	$\checkmark$	-	-	$\begin{aligned} & \text { M8077 } \\ & \text { M8081 } \end{aligned}$	-	-	-	-	-
D 8081*1	Upper					-	-		-	-	-	-	-
D 8082*1	Lower	[X001]   Ring counter value for falling edge ( $1 / 6 \mu \mathrm{~s}$ unit)	-	$\checkmark^{*} 2$	$\checkmark$	-	-		-	-	-	-	-
D $8083{ }^{* 1}$	Upper					-	-		-	-	-	-	-
D 8084**	Lower	$[\mathrm{X001]}$Pulse width/Pulse period(10 $\mu \mathrm{s}$ unit)	-	$\checkmark^{* 2}$	$\checkmark$	-	-		-	-	-	-	-
D $8085^{* 1}$	Upper					-	-		-	-	-	-	-
D $8086{ }^{* 1}$	Lower	[X003]   Ring counter value for rising edge ( $1 / 6 \mu \mathrm{~s}$ unit)	-	$\checkmark^{* 2}$	$\checkmark$	-	-	$\begin{aligned} & \text { M8078 } \\ & \text { M8082 } \end{aligned}$	-	-	-	-	-
D $8087{ }^{* 1}$	Upper					-	-		-	-	-	-	-
D 8088*1	Lower	[X003]   Ring counter value for falling edge ( $1 / 6 \mu \mathrm{~s}$ unit)	-	$\checkmark^{*} 2$	$\checkmark$	-	-		-	-	-	-	-
D 8089*1	Upper					-	-		-	-	-	-	-
D 8090*1	Lower	[X003]Pulse width/Pulse period$(10 \mu \mathrm{~s}$ unit $)$	-	$\checkmark^{*} 2$	$\checkmark$	-	-		-	-	-	-	-
D 8091*1	Upper					-	-		-	-	-	-	-
D 8092*1	Lower	[X004]   Ring counter value for rising edge ( $1 / 6 \mu \mathrm{~s}$ unit)	-	$\checkmark^{* 2}$	$\checkmark$	-	-	$\begin{aligned} & \text { M8079 } \\ & \text { M8083 } \end{aligned}$	-	-	-	-	-
D 8093*1	Upper					-	-		-	-	-	-	-
D 8094*1	Lower	[X004]   Ring counter value for falling edge ( $1 / 6 \mu \mathrm{~s}$ unit)	-	$\checkmark^{* 2}$	$\checkmark$	-	-		-	-	-	-	-
D 8095*1	Upper					-	-		-	-	-	-	-
D 8096*1	Lower	[X004]   Pulse width/Pulse period ( $10 \mu \mathrm{~s}$ unit)	-	$\checkmark^{* 2}$	$\checkmark$	-	-		-	-	-	-	-
D 8097*1	Upper					-	-		-	-	-	-	-
[D]8098	Not used		-	-	-	-	-	-	-	-	-	-	-

*1. Cleared when PLC switches from STOP to RUN.
*2. Available in Ver. 1.10 or later.

## High-Speed Ring Counter

High-Speed Ring Counter												
D 8099	Up-operation high-speed ring counter of 0 to 32,767 (in units of $0.1 \mathrm{~ms}, 16$-bit) ${ }^{* 3}$	-	-	-	$\checkmark$	$\checkmark$	M8099	-	-	-	$\checkmark$	$\checkmark$
[D]8100	Not used	-	-	-	-	-	-	-	-	-	-	-

*3. The 0.1 ms high-speed ring counter D8099 will operate after END instruction is executed while M8099 is ON.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Memory Information												
[D]8101   PLC type and system version		28	26	26	16	16	-	-	-	-	-	-
[D]8102 Memory capacity	2 ..... 2K steps $4 \ldots \ldots .4 \mathrm{~K}$ steps 8 ..... 8 K steps 16 .... 16K steps $32 . \ldots .32 \mathrm{~K}$ steps $64 \ldots .64 \mathrm{~K}$ steps	$4^{* 1}$	$32$	$32$	$\begin{gathered} \checkmark \\ 16^{* 2} \\ 64 \end{gathered}$	$\begin{gathered} \checkmark \\ 16^{* 2} \\ 64 \end{gathered}$	-	$2$	$8$	$8$	$\begin{gathered} 4 \\ 8 \\ 16 \end{gathered}$	$\begin{gathered} 4 \\ 8 \\ 16 \end{gathered}$
[D]8103	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8104	Identity code for function extension memory	-	-	-	-	-		-	-	-	$\checkmark^{* 3}$	$\checkmark^{*} 3$
[D]8105	Version of function extension memory (Version $1.00=100$ )	-	-	-	-	-	M8104	-	-	-	$\checkmark * 3$	$\checkmark{ }^{*} 3$
[D]8106	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8107	Number of registered device comments	-	-	-	$\checkmark$	$\checkmark$	M8107	-	-	-	-	-
[D]8108	Number of special function units/blocks connected	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*1. "4" is displayed even when the memory capacity is set to 16 K steps in the parameter setting.
*2. When loading FX3U-FLROM-16.
*3. Available in Ver. 3.00 or later.

Output Refresh Error (Refer to Chapter 38 for details.)

[D]8109	Y number where output refresh error occurs	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8109	-	-	-	$\checkmark$	$\checkmark$
[D]8110	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8111		-	-	-	-	-	-	-	-	-	-	-
Expansion Board Dedicated to FX1S/FX1N												
[D]8112	FX1N-2AD-BD: Digital value of ch1	-	-	-	-	-	M8112	$\checkmark$	$\checkmark$	-	-	-
[D]8113	FX1N-2AD-BD: Digital value of ch2	-	-	-	-	-	M8113	$\checkmark$	$\checkmark$	-	-	-
D 8114	FX1N-1DA-BD: Digital value to be output	-	-	-	-	-	M8114	$\checkmark$	$\checkmark$	-	-	-
[D]8115 to [D]8119	Not used	-	-	-	-	-	-	-	-	-	-	-
RS (FNC 80) and Computer Link [ch1] (Refer to Data Communication Edition for details.)												
D $8120{ }^{*}$	RS (FNC 80) instruction and computer link [ch1]   Communication format setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D $8121^{*} 4$	Computer link [ch1] Station number setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8122*5	RS (FNC 80) instruction: Remaining points of transmit data	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8122	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8123*5	RS (FNC 80) instruction: Monitoring receive data points	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8123	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D 8124	RS (FNC 80) instruction: Header <Default: STX>	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D 8125	RS (FNC 80) instruction: Terminator <Default: ETX>	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8126	Not used	-	-	-	-	-	-	-	-	-	-	-
D 8127	Computer link [ch1]   Specification of on-demand head device register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{gathered} \text { M8126 to } \\ \text { M8129 } \end{gathered}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D 8128	Computer link [ch1]   Specification of on-demand data length register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D $8129 *$	RS (FNC 80) instruction, computer link [ch1] Time-out time setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

*4. Latch (battery or EEPROM backed) device. For details on backup against power failure, refer to Section 2.6.
*5. Cleared when the PLC switches from RUN to STOP.

Number and name	Content of register		Applicable model										
			FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
High-Speed Counter Comparison, High-Speed Table, and Positioning [Positioning is supported in FX3S/FX3G/FX3GC/FX1S/FX1N/FX1NC]													
[D]8130	HSZ (FNC 55) instruction: High-speed comparison table counter		-	-	-	$\checkmark$	$\checkmark$	M8130	-	-	-	$\checkmark$	$\checkmark$
[D]8131	HSZ instruc	(FNC 55) and PLSY (FNC 57) tions: Speed pattern table counter	-	-	-	$\checkmark$	$\checkmark$	M8132	-	-	-	$\checkmark$	$\checkmark$
[D]8132	Lower	HSZ (FNC 55) and PLSY (FNC 57)	-	-	-	$\checkmark$	$\checkmark$	M8132	-	-	-	$\checkmark$	$\checkmark$
[D]8133	Upper	instructions: Speed pattern frequency											
[D]8134	Lower	HSZ (FNC 55) and PLSY (FNC 57)											
[D]8135	Upper	Number of target pulses for speed pattern	-	-	-	$\checkmark$	$\checkmark$	M8132	-	-	-	$\checkmark$	$\checkmark$
D 8136	Lower	PLSY (FNC 57), PLSR (FNC 59)											
D 8137	Upper	Accumulated total number of pulses output to Y000 and Y001	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8138	HSCT (FNC280) instruction: Table counter		-	-	-	$\checkmark$	$\checkmark$	M8138	-	-	-	-	-
[D]8139	HSCS (FNC 53), HSCR (FNC 54), HSZ (FNC 55), and HSCT (FNC280) instructions: Number of instructions being executed		-	-	-	$\checkmark$	$\checkmark$	M8139	-	-	-	-	-
D 8140	Lower	Accumulated number of pulses output from Y000 for PLSY (FNC 57) and	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D 8141	Upper	PLSR (FNC 59) instructions.											
D 8142	Lower	Accumulated number of pulses output from Y001 for PLSY (FNC 57) and	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
D 8143	Upper	PLSR (FNC 59) instructions.											
[D]8144	Not used		-	-	-	-	-	-	-	-	-	-	-
D 8145	ZRN (FNC156), DRVI (FNC158), and DRVA (FNC159) instructions:   Bias speed   Default: 0		-	-	-	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
D 8146	Lower	ZRN (FNC156), DRVI (FNC158), and DRVA (FNC159) instructions:											
D 8147	Upper	- Default in FX1S/FX1N: 100000   - Default in FX1NC: $100000^{* 1}$											
D 8148	ZRN   (FNC1   Accele   Default:	FNC156), DRVI (FNC158), and DRVA 59) instructions: ration/deceleration time $\text { t: } 100$	-	-	-	-	-	-	$\checkmark$	$\checkmark$	$\checkmark$	-	-
[D]8149	Not use		-	-	-	-	-	-	-	-	-	-	-

*1. Must be changed to 10000 or less by PLC program.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Inverter Communication Function (Refer to Data Communication Edition for details.)												
D $8150{ }^{* 1}$	Response wait time of inverter communication [ch1]	$\checkmark$	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8151	Step number of instruction during inverter communication [ch1] Default: -1	$\checkmark$	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	M8151	-	-	-	-	-
[D]8152*2	Error code for inverter communication [ch1]	$\checkmark$	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	M8152	-	-	-	-	-
[D]8153*2	Inverter communication error step number latched [ch1]   Default: -1	$\checkmark$	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	M8153	-	-	-	-	-
[D]8154*2	Parameter number when error occurs during IVBWR (FNC274) instruction [ch1]   Default: -1	-	-	-	$\checkmark$	$\checkmark$	M8154	-	-	-	-	-
	Response waiting time of EXTR (FNC180) instruction	-	-	-	-	-	-	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$
D $8155^{* 1}$	Response wait time of inverter communication [ch2]	-	$\checkmark{ }^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8155	Step number during communication of EXTR (FNC180) instruction	-	-	-	-	-	M8155	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$
[D]8156	Step number of instruction during inverter communication [ch2]   Default: -1	-	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	M8156	-	-	-	-	-
	Error code for EXTR (FNC180) instruction	-	-	-	-	-	M8156	-	-	-	$\checkmark{ }^{*}$	$\checkmark{ }^{*} 3$
[D]8157*2	Error code for inverter communication [ch2]	-	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	M8157	-	-	-	-	-
[D]8157	Error step (latched) for EXTR (FNC180) instruction Default: -1	-	-	-	-	-	M8157	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$
[D]8158*2	Inverter communication error step number latched [ch2]   Default: -1	-	$\checkmark^{*} 4$	$\checkmark$	$\checkmark$	$\checkmark$	M8158	-	-	-	-	-
[D]8159*2	Parameter number when error occurs during IVBWR (FNC274) instruction [ch2] Default: -1	-	-	-	$\checkmark$	$\checkmark$	M8159	-	-	-	-	-

*1. Cleared when PLC power supply is turned from OFF to ON.
*2. Cleared when PLC switches from STOP to RUN.
*3. Available in Ver. 3.00 or later.
*4. Available in Ver. 1.10 or later.

## Display Module Function [FX1S/FX1N]

D 8158	FX1N-5DM: Control device (D) Default: -1	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
D 8159	FX1N-5DM: Control device (M) Default: -1	-	-	-	-	-	-	$\checkmark$	$\checkmark$	-	-	-
FX1N-BAT [FX1N] (Refer to FX1N-BAT Manual for details.)												
D 8159	Specification of low battery voltage detection flag for the FX1N-BAT   Default: -1	-	-	-	-	-	-	-	$\checkmark$	-	-	-


Number and name	Content of register						Applicable model										
							FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Advanced Function																	
[D]8160	Not used						-	-	-	-	-	-	-	-	-	-	-
[D]8161							-	-	-	-	-	-	-	-	-	-	-
[D]8162							-	-	-	-	-	-	-	-	-	-	-
[D]8163							-	-	-	-	-	-	-	-	-	-	-
D 8164	FROM (FNC 78), TO (FNC 79) instructions: Specification of transfer points						-	-	-	-	-	M8164	-	-	-	$\checkmark * 1$	$\checkmark$
[D]8165	Not used						-	-	-	-	-	-	-	-	-	-	-
[D]8166	Special block error condition						-	-	-	$\checkmark * 5$	$\checkmark{ }^{*} 5$	-	-	-	-	-	-
[D]8167	Not used						-	-	-	-	-	-	-	-	-	-	-
[D]8168							-	-	-	-	-	-	-	-	-	-	-
[D]8169	Access restriction status						$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark * 4$	-	-	-	-	-	-
	$\begin{array}{c\|c} \hline \text { Pres- } \\ \text { ent } \\ \text { value } \end{array}$	Access restriction status	Prog	Wram	Monitoring	Present value change											
	$\begin{gathered} \mathrm{H}^{* *} 00 \\ { }^{*} 2 \end{gathered}$	2nd keyword is not set.	$\checkmark^{*} 3$	$\checkmark * 3$	$\checkmark{ }^{*} 3$	$\checkmark{ }^{* 3}$											
	$\begin{gathered} \hline \mathrm{H}^{* *} 10 \\ { }_{2} \end{gathered}$	Write protection	$\checkmark$	-	$\checkmark$	$\checkmark$											
	$\begin{gathered} \mathrm{H}^{* *} 11 \\ { }^{2} 2 \end{gathered}$	Read/write protection	-	-	$\checkmark$	$\checkmark$											
	$\begin{gathered} \mathrm{H}^{* *} 12 \\ { }^{2} 2 \end{gathered}$	All online operation protection	-	-	-	-											
	$\begin{gathered} \hline \mathrm{H}^{* *} 20 \\ { }^{2} 2 \end{gathered}$	Keyword cancel	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$											

*1. Available in Ver. 2.00 or later.
*2. "**" indicates areas used by the system.
*3. The accessibility is restricted depending on the keyword setting status.
*4. Available in Ver. 2.20 or later.
*5. Available in Ver. 3.00 or later.
For details, refer to Section 38.4 Error Code List and Action.

N:N Network (setting) (Refer to Data Communication Edition for details.)												
[D]8170	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8171		-	-	-	-	-	-	-	-	-	-	-
[D]8172		-	-	-	-	-	-	-	-	-	-	-
[D]8173	Station number	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
[D]8174	Total number of slave stations	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
[D]8175	Refresh range	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*} 6$	$\checkmark$
D 8176	Station number setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8038	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
D 8177	Total slave station number setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
D 8178	Refresh range setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
D 8179	Retry count setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
D 8180	Comms time-out setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{*} 6$	$\checkmark$
[D]8181	Not used	-	-	-	-	-	-	-	-	-	-	-

*6. Available in Ver. 2.00 or later.

		Applicable model										
Number and name	Content of register	FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC


[D]8182	Value of Z1 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8183	Value of V1 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8184	Value of Z2 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8185	Value of V2 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8186	Value of Z3 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8187	Value of V3 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8188	Value of Z4 register	$V$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8189	Value of V4 register	$\checkmark$	$\checkmark$									
[D]8190	Value of Z5 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8191	Value of V5 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8192	Value of Z6 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8193	Value of V6 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8194	Value of Z7 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8195	Value of V7 register	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
[D]8196 to [D]8199	Not used	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
N:N Network (menitoring) (Refer to Data Communication Edition for details				-	-	-	-	-	-	-		

N:N Network (monitoring) (Refer to Data Communication Edition for details.)

[D]8200	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8201*1	Current link scan time	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	(D201)	$\checkmark$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark$
[D]8202*1	Maximum link scan time	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	(D202)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8203*1	Number of communication error at master station	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{gathered} \text { M8183 to } \\ \text { M8191 } \end{gathered}$	(D203)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8204*1	Number of communication error at slave station No. 1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D204)	$\checkmark$	$\checkmark$	$\checkmark^{*} 2$	$\checkmark$
[D]8205*1	Number of communication error at slave station No. 2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D205)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8206*1	Number of communication error at slave station No. 3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D206)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8207*1	Number of communication error at slave station No. 4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D207)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8208*1	Number of communication error at slave station No. 5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D208)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8209*1	Number of communication error at slave station No. 6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D209)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8210*1	Number of communication error at slave station No. 7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D210)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D] $8211^{* 1}$	Code of communication error at master station	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D211)	$\checkmark$	$\checkmark$	$\checkmark^{*}$	$\checkmark$
[D]8212*1	Code of communication error at slave station No. 1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D212)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8213*1	Code of communication error at slave station No. 2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D213)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8214*1	Code of communication error at slave station No. 3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D214)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8215*1	Code of communication error at slave station No. 4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D215)	$\checkmark$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$
[D]8216*1	Code of communication error at slave station No. 5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D216)	$\checkmark$	$\checkmark$	$\checkmark^{*} 2$	$\checkmark$
[D]8217*1	Code of communication error at slave station No. 6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D217)	$\checkmark$	$\checkmark$	$\checkmark^{*} 2$	$\checkmark$
[D]8218*1	Code of communication error at slave station No. 7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		(D218)	$\checkmark$	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark$
[D]8219 to [D]8259	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. In FX1S PLC, use numbers shown inside parentheses.
*2. Available in Ver. 2.00 or later.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Analog Special Adapter [FX3U/FX3UC] (Refer to Subsection 37.2.19 for applicability of each analog special adapter.)												
D 8260 to D 8269	1st special adapter ${ }^{* 1}$	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-	-	-	-	-
D 8270 to D 8279	2nd special adapter*1	-	-	-	$\checkmark$	$\checkmark^{*} 2$	-	-	-	-	-	-
D 8280 to D 8289	3rd special adapter ${ }^{* 1}$	-	-	-	$\checkmark$	$\checkmark^{*}$	-	-	-	-	-	-
D 8290 to D 8299	4th special adapter* ${ }^{*}$	-	-	-	$\checkmark$	$\checkmark^{* 2}$	-	-	-	-	-	-
Analog Special Adapter [FX3S/FX3G/FX3GC], Analog Expansion Board [FX3S/FX3G]   (Refer to Subsection 37.2.18 for applicability of each analog special adapter and analog expansion board)												
D 8260 to D 8269	1st expansion board*3	$\checkmark$	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-	-
D 8270 to D 8279	2nd expansion board ${ }^{* 4 * 5}$	-	$\checkmark{ }^{*} 6$	-	-	-	-	-	-	-	-	-
D 8280 to D 8289	1st special adapter ${ }^{* 1}$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
D 8290 to D 8299	2nd special adapter***5	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
Built-in analog function [FX3S-30M $\square / E \square$-2AD] (Refer to FX3S Hardware Edition for details.)												
[D]8270	Ch1 analog input data (0 to 1020)	$\checkmark^{* 7}$	-	-	-	-	-	-	-	-	-	-
[D]8271	Ch2 analog input data (0 to 1020)	$\checkmark{ }^{* 7}$	-	-	-	-	-	-	-	-	-	-
[D]8272	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8273		-	-	-	-	-	-	-	-	-	-	-
D 8274	Averaging time for ch1 (1 to 4095)	$\checkmark^{*} 7$	-	-	-	-	-	-	-	-	-	-
D 8275	Averaging time for ch2 (1 to 4095)	$\checkmark^{* 7}$	-	-	-	-	-	-	-	-	-	-
[D]8276	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8277		-	-	-	-	-	-	-	-	-	-	-
[D]8278	Error status b0: Ch1 upper over-scale detection   b1: Ch2 upper over-scale detection   b2: Not used   b3: Not used   b4: EEPROM error   b5: Averaging time setting error (common ch1 and ch2)   b6 to b15: Not used	$\checkmark^{* 7}$	-	-	-	-	-	-	-	-	-	-
[D]8279	Model code: K5	$\checkmark^{* 7}$	-	-	-	-	-	-	-	-	-	-

*1. Count the number of connected analog special adapter from the main unit.
*2. Available in Ver. 1.20 or later.
*3. BD1 connector of a FX3G PLC (40-point and 60-point type) or the BD connector of a FX3G PLC (14-point and 24-point type) and FX3s PLC.
*4. Expansion board connected to the BD2 connector of a FX3G PLC (40-point and 60-point type).
*5. Only to FX3G PLC (40-point and 60-point type) can be connected.
*6. Available in Ver. 1.10 or later.
*7. This function is supported only in the FX3s-30MD/ED-2AD PLC.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC


D 8300	Control device (D) for display module Default: K-1	-	$\checkmark^{* 1}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8301	Control device (M) for display module Default: K-1	-	$\checkmark{ }^{* 1}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D $8302^{* 2}$	Language display setting Japanese: K0 English: Other than K0	-	$\checkmark{ }^{* 1}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8303	LCD contrast setting value Default: K0	-	$\checkmark^{* 1}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8304	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8305		-	-	-	-	-	-	-	-	-	-	-
[D]8306		-	-	-	-	-	-	-	-	-	-	-
[D]8307		-	-	-	-	-	-	-	-	-	-	-
[D]8308		-	-	-	-	-	-	-	-	-	-	-
[D]8309		-	-	-	-	-	-	-	-	-	-	-

*1. Available in Ver. 1.10 or later.
*2. Latch (battery or EEPROM backed) device. For details on backup against power failure, refer to Section 2.6.

RND (FNC184)													
[D]8310	Lower	RND (FNC184) instruction:											
[D]8311	Upper	Data for generating random number Default: K1	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
Syntax, Circuit, Operation, or Unconnected I/O Designation Error Step Number (Refer to Chapter 38 for details.)													
D 8312	Lower	Operation error step number latched (32-bit)	-	-	-	$\checkmark$	$\checkmark$	M8068	-	-	-	-	-
D 8313	Upper												
[D]8314*3	Lower	Error step number of M8065 to M8067 (32-bit)	-	-	-	$\checkmark$	$\checkmark$	$\begin{gathered} \text { M8065 to } \\ \text { M8067 } \end{gathered}$	-	-	-	-	-
[D]8315*3	Upper												
[D]8316	Lower	Step number of instruction specifying an unconnected I/O number (directly or indirectly using index register)	-	-	-	$\checkmark$	$\checkmark$	M8316	-	-	-	-	-
[D]8317	Upper												
[D]8318	BFM initialization function: Error unit number		-	-	-	$\checkmark$	$\checkmark^{*} 4$	M8318	-	-	-	-	-
[D]8319	BFM initialization function: Error BFM number		-	-	-	$\checkmark$	$\checkmark^{*} 4$	M8318	-	-	-	-	-
[D]8320 to [D]8328	Not used		-	-	-	-	-	-	-	-	-	-	-

*3. Cleared when PLC switches from STOP to RUN.
*4. Available in Ver. 2.20 or later.

Number and name	Content of register		Applicable model										
			FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Timing Clock (Refer to Section 24.3 for details.) and Positioning [FX3S/FX3G/FX3GC/FX3U/FX3UC] (Refer to Positioning Control Edition for details.)													
[D]8329	Not used		-	-	-	-	-	-	-	-	-	-	-
[D]8330	DUTY (FNC186) instruction: Scan counting for timing clock output 1		-	-	-	$\checkmark$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8331	DUTY (FNC186) instruction:   Scan counting for timing clock output 2		-	-	-	$\checkmark$	$\checkmark^{* 1}$	-	-	-	-	-	-
[D]8332	DUTY (FNC186) instruction:   Scan counting for timing clock output 3		-	-	-	$\checkmark$	$\checkmark^{* 1}$	-	-	-	-	-	-
[D]8333	DUTY (FNC186) instruction: Scan counting for timing clock output 4		-	-	-	$\checkmark$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8334	DUTY (FNC186) instruction: Scan counting for timing clock output 5		-	-	-	$\checkmark$	$\checkmark^{* 1}$	-	-	-	-	-	-
D 8336	DVIT (FNC151) instruction: Specification of interrupt input		-	-	-	$\checkmark$	$\checkmark^{\star 2}$	M8336	-	-	-	-	-
[D]8337 to [D]8339	Not used		-	-	-	-	-	-	-	-	-	-	-
D 8340	Lower	[Y000] Current value register Default: 0	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8341	Upper		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$						
D 8342	[Y000] Bias speed Default: 0		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8343	Lower	[Y000] Maximum speed Default: 100000	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8344	Upper		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$						
D 8345	[Y000] Creep speed Default: 1000		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8346	Lower	[Y000] Zero return speed Default: 50000	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8347	Upper		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$						
D 8348	[Y000] Acceleration time Default: 100		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8349	[Y000] Deceleration time Default: 100		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8350	Lower	[Y001] Current value register Default: 0	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8351	Upper		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$						
D 8352	[Y001] Bias speed Default: 0		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8353	Lower	[Y001] Maximum speed Default: 100000	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8354	Upper		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$						
D 8355	[Y001] Creep speed Default: 1000		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8356	Lower	[Y001] Zero return speed Default: 50000	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8357	Upper		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$						
D 8358	[Y001] Acceleration time Default: 100		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8359	[Y001] Deceleration time Default: 100		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*1. Available in Ver. 2.20 or later.
*2. Available in Ver. 1.30 or later.

		Applicable model										
Number and name	Content of register	FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC


D 8360	Lower	[Y002] Current value register Default: 0	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	32
D 8361	Upper		-	$\checkmark$	-	$\checkmark$	$\checkmark$							
D 8362	[Y002]	Bias speed Default: 0	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	
D 8363	Lower	[Y002] Maximum speed Default: 100000	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	
D 8364	Upper		-	$\checkmark$	-	$\checkmark$	$\checkmark$							
D 8365	[Y002]	reep speed Default: 1000	-	$\checkmark$	-	$\checkmark$	$\checkmark$	-	-	-				

RS2 (FNC 87) [ch0] [FX3G/FX3GC PLCs] (Refer to Data Communication Edition for details.)

D 8370	RS2 (FNC 87) [ch0] Communication format setting	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8371	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8372*1	RS2 (FNC 87) [ch0] Remaining points of transmit data	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8373*1	RS2 (FNC 87) [ch0] Monitoring receive data points	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8374 to [D]8378	Not used	-	-	-	-	-	-	-	-	-	-	-
D 8379	RS2 (FNC 87) [ch0] Time-out time setting	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
D 8380	$\begin{array}{r} \text { RS2 (FNC 87) [ch0] Header } 1 \text { and } 2 \\ \text { <Default: STX> } \end{array}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
D 8381	RS2 (FNC 87) [ch1] Header 3 and 4	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
D 8382	$\begin{gathered} \text { RS2 (FNC 87) [ch0] Terminator } 1 \text { and } 2 \\ \text { <Default: ETX> } \end{gathered}$	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
D 8383	RS2 (FNC 87) [ch0] Terminator 3 and 4	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8384	RS2 (FNC 87) [ch0] Receive sum (received data)	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8385	RS2 (FNC 87) [ch0] Receive sum (calculated result)	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8386	RS2 (FNC 87) [ch0] Send sum	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8387 to [D]8388	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8389	Operation mode display [ch0]	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-	-	-
[D]8390 to [D]8392	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Cleared when the PLC switches from RUN to STOP.
*2. Available only when two FX3U-2HSY-ADP adapters are connected to an FX3U PLC.

Number and name	Content of register			Applicable model										
				FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Interrupt Program (Refer to Chapter 36 for details.)														
D 8393	Delay time $\rightarrow$ Refer to Section 36.4.			-	-	-	$\checkmark$	$\checkmark$	M8393	-	-	-	-	-
[D]8394	Not used			-	-	-	-	-	-	-	-	-	-	-
[D]8395   Symbolic Information, Block password status	Symbolic information storage status and execution program protection status using the block password.			-	-	-	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
	Present value	Symbolic information storage	Protection of execution program											
	$\mathrm{H}^{* *} 00^{* 1}$	None	None											
	$\mathrm{H}^{* *} 01^{* 1}$	None	Provided											
	$\mathrm{H}^{* *} 10^{* 1}$	Provided	None											
	$\mathrm{H}^{* * 11}{ }^{* 1}$	Provided	Provided											
[D]8396	Built-in CC-Link/LT setup information			-	-	-	-	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
[D]8397	Not used			-	-	-	-	-	-	-	-	-	-	-
Ring Counter														
D 8398	Lower Up   Upper 2,	Up-operation ring counter of 0 to $2,147,483,647$ (in 1-ms units, 32 -bit) ${ }^{*} 4$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8398	-	-	-	-	-

*1. "**" indicates areas used by the system.
*2. Available in Ver. 3.00 or later.
*3. Only the FX3Uc-32MT-LT-2 is applicable.
*4. 1ms ring counter (D8399, D8398) will operate after M8398 turns ON.
RS2 (FNC 87) [ch1] (Refer to Data Communication Edition for details.)

D 8400	RS2 (FNC 87) [ch1] Communication format setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8401	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8402*5	RS2 (FNC 87) [ch1] Remaining points of transmit data	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8402	-	-	-	-	-
[D]8403*5	RS2 (FNC 87) [ch1] Monitoring receive data points	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8403	-	-	-	-	-
[D]8404	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8405	Communication parameter display [ch1]	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8406 to [D]8408	Not used	-	-	-	-	-	-	-	-	-	-	-
D 8409	RS2 (FNC 87) [ch1] Time-out time setting	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8410	RS2 (FNC 87) [ch1]Header 1 and 2   <Default: STX>	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8411	RS2 (FNC 87) [ch1] Header 3 and 4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8412	RS2 (FNC 87) [ch1]Terminator 1 and 2   <Default: ETX>	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8413	RS2 (FNC 87) [ch1] Terminator 3 and 4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8414	RS2 (FNC 87) [ch1] Receive sum (received data)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8415	RS2 (FNC 87) [ch1] Receive sum (calculated result)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8416	RS2 (FNC 87) [ch1] Send sum	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8417 to [D]8418	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8419	Operation mode display [ch1]	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-

*5. Cleared when the PLC switches from RUN to STOP.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
RS2 (FNC 87) [ch2] and Computer Link [ch2] (Refer to Data Communication Edition for details.)												
D 8420	RS2 (FNC 87) [ch2] Communication format setting	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8421	Computer link [ch2] Station number setting	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8422*1	RS2 (FNC 87) [ch2]   Remaining points of transmit data	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8422	-	-	-	-	-
[D]8423*1	RS2 (FNC 87) [ch2]   Monitoring receive data points	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8423	-	-	-	-	-
[D]8424	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8425	Communication parameter display [ch2]	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8426	Not used	-	-	-	-	-	-	-	-	-	-	-
D 8427	Computer link [ch2] Specification of on-demand head device register	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\begin{gathered} \text { M8426 to } \\ \text { M8429 } \end{gathered}$	-	-	-	-	-
D 8428	Computer link [ch2]   Specification of on-demand data length register	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			-	-	-	-
D 8429	RS2 (FNC 87) [ch2], computer link [ch2] Time-out time setting	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		-	-	-	-	-
D 8430	RS2 (FNC 87) [ch2]   Header 1 and 2 <Default: STX>	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8431	RS2 (FNC 87) [ch2] Header 3 and 4	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8432	$\begin{aligned} & \text { RS2 (FNC 87) [ch2] } \\ & \text { Terminator } 1 \text { and } 2 \text { <Default: ETX> } \end{aligned}$	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8433	RS2 (FNC 87) [ch2] Terminator 3 and 4	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8434	RS2 (FNC 87) [ch2]   Receive sum (received data)	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8435	RS2 (FNC 87) [ch2]   Receive sum (calculated result)	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8436	RS2 (FNC 87) [ch2] Send sum	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
[D]8437	Not used	-	-	-	-	-	-	-	-	-	-	-

*1. Cleared when the PLC switches from RUN to STOP.
MODBUS communication [ch1] (Refer to MODBUS Communication Edition for details.)

D 8400	Communication format	$\checkmark$	$\checkmark^{*} 2$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8401	Protocol	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark$	$\checkmark * 3$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8402	Communication error code	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark^{*}$	M8402	-	-	-	-	-
D 8403	Error details	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	M8403	-	-	-	-	-
D 8404	Error step number	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[D]8405	Communication format display	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8406	ASCII input delimiter	-	-	-	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[D]8407	Step number being executed	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark^{* 3}$	-	-	-	-	-	-
[D]8408	Current retry value	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark{ }^{* 3}$	$\checkmark^{* 3}$	-	-	-	-	-	-
D 8409	Slave response timeout	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8410	Turn around delay	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark^{* 3}$	-	-	-	-	-	-
D 8411	Message to message delay	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark^{* 3}$	-	-	-	-	-	-
D 8412	Number of retries	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark^{*} 3$	-	-	-	-	-	-
D 8414	Slave node address	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark^{* 3}$	-	-	-	-	-	-
D 8415	Communication status information setup	-	-	-	$\checkmark^{* 3}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8416	Communication status device range setup	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[D]8419	Communication mode	$\checkmark$	$\checkmark^{* 2}$	$\checkmark$	$\checkmark^{* 3}$	$\checkmark^{* 3}$	-	-	-	-	-	-

*2. Available in Ver. 1.30 or later.
*3. Available in Ver. 2.40 or later.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
MODBUS communication [ch2] (Refer to MODBUS Communication Edition for details.)												
D 8420	Communication format	-	$\checkmark{ }^{* 1}$	$\checkmark$	$\checkmark{ }^{*} 2$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8421	Protocol	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark^{*} 2$	$\checkmark^{*}$	-	-	-	-	-	-
D 8422	Communication error code	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	M8422	-	-	-	-	-
D 8423	Error details	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*} 2$	M8423	-	-	-	-	-
D 8424	Error step number	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark^{*}{ }^{2}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[D]8425	Communication format display	-	$\checkmark{ }^{* 1}$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark^{* 2}$	-	-	-	-	-	-
D 8426	ASCII input delimiter	-	-	-	$\checkmark^{*}{ }^{2}$	$\checkmark^{*}$	-	-	-	-	-	-
[D]8427	Step number being executed	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark{ }^{*}{ }^{2}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[D]8428	Current retry value	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark{ }^{*} 2$	$\checkmark^{*}$	-	-	-	-	-	-
D 8429	Slave response timeout	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark^{* 2}$	-	-	-	-	-	-
D 8430	Turn around delay	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark^{*}$	$\checkmark^{* 2}$	-	-	-	-	-	-
D 8431	Message to message delay	-	$\checkmark{ }^{* 1}$	$\checkmark$	$\checkmark{ }^{*}{ }^{2}$	$\checkmark^{* 2}$	-	-	-	-	-	-
D 8432	Number of retries	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark{ }^{*} 2$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8434	Slave node address	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark^{* 2}$	$\checkmark{ }^{*}$	-	-	-	-	-	-
D 8435	Communication status information setup	-	-	-	$\checkmark{ }^{*}$	$\checkmark^{* 2}$	-	-	-	-	-	-
D 8436	Communication status device range setup	-	-	-	$\checkmark{ }^{*} 2$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8439	Communication mode	-	$\checkmark^{* 1}$	$\checkmark$	$\checkmark^{*} 2$	$\checkmark^{* 2}$	-	-	-	-	-	-

*1. Available in Ver. 1.30 or later.
*2. Available in Ver. 2.40 or later.

MODBUS communication [ch1, ch2] (Refer to MODBUS Communication Edition for details.)													
D 8470	Lower	MODBUS device mapping 1	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark^{*} 3$	-	-	-	-	-	-
D 8471	Upper							-	-	-	-	-	-
D 8472	Lower	MODBUS device mapping 2	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8473	Upper							-	-	-	-	-	-
D 8474	Lower	MODBUS device mapping 3	-	-	-	$\checkmark^{* 3}$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8475	Upper							-	-	-	-	-	-
D 8476	Lower	MODBUS device mapping 4	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8477	Upper							-	-	-	-	-	-
D 8478	Lower	MODBUS device mapping 5	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8479	Upper							-	-	-	-	-	-
D 8480	Lower	MODBUS device mapping 6	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8481	Upper							-	-	-	-	-	-
D 8482	Lower	MODBUS device mapping 7	-	-	-	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8483	Upper							-	-	-	-	-	-
D 8484	Lower	MODBUS device mapping 8	-	-	-	$\checkmark$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-
D 8485	Upper							-	-	-	-	-	-

*3. Available in Ver. 2.40 or later.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
FX3U-CF-ADP [ch1] (Refer to CF-ADP Manual for details.)												
[D]8400 to [D]8401	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8402	Step number of executing CF-ADP instruction ${ }^{*}{ }^{2}$	-	-	-	$\checkmark{ }^{\star 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8403		-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8404 to [D]8405	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8406	CF-ADP status	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark * 1$	-	-	-	-	-	-
[D]8407	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8408	CF-ADP version	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8409 to [D]8413	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8414	Error step number of M8418*1	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8415		-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8416	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8417	Error code in detail for CF-ADP instructions ${ }^{*}{ }^{* 3}$	-	-	-	$\checkmark^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-
[D]8418	Error code for CF-ADP instructions*2*3	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark$ *1	-	-	-	-	-	-
[D]8419	Operation mode display	-	-	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	-	-	-	-	-	-

*1. Available in Ver. 2.61 or later.
*2. Cleared when the PLC switches from STOP to RUN.
*3. For details on the error code is stored in special data register, refer to the CF-ADP Manual.

FX3U-CF-ADP [ch2] (Refer to CF-ADP Manual for details.)												
[D]8420 to [D]8421	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8422	Step number of executing CF-ADPinstruction ${ }^{* 5}$	-	-	-	$\checkmark{ }^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8423		-	-	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8424 to [D]8425	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8426	CF-ADP status	-	-	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8427	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8428	CF-ADP version	-	-	-	$\checkmark{ }^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8429 to [D]8433	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8434	Error step number of M8438*5	-	-	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8435		-	-	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8436	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8437	Error code in detail for CF-ADP instructions ${ }^{* 5 * 6}$	-	-	-	$\checkmark^{*} 4$	$\checkmark^{* 4}$	-	-	-	-	-	-
[D]8438	Error code for CF-ADP instructions ${ }^{* 5 *}$ 6	-	-	-	$\checkmark^{*} 4$	$\checkmark^{*} 4$	-	-	-	-	-	-
[D]8439	Operation mode display	-	-	-	-	-	-	-	-	-	-	-

*4. Available in Ver. 2.61 or later.
*5. Cleared when PLC switches from STOP to RUN.
*6. For details on the error code is stored in special data register, refer to the CF-ADP Manual.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
FX3U-ENET-ADP [ch1] (Refer to ENET-ADP Manual for details.)												
[D]8400	IP Address (Low-order)	$\checkmark$	$\checkmark{ }^{\star 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8401	IP Address (High-order)	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8402	Subnet mask (Low-order)	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8403	Subnet mask (High-order)	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8404	Default router IP Address (Low-order)	$\checkmark$	$\checkmark^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark^{* 2}$	-	-	-	-	-	-
[D]8405	Default router IP Address (High-order)	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8406	Status information	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8407	Connection condition of the Ethernet port	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8408	FX3U-ENET-ADP version	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*}{ }^{2}$	-	-	-	-	-	-
D 8409	Communication timeout time	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
D 8410	Connection forcible nullification	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8411	Time setting functional operation result	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*}{ }^{2}$	-	-	-	-	-	-
[D]8412 to [D]8414	Host MAC address	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark^{* 2}$	-	-	-	-	-	-
[D]8415	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8416	Model code	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*}{ }^{2}$	-	-	-	-	-	-
[D]8417	Error code of the Ethernet adapter	$\checkmark$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8418	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8419	Operation mode display	$\checkmark$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-

*1. Available in Ver. 2.00 or later.
*2. Available in Ver. 3.10 or later

		Applicable model											거울
Number and name	Content of register	FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC	


[D]8420	IP Address (Low-order)	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark$ *2	-	-	-	-	-	-
[D]8421	IP Address (High-order)	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{*} 2$	$\checkmark{ }^{*}$	-	-	-	-	-	-
[D]8422	Subnet mask (Low-order)	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{*} 2$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8423	Subnet mask (High-order)	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	$\checkmark{ }^{*} 2$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8424	Default router IP Address (Low-order)	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{* 2}$	-	-	-	-	-	-
[D]8425	Default router IP Address (High-order)	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark$ *2	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8426	Status information	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{*} 2$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8427	Connection condition of the Ethernet port	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8428	FX3U-ENET-ADP version	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark{ }^{*} 2$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
D 8429	Communication timeout time	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark$ *2	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
D 8430	Connection forcible nullification	-	$\checkmark{ }^{* 1}$	$\checkmark{ }^{* 1}$	$\checkmark$ *2	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8431	Time setting functional operation result	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{*} 2$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8432 to [D]8434	Host MAC address	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{*} 2$	$\checkmark^{* 2}$	-	-	-	-	-	-
[D]8435	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8436	Model code	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8437	Error code of the Ethernet adapter	-	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark$ *2	$\checkmark{ }^{*} 2$	-	-	-	-	-	-
[D]8438	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8439	Operation mode display	-	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 2}$	$\checkmark^{* 2}$	-	-	-	-	-	-

FX3U-ENET-ADP [ch1, ch2] (Refer to ENET-ADP Manual for details.)

[D]8490 to [D]8491	Not used	-	-	-	-	-	-	-	-	-	-	-
D 8492	IP address setting (Low-order)	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-	-	-
D 8493	IP address setting (High-order)	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark^{* 3}$	-	-	-	-	-	-	-	-
D 8494	Subnet mask setting (Low-order)	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-	-	-
D 8495	Subnet mask setting (High-order)	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-	-	-
D 8496	Default router IP address setting (Low-order)	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark^{* 3}$	-	-	-	-	-	-	-	-
D 8497	Default router IP address setting (High-order)	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	-	-	-	-	-	-	-	-
[D]8498	Error code for IP address storage area write	$\checkmark$	$\checkmark{ }^{*}$	$\checkmark^{* 3}$	-	-	-	-	-	-	-	-
[D]8499	Error code for IP address storage area clear	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	-	-	-	-	-	-	-	-

*1. Available in Ver. 2.00 or later.
*2. Available in Ver. 3.10 or later.
*3. Available in Ver. 2.10 or later.

Error Detection (Refer to Chapter 38 for details.)

[D]8438*4	Error code for serial communication error 2 [ch2]	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	M8438	-	-	-	-	-
RS2 (FNC 87) [ch2] and Computer Link [ch2] (Refer to Data Communication Edition for details.)												
[D]8439	Operation mode display [ch2]	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-	-	-	-	-	-
Error Detection (Refer to Chapter 38 for details.)												
[D]8440 to [D]8448	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8449	Special block error code	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark{ }^{*}$	M8449	-	-	-	-	-
[D]8450 to [D]8459	Not used	-	-	-	-	-	-	-	-	-	-	-

*4. Cleared when PLC power supply is turned from OFF to ON.
*5. Available in Ver. 2.20 or later.

Number and name	Content of register	Applicable model										
		FX3S	FX3G	FX3GC	FX3U	FX3UC	Corresponding special device	FX1S	FX1N	FX1NC	FX2N	FX2NC
Positioning [FX3S/FX3G/FX3GC/FX3U/FX3UC] (Refer to Positioning Control Edition for details.)												
[D]8460 to [D]8463	Not used	-	-	-	$\checkmark$	$\checkmark$	-	-	-	-	-	-
D 8464	DSZR (FNC150) and ZRN (FNC156) instructions:   [Y000] Clear signal device specification	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 1}$	M8464	-	-	-	-	-
D 8465	DSZR (FNC150) and ZRN (FNC156) instructions: [Y001] Clear signal device specification	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark^{* 1}$	M8465	-	-	-	-	-
D 8466	DSZR (FNC150) and ZRN (FNC156) instructions:   [Y002] Clear signal device specification	-	$\checkmark$	-	$\checkmark$	$\checkmark^{* 1}$	M8466	-	-	-	-	-
D 8467	DSZR (FNC150) and ZRN (FNC156) instructions: [Y003] Clear signal device specification	-	-	-	$\checkmark^{*}{ }^{2}$	-	M8467	-	-	-	-	-

*1. Available in Ver. 2.20 or later.
*2. Available only when two FX3U-2HSY-ADP adapters are connected to an FX3U PLC.

Error Detection												
[D]8468 to [D]8486	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8487	USB communication error	$\checkmark$	-	-	-	-	M8487	-	-	-	-	-
[D]8488	Not used	-	-	-	-	-	-	-	-	-	-	-
[D]8489	Error code for special parameter error	$\checkmark$	$\checkmark{ }^{*} 3$	$\checkmark{ }^{*} 3$	$\checkmark^{*} 4$	$\checkmark^{*} 4$	M8489	-	-	-	-	-
[D]8490 to [D]8511	Not used	-	-	-	-	-	-	-	-	-	-	-

*3. Available in Ver. 2.00 or later.
*4. Available in Ver. 3.10 or later.

### 37.2 Supplement of Special Devices (M8000 - and D8000 -)

This section explains how to use the provided special devices to activate built-in PLC functions for additional program control.

### 37.2.1 RUN monitor and initial pulse [M8000 to M8003]

1. RUN monitor (M8000 and M8001)

The RUN monitor (M8000 and M8001) may be used to continually drive an output during PLC "normal operation".

1) Example program
M8000
RUN monitor (NO contact)
Always ON while the PLC
is in RUN mode.
M8001 is always OFF while the PLC is in the RUN mode.
2) Flag operation timing


## 2. Initial pulse (M8002 and M8003)

The initial pulse M8002 \& M8003 is turned to ON or OFF respectively during the 1st scan of the PLC program. It can be utilized as an initial setting signal in a program for initializing the program, for writing a specified value, or for another purpose.

1) Example program


The latched (battery backed) type data registers D200 to D299 are cleared.

M8003 turns OFF momentarily (for only 1 scan time) when the PLC enters the RUN mode.
2) Flag operation timing


### 37.2.2 Watchdog timer [D8000]

The watchdog timer monitors the operation (scan) time of the PLC. When the operation is not completed within the specified time, ERROR (ERR) LED light turns on and all outputs are turned OFF.
When the power is initially turned ON, "200 ms" is transferred from the system to D8000 as the default value. For executing a program beyond 200 ms , the contents of D8000 must be changed by the user program.

## 1. Example program



## 2. When a watchdog timer error occurs

A watchdog timer error may occur in the following cases. Add the above program to somewhere near the first step or adjust the number of execution FROM/TO instructions at the same scan.

1) When using many special function units/blocks When many special function units/blocks (such as positioning, cam switches, link and analog) are used, buffer memory initial setting time becomes long at turning on the PLC, thus extending the operation time and allowing the possibility for a watchdog timer error to occur.
2) When executing many $\operatorname{FROM} / \mathrm{TO}$ instructions at the same time When many FROM/TO instructions are executed or when many buffer memories are transferred, it extends the scan time, and a watchdog timer error may occur.
3) When using many high-speed counters (software counters) When many high-speed counters are programmed and high frequency is counted at the same time, it extends the scan time, and a watchdog timer error may occur.

## 3. How to reset the watchdog timer

The watchdog timer can be reset in the middle of a sequence program using WDT (FNC 07) instruction.
It is recommended to reset the watchdog timer by WDT (FNC 07) instruction when the scan time of a particular sequence program is extended or when many special function units/blocks are connected.
$\rightarrow$ For WDT (FNC 07) instruction, refer to Section 8.8.

## 4. Cautions on changing the watchdog timer

The watchdog timer time can be set to a maximum of 32767 ms . However, CPU error detection is delayed when the watchdog timer time is extended.
It is recommended to use the default value ( 200 ms ) when no problems are to be expected in operation.
The watchdog timer time becomes "0" when a value less than " 0 " is set to D8000.

### 37.2.3 Battery voltage low detection [M8005 and M8006]

This special device detects low voltage in the lithium battery for memory backup.
In $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}$ PLCs, the BATT (BAT) LED turns ON when the PLC detects low battery voltage.
In FX3G/FX3GC PLCs, the ALM LED indicator turns ON when the PLC detects low battery voltage if the optional battery is installed and the battery mode is selected by the parameter setting.
Use the following program to notify low battery voltage to the outside.


### 37.2.4 Power failure detection time [D8008, M8008 and M8007]

1. FX3u PLC (AC power supply type)

The table below shows the allowable momentary power failure time in FX3u PLC (AC power supply type).

Supply voltage	Allowable momentary power   failure time
100 V AC system	10 ms
200 V AC system	Setting range: 10 to 100 ms   Set a value to D8008.   Default: 10 ms


*1 t: 100 V AC system: 0 ms to Approx. 60 ms 200 V AC system: 0 ms to Approx. 100 ms
2. $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{U}$ PLCs (DC power supply type)

The allowable momentary power failure time in the FX3U/FX3uc PLCs (DC power supply type) is 5 ms . Do not overwrite the power failure detection time in device D8008.

DC power supply


M8000: RUN monitor
M8007: Momentary power failure
detection
M8008: Power failure
$\qquad$ detected D8011 and D8012 respectively (in 0.1 -ms units).
When using the constant scan mode, the values stored in these devices include the waiting time for the constant scan time.

D8010: Present value
D8011: Minimum value
D8012: Maximum value
 The values stored in these devices can be monitored from peripheral equipment.

### 37.2.6 Internal clock [M8011 to M8014]

The PLC has the following four types of internal clocks which are always oscillating while the PLC power is ON.


### 37.2.7 Real time clock [M8015 to M8019 and D8013 to D8019]

1. Assignment of special auxiliary relays (M8015 to M8019) and special data registers (D8013 to D8019)

Number	Name	Operation and function	
M8015	Clock stop and preset	When M8015 turns ON, the real time clock is stopped. At the edge from ON to OFF, the time from D8013 to D8019 is written to the PLC and the clock is started again.	
M8016	Time read display is stopped	When M8016 turns ON, the time display is stopped (but RTC is continued).	
M8017	$\pm 30$ seconds correction	At the edge from OFF to ON, the RTC is set to the nearest minute. (When the second data is from 0 to 29 , it is set to 0 . When the second data is from 30 to 59 , it is set to 0 and the minute data is incriminated by "1".)	
M8018	Installation detection	This device is always ON.	
M8019	Real time clock (RTC) error	When the data stored in special data registers is outside the allowable time, setting range this device turns ON.	
Number	Name	Set value range	Operation and function
D8013	Second data	0 to 59	Use these devices for writing the initial value in time setting or read the present time.
D8014	Minute data	0 to 59	
D8015	Hour data	0 to 23	
D8016	Day data	1 to 31	- D8018 (year data) can be changed over to the four-digit year mode.
D8017	Month data	1 to 12	
D8018	Year data	00 to 99 (last two digits of year)	In the four-digit year mode, 1980 to 2079 can be displayed.   - Clock accuracy: $\pm 45 \mathrm{sec} /$ month (at $25^{\circ} \mathrm{C}$ )   - Leap year correction: Provided
D8019	Day-of-the-week data	0 to 6 (which corresponds to Sunday to Saturday)	

$\rightarrow$ For the real time clock setting method, refer to Subsection 37.2.8.
2. Changeover of the year display (to the four-digit mode)

When changing the year data to the four-digit mode, add the following program.
D8018 is set to the four-digit year mode on the second ladder scan in RUN mode.

	M8002   FNC 12   MOV	K2000	D8018
Initial pulse	M		

1) The PLC is usually operating in the two-digit year mode.

When the above instruction is executed during RUN and "K2000 (fixed value)" is transferred to D8018 (year data), D8018 switches to the four-digit year mode.
2) Execute this program every time the PLC enters RUN.

Only the year data display switches to four-digit mode when "K2000" is transferred. The actual time date is not affected.
3) In the four-digit year mode, the values " 80 " to " 99 " correspond to " 1980 " to " 1999 " and " 00 " to " 79 " correspond to "2000" to "2079".
Examples: $80=1980,99=1999,00=2000,79=2079$
4) When connecting the data access unit FX-10DU-E/20DU-E/25DU-E, use the two-digit year mode. If the four-digit year mode is selected, the year data will not be displayed correctly. Note that the clock is changed to the 2-digit year mode when the clock is set from the FX-10DU-E/20DU-E/ 25DU-E while the PLC is operating in the 4-digit year mode.

### 37.2.8 How to set real time clock

The real time clock is set by the following method.

## 1. Method using the display module

This subsection explains how to set the real time clock in the display module FX3U-7DM (built in the FX3Uc-32MT-LT (-2)).
Refer to the following manual for the display module FX3G-5DM.
$\rightarrow$ FX 3 G Series User's Manual - Hardware Edition

1) Scroll to "ClockMenu" by pressing the [+] or [-] key on the MENU screen, and press the [OK] key. The selection screen on the right is displayed. Press the [ESC] key to cancel the operation and return to "TOP screen".

2) Scroll to "Clock setting" by pressing the [+] or [-] key. Press the [ESC] key to cancel the operation and return to the "MENU screen".

3) Press the [OK] key, and the "Clock setting" screen on the right is displayed. Press the [ESC] key to cancel the operation and return to the "selection screen".

4) Change the flickering value by pressing the [+] or [-] key, and press the [OK] key to set the value. The items are set in the order "year $\rightarrow$ month $\rightarrow$ day $\rightarrow$ hour $\rightarrow$ minute $\rightarrow$ second".
When the last "second" value is decided by pressing the [OK] key, the message "Current time is set" appears, and setting of the present time is completed.

Operation   key	Contents of operation
ESC	Return to the previous set item.   When pressed while "year" data is flickering, the "selection screen" is   displayed.
-	Decreases a numeric value.   A numeric value decreases at high-speed when pressed and held for 1   second or more.
+	Increases a numeric value.   A numeric value increases at high-speed when pressed and held for 1   second or more.
OK	Shifts to the next set item.   When pressed while "second" data is flickering, the message "Current   time is set" appears.

The default "Year" display is a 2-digit value indicating the Western calendar year.

Current time


## 2. Method by program

1) Method using TWR (FNC167) instruction dedicated to time setting.

$\rightarrow$ For details, refer to Subsection 21.8.

2) Method using M8015 and D8013 to D8019.

When not using TWR (FNC167) instruction dedicated to time setting, the following program can be used for time setting.


## Point

a) While M8015 is OFF, the registers for date and time cannot be changed. Make sure to set M8015 to ON, and then input date and time.
b) When inputting the time, set the time several minutes ahead of the current time. When the actual time reaches the set time, set M8015 to OFF from ON to make the new time valid and to begin the real time clock again.
c) If values indicating infeasible date, time and day of the week are input (Example: February 30, 2006), the time cannot be set. Input the correct date, time and day of the week.
d) The day of the week (D8019) is automatically corrected in accordance with the date without regard to the written numeric value.

## 3. Method by programming tool

1) Starting the time change Set M8015 to ON by forced ON/OFF.
2) By using the data register value change function in the device monitor of the programming tool, input the date and time (several minutes ahead) to each data register.
3) Finishing the time change

When the actual time reaches the input data, reset M8015 by forced ON/OFF.

## Point

a) While M8015 is OFF, the registers for date and time cannot be changed.

Make sure to set M8015 to ON, and then input date and time.
b) When inputting the time, set the time several minutes ahead of the current time.

When the actual time reaches the set time, set M8015 to OFF from ON to make the new time valid and to begin the real time clock again.
c) If values indicating infeasible date and time are input (Example: February 30, 2006), the time cannot be set. Input the correct date and time.

### 37.2.9 Input filter adjustment [D8020]

The inputs X 000 to $\mathrm{X} 017^{* 1}$ have a digital filter circuit with a setting range of 0 to 60 ms . The digital filter setting value is set between 0 to $60^{* 2} \mathrm{~ms}$ (in 1 ms steps) in special data register D8020. After the PLC powers ON, D8020 is automatically set to K10 (10 ms).

*1. X 000 to X 007 in the $F X_{3 G} / F X_{3} G c$ PLCs.
*2. 0 to 15 in $\mathrm{FX}_{3} /$ /FX3G/FX3GC PLCs

## 1. Program example for adjusting the input filter

When the program shown below is executed, the filter constant is changed to 0 ms .
Because the C-R filter is provided in the hardware, however, the filter constant is shown in the table below when " 0 " is specified.

M8000	FNC 12      RUN monitor	K0   MOV	D8020

1) $F X_{3 S} P L C$

Input number	Input filter value when "0" is set
$\times 000, \times 001$	$10 \mu \mathrm{~s}$
X 002 to $\mathrm{X007}$	$50 \mu \mathrm{~s}$
$\mathrm{X010}$ to $\mathrm{X017}$	$200 \mu \mathrm{~s}$

2) $F X_{3 G} / F X_{3 G C}$ PLCs

Input number	Input filter value when "0" is set
$\mathrm{X} 000, \mathrm{X} 001, \mathrm{X} 003, \mathrm{X} 004$	$10 \mu$
$\mathrm{X} 002, \mathrm{X} 005, \mathrm{X} 006, \mathrm{X} 007$	$50 \mu \mathrm{~s}$

3) $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{C}$ PLCs

Input number	Input filter value when "0" is set
$\times 000$ to $\mathrm{X005}$	$5 \mu \mathrm{~s}^{* 3}$
$\mathrm{X} 006, \mathrm{X} 007$	$50 \mu \mathrm{~s}$
X 010 to $\mathrm{X017}{ }^{* 4}$	$200 \mu \mathrm{~s}$

*3. When setting the input filter to " $5 \mu \mathrm{~s}$ " or when receiving pulses whose response frequency is 50 k to 100 kHz using high-speed counters, perform the following actions:

- Input wiring length should be $5 \mathrm{~m}\left(16^{\prime} 4\right.$ ") or less.
- Connect a bleeder resistor ( $1.5 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ ) to the input terminal. The load current of the open collector transistor output in the device on the other end should be 20 mA or more including the input current of the PLC.
*4. In the $\mathrm{FX}_{3} \mathrm{U} / \mathrm{F} X_{3} \cup \mathrm{C}$ PLCs (16-point type), only X000 to X007 support the input filter adjustment function.
- The input filter constant can be changed as many times as need in the user program.
- This input filter adjustment described here is not required when using high-speed counter, input interrupt, or pulse catch (M8170 to M8177) functions.


### 37.2.10 Battery [BATT (BAT)] LED and [ALM] LED OFF command [M8030]

When M8030 is set to ON, the battery LED does not turn ON even if the voltage in the battery for memory backup becomes low.
When the indication of "battery voltage low error" is not required or when the battery is removed, set M8030 to ON. When batteryless operation is required in FX3U/FX3UC PLCs, do not use M8030 and refer to "1. Batteryless operation by parameter setting in peripheral equipment" below.

1. Batteryless operation by parameter setting in peripheral equipment

Specify "batteryless operation" mode in the parameter settings.

1) When the batteryless operation option is specified

When "batteryless mode" is specified, the control to turn OFF the BATT (BAT) LED and initialization of the latch area for the devices shown below are automatically executed by the PLC system.

- Auxiliary relay (M)
- Counter (C)
- State relay (S)
- Data register (D)
- Timer (T)
- Extension register (R)

2) Applicable programming tool Some programming tool versions do not support "batteryless mode". In such versions, input a sequence program to enable the batteryless operation as explained below.

## 2. Conditions for batteryless operation

1) An FLROM (optional memory cassette) for program memory is installed so that programs are not erased. (only in FX3u/FX3ис PLCs)
2) The latch (battery backed) devices such as auxiliary relays and data registers are not used for control.
3) The sampling trace function is not used.
4) The real time clock function is not used. (only in FX3U/FX3uc PLCs)

## 3. Example program for batteryless mode

When a parameter setting for "batteryless mode" is not available, create the sequence program shown below.

- Example program for clearing the memory backup area \{when the latch (battery backed) ranges in the parameter settings are set to their initial values.\}

*1. The device number is the default number of the latch (battery backed) device range limits in the parameter settings.
If the latch (battery backed) device numbers in the parameter settings are changed to other values, change the device numbers here in accordance with the changed latch ranges.

4. Cautions for communication setting devices (D8120, D8121 and D8129)

Special data registers D8120 (communication format), D8121 (station number setting) and D8129 (timeout check time) are backed up by the battery in FXз ${ }^{\prime} / F X_{3}$ с PLCs.
When performing the batteryless operation in $\mathrm{FX}_{3} \mathrm{~J} / \mathrm{FX}_{3} \cup \mathrm{C}$ PLCs, reset these special data registers using the procedure described above, and then transfer proper set values to them using a program.
The communication conditions can be set in the parameter settings.
When the communication conditions are set in the parameter settings, the PLC transfers the parameter values to the above special data registers before operation. Thus it is recommended to set the communication conditions via the parameter settings.

### 37.2.11 Built-in analog volume [D8030 and D8031]

Values of variable analog potentiometers built in $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G}$ PLCs ${ }^{* 1}$ as standard are stored as numeric data ranging from 0 to 255 in the following special registers in accordance with the scale position.
An obtained numeric value can be specified as the indirectly specified value for a timer to make a variable potentiometer type analog timer.

- VR1 $\rightarrow$ D8030 (Integer from 0 to 255)
- VR2 $\rightarrow$ D8031 (Integer from 0 to 255)
[Basic example]


This register stores the value 0 to 25.5 sec (0 to 255) of variable analog potentiometer.
[Applied example]

*1. This function is not supported in the FX3s-30M $\square / E \square-2 A D$ PLC.

### 37.2.12 Clear command [M8031 and M8032]

For all devices (image memory) in the PLC, the latch (battery backed) areas and non-latch areas can be cleared. M8031 (non-latch memory all clear), M8032 (latch memory all clear)

Device number		Cleared devices
	-	Contact image of output relay (Y), general type auxiliary relay (M), and general type state relay (S)
	-	Contact and coil of timer (T)

*1. When the optional battery is installed in $\mathrm{FX}_{3} / / \mathrm{FX}_{3} \mathrm{Gc}$ PLCs, general type devices which were changed to the latch (battery backed) type are handled as devices in latch areas.

### 37.2.13 Memory hold stop [M8033] (output hold in STOP mode)

When the special auxiliary relay M8033 is turned ON, the output status in the RUN mode is retained even if the PLC status switches from RUN to STOP.

1. Example program
M8033 Outputs are retained even during STOP mode.

For example, when a heater is driven by the PLC, the PLC can be stopped while the heater and other equipment are kept driven, and then the PLC can be started again after program changes.

### 37.2.14 All outputs disable [M8034]

When M8034 is turned ON, the output memory is cleared. As a result, all actual output relay contacts are turned OFF and the PLC is operated in the image memory.

1. Program example

Command


All outputs are disabled (image RUN status).

### 37.2.15 Individual operation for RUN/STOP input [M8035 to M8037]

When using external push button switches to control the PLC's RUN/STOP mode, operate the switches using the following procedure.
The PLC enters RUN mode by one-shot input of the RUN switch, while one-shot input of the STOP switch drives the STOP mode.

## 1. Program example



The figure on the left shows an example for the FX3U PLC (sink input).

Write the above program to the PLC.

## 2. Setting method

1) Turn the built-in RUN/STOP switch to STOP.
2) Set up the RUN input switch, ( X ) ( X 000 is specified in the circuit diagram example above.) Make the external RUN/STOP input valid by specifying an input between X000 and X017*1 for the RUN input signal.
a) Display the parameter setting in the programming tool

In GX Works2, double-click [Parameter] - [PLC parameter] in the project view to display the dialog box.
Go to the [PLC System(1)] tab, and set "RUN Terminal Input".
b) Specify the input ( X ) number to switch from STOP mode to RUN mode.
3) Set up the STOP switch input ( $X$ )

Specify an arbitrary input terminal (actual I/O on the PLC) within the sequence program.
Refer to the program above.
4) Transfer the program and parameters to the PLC.
5) For the parameter settings to become valid, the PLC power must be turned from OFF to ON.

## 3. Cautions

1) When both RUN and STOP switches are pressed at the same time, priority is given to the STOP switch.
2) When the built-in RUN/STOP switch is turned to RUN, the PLC can be set to RUN mode. However, when the STOP switch assigned to an arbitrary input is activated, the PLC will enter STOP mode. (Even if the built-in switch is turned to RUN, priority is given to the STOP command.)
4. RUN/STOP command via the programming tool
1) Using the programming software for personal computer There is a remote RUN/STOP function in the programming software.
By using the programming software, the PLC can be set to the RUN or STOP mode by giving a command from the personal computer.
2) Using any other programming tool

When M8035 (forced RUN mode) and M8036 (forced RUN signal) are set to ON in the forced ON/OFF procedure, the PLC begins RUN mode.
When M8037 (forced STOP signal) is set to ON, the PLC changes to STOP mode.
3) Even when the built-in RUN/STOP switch is on the RUN side of the PLC.

The remote STOP command via the programming tool or M8037 (forced STOP signal) are valid.

### 37.2.16 Constant scan mode [M8039 and D8039]

When the special auxiliary relay M8039 is set to ON and a setting value for the constant scan time (in 1-ms units) is stored in special data register D8039, the scan time in the PLC does not become shorter than the value stored in D8039.
The PLC pauses for the remaining time when the operation ends earlier, and then returns to step 0 .

1. Example program


## 2. Cautions

1) When using an instruction executed in synchronization with a scan
a) When using an instruction executed in synchronization with a scan such as RAMP (FNC 67), HKY (FNC 71), SEGL (FNC 74), ARWS (FNC 75) and PR (FNC 77), it is recommended to use the constant scan mode or to use the instruction in a timer interrupt program.
b) When using HKY (FNC 71) instruction

It is necessary to use a scan time of 20 ms or more due to the response delays of the key input filter.
2) Scan time display (D8010 to D8012)

The scan time specified in the constant scan time is included in the scan time display stored in D8010 to D8012.

### 37.2.17 State control in program with STL instruction/SFC chart [M8040]

When M8040 is ON, the state relay ON status is not transferred even if the transfer condition is satisfied.
The transfer between states is disabled and the output status remains in stopped State.
$\rightarrow$ For resetting outputs in a state, refer to Subsection 35.1.7.

### 37.2.18 Analog expansion boards [M8260 to M8279 and D8260 to D8279]

When the analog expansion board is connected, operations and functions are assigned to devices shown in the table below in accordance with the connection position.
Operations and functions in the table below are shaded for write-prohibited devices.
$\rightarrow$ For details, refer to the Analog Control Edition.

1. Special auxiliary relay (M8260 to M8279)

- FX3s/FX3G PLCs

Number	Operation and function	
	FX3G-2AD-BD	FX3G-1DA-BD
Applicable version	Ver. 1.10 or later ${ }^{* 1}$	Ver. 1.10 or later ${ }^{* 1}$
1st analog expansion board		
M 8260	Input mode switching Ch1	Output mode switching
M 8261	Input mode switching Ch2	Not used
M 8262	Not used	Not used
M 8263	Not used	Not used
M 8264	Not used	Output hold mode cancel
M 8265	Not used	Not used
M 8266	Not used	Not used
M 8267	Not used	Not used
M 8268	Not used	Not used
M 8269	Not used	Not used
2nd analog expansion board ${ }^{*}{ }^{\text {2 }}$		
M 8270	Input mode switching Ch1	Output mode switching
M 8271	Input mode switching Ch2	Not used
M 8272	Not used	Not used
M 8273	Not used	Not used
M 8274	Not used	Output hold mode cancel
M 8275	Not used	Not used
M 8276	Not used	Not used
M 8277	Not used	Not used
M 8278	Not used	Not used
M 8279	Not used	Not used

*1. In the case of $\operatorname{FX} 3 S$ PLC, all versions are applicable.
*2. Only to FX3G PLC (40-point and 60-point type) can be connected.
2. Special data register (D8260 to D8279)

- FX3s/FX3G PLCs

Number	Operation and function	
	FX3G-2AD-BD	FX3G-1DA-BD
Applicable version	Ver. 1.10 or later ${ }^{* 1}$	Ver. 1.10 or later ${ }^{* 1}$
1st analog expansion board		
D 8260	Input data Ch1	Output data
D 8261	Input data Ch2	Not used
D 8262	Not used	Not used
D 8263	Not used	Not used
D 8264	Number of averaging times for Ch1 (1 to 4095)	Not used
D 8265	Number of averaging times for Ch2 (1 to 4095)	Not used
D 8266	Not used	Not used
D 8267	Not used	Not used
D 8268	Error status	Error status
D 8269	Model code: K3	Model code: K4
2nd analog expansion board*2		
D 8270	Input data Ch1	Output data
D 8271	Input data Ch2	Not used
D 8272	Not used	Not used
D 8273	Not used	Not used
D 8274	Number of averaging times for Ch1 (1 to 4095)	Not used
D 8275	Number of averaging times for Ch2 (1 to 4095)	Not used
D 8276	Not used	Not used
D 8277	Not used	Not used
D 8278	Error status	Error status
D 8279	Model code: K3	Model code: K4

*1. In the case of $\mathrm{FX}_{3}$ P PLC, all versions are applicable.
*2. Only to FX3G PLC (40-point and 60-point type) can be connected.

### 37.2.19 Analog special adapters [M8260 to M8299 and D8260 to D8299]

When analog special adapters are connected, operations and functions are assigned to the devices shown in the tables below in accordance with the number of connected analog special adapters.
Devices which cannot be written to are shaded in the "Operation and function" column.
$\rightarrow$ For details, refer to the Analog Control Edition.

1. Special auxiliary relays (M8260 to M8299)

- FX3U/FX3ис PLC

Number	Operation and function		
	FX3U-4AD-ADP	FX3U-4DA-ADP	FX3U-3A-ADP
Applicable version	Ver. 1.20 or later ${ }^{* 1}$	Ver. 1.20 or later ${ }^{* 1}$	Ver. 2.61 or later
1st analog special adapter			
M 8260	Input mode switching Ch1	Output mode switching Ch1	Input mode switching Ch1
M 8261	Input mode switching Ch2	Output mode switching Ch2	Input mode switching Ch2
M 8262	Input mode switching Ch3	Output mode switching Ch3	Output mode switching
M 8263	Input mode switching Ch4	Output mode switching Ch4	Not used
M 8264	Not used	Output hold mode cancel Ch1	Not used
M 8265	Not used	Output hold mode cancel Ch2	Not used
M 8266	Not used	Output hold mode cancel Ch3	Output hold mode cancel
M 8267	Not used	Output hold mode cancel Ch4	Sets whether or not input channel 1 is used.
M 8268	Not used	Not used	Sets whether or not input channel 2 is used.
M 8269	Not used	Not used	Sets whether or not output channel is used.
2nd analog special adapter			
M 8270	Input mode switching Ch1	Output mode switching Ch1	Input mode switching Ch1
M 8271	Input mode switching Ch2	Output mode switching Ch2	Input mode switching Ch2
M 8272	Input mode switching Ch3	Output mode switching Ch3	Output mode switching
M 8273	Input mode switching Ch4	Output mode switching Ch4	Not used
M 8274	Not used	Output hold mode cancel Ch1	Not used
M 8275	Not used	Output hold mode cancel Ch2	Not used
M 8276	Not used	Output hold mode cancel Ch3	Output hold mode cancel
M 8277	Not used	Output hold mode cancel Ch4	Sets whether or not input channel 1 is used.
M 8278	Not used	Not used	Sets whether or not input channel 2 is used.
M 8279	Not used	Not used	Sets whether or not output channel is used.
3rd analog special adapter			
M 8280	Input mode switching Ch1	Output mode switching Ch1	Input mode switching Ch1
M 8281	Input mode switching Ch2	Output mode switching Ch2	Input mode switching Ch2
M 8282	Input mode switching Ch3	Output mode switching Ch3	Output mode switching
M 8283	Input mode switching Ch4	Output mode switching Ch4	Not used
M 8284	Not used	Output hold mode cancel Ch1	Not used
M 8285	Not used	Output hold mode cancel Ch2	Not used
M 8286	Not used	Output hold mode cancel Ch3	Output hold mode cancel
M 8287	Not used	Output hold mode cancel Ch4	Sets whether or not input channel 1 is used.
M 8288	Not used	Not used	Sets whether or not input channel 2 is used.
M 8289	Not used	Not used	Sets whether or not output channel is used.
4th analog special adapter			
M 8290	Input mode switching Ch1	Output mode switching Ch1	Input mode switching Ch1
M 8291	Input mode switching Ch2	Output mode switching Ch2	Input mode switching Ch2
M 8292	Input mode switching Ch3	Output mode switching Ch3	Output mode switching
M 8293	Input mode switching Ch4	Output mode switching Ch4	Not used
M 8294	Not used	Output hold mode cancel Ch1	Not used
M 8295	Not used	Output hold mode cancel Ch2	Not used
M 8296	Not used	Output hold mode cancel Ch3	Output hold mode cancel
M 8297	Not used	Output hold mode cancel Ch4	Sets whether or not input channel 1 is used.
M 8298	Not used	Not used	Sets whether or not input channel 2 is used.
M 8299	Not used	Not used	Sets whether or not output channel is used.

*1. In the case of FX3U PLCs, all versions are applicable.

Number	Operation and function		
	FX3U-4AD-PT(W)-ADP	FX3U-4AD-TC-ADP	FX3U-4AD-PNK-ADP
Applicable version	Ver. 1.30 or later ${ }^{* 1}$	Ver. 1.30 or later ${ }^{* 1}$	Ver. 1.30 or later ${ }^{* 1}$
1st analog special adapter			
M 8260	Temperature unit selection	Temperature unit selection	Temperature unit selection
M 8261	Not used	Type-K/-J switching	Input sensor selection
M 8262	Not used	Not used	Not used
M 8263	Not used	Not used	Not used
M 8264	Not used	Not used	Not used
M 8265	Not used	Not used	Not used
M 8266	Not used	Not used	Not used
M 8267	Not used	Not used	Not used
M 8268	Not used	Not used	Not used
M 8269	Not used	Not used	Not used
2nd analog special adapter			
M 8270	Temperature unit selection	Temperature unit selection	Temperature unit selection
M 8271	Not used	Type-K/-J switching	Input sensor selection
M 8272	Not used	Not used	Not used
M 8273	Not used	Not used	Not used
M 8274	Not used	Not used	Not used
M 8275	Not used	Not used	Not used
M 8276	Not used	Not used	Not used
M 8277	Not used	Not used	Not used
M 8278	Not used	Not used	Not used
M 8279	Not used	Not used	Not used
3rd analog special adapter			
M 8280	Temperature unit selection	Temperature unit selection	Temperature unit selection
M 8281	Not used	Type-K/-J switching	Input sensor selection
M 8282	Not used	Not used	Not used
M 8283	Not used	Not used	Not used
M 8284	Not used	Not used	Not used
M 8285	Not used	Not used	Not used
M 8286	Not used	Not used	Not used
M 8287	Not used	Not used	Not used
M 8288	Not used	Not used	Not used
M 8289	Not used	Not used	Not used
4th analog special adapter			
M 8290	Temperature unit selection	Temperature unit selection	Temperature unit selection
M 8291	Not used	Type-K/-J switching	Input sensor selection
M 8292	Not used	Not used	Not used
M 8293	Not used	Not used	Not used
M 8294	Not used	Not used	Not used
M 8295	Not used	Not used	Not used
M 8296	Not used	Not used	Not used
M 8297	Not used	Not used	Not used
M 8298	Not used	Not used	Not used
M 8299	Not used	Not used	Not used

*1. In the case of FX3U PLCs, all versions are applicable.

- $\mathrm{FX}_{3 \mathrm{~S}} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs

Number	Operation and function		
	FX3U-4AD-ADP	FX3U-4DA-ADP	FX3U-3A-ADP 1.00 or later
1st analog special adapter	Ver. 1.00 or later		
M 8280	Input mode switching Ch1	Output mode switching Ch1	Input mode switching Ch1
M 8281	Input mode switching Ch2	Output mode switching Ch2	Input mode switching Ch2
M 8282	Input mode switching Ch3	Output mode switching Ch3	Output mode switching
M 8283	Input mode switching Ch4	Output mode switching Ch4	Not used
M 8284	Not used	Output hold mode cancel Ch1	Not used
M 8285	Not used	Output hold mode cancel Ch2	Not used
M 8286	Not used	Output hold mode cancel Ch3	Output hold mode cancel
M 8287	Not used	Output hold mode cancel Ch4	Sets whether or not input channel 1 is used.
M 8288	Not used	Not used	Sets whether or not input channel 2 is used.
M 8289	Not used	Not used	Sets whether or not output channel is used.
2nd analog special adapter*2			
M 8290	Input mode switching Ch1	Output mode switching Ch1	Input mode switching Ch1
M 8291	Input mode switching Ch2	Output mode switching Ch2	Input mode switching Ch2
M 8292	Input mode switching Ch3	Output mode switching Ch3	Output mode switching
M 8293	Input mode switching Ch4	Output mode switching Ch4	Not used
M 8294	Not used	Output hold mode cancel Ch1	Not used
M 8295	Not used	Output hold mode cancel Ch2	Not used
M 8296	Not used	Output hold mode cancel Ch3	Output hold mode cancel
M 8297	Not used	Output hold mode cancel Ch4	Sets whether or not input channel 1 is used.
M 8298	Not used	Not used	Sets whether or not input channel 2 is used.
M 8299	Not used	Not used	Sets whether or not output channel is used.


Number	Operation and function		
	FX3U-4AD-PT(W)-ADP	FX3U-4AD-TC-ADP	FX3U-4AD-PNK-ADP
Applicable version	Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.00 or later
1st analog special adapter			
M 8280	Temperature unit selection	Temperature unit selection	Temperature unit selection
M 8281	Not used	Type-K/-J switching	Input sensor selection
M 8282	Not used	Not used	Not used
M 8283	Not used	Not used	Not used
M 8284	Not used	Not used	Not used
M 8285	Not used	Not used	Not used
M 8286	Not used	Not used	Not used
M 8287	Not used	Not used	Not used
M 8288	Not used	Not used	Not used
M 8289	Not used	Not used	Not used
2nd analog special adapter ${ }^{*}$			
M 8290	Temperature unit selection	Temperature unit selection	Temperature unit selection
M 8291	Not used	Type-KI-J switching	Input sensor selection
M 8292	Not used	Not used	Not used
M 8293	Not used	Not used	Not used
M 8294	Not used	Not used	Not used
M 8295	Not used	Not used	Not used
M 8296	Not used	Not used	Not used
M 8297	Not used	Not used	Not used
M 8298	Not used	Not used	Not used
M 8299	Not used	Not used	Not used

*1. In the case of $\mathrm{FX} 3 \mathrm{~S} / \mathrm{FX} 3 \mathrm{GC}$ PLCs, all versions are applicable.
*2. Can be connected only to FX3G PLC (40-point and 60-point type) and FX3GC PLC.
2. Special data registers (D8260 to D8299)

- $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX}_{3} \cup \mathrm{CLC}$

Number	Operation and function		
	FX3U-4AD-ADP	FX3U-4DA-ADP	FX3U-3A-ADP
Applicable version	Ver. 1.20 or later ${ }^{* 1}$	Ver. 1.20 or later ${ }^{* 1}$	Ver. 2.61 or later
1st analog special adapter			
D 8260	Input data Ch1	Output data Ch1	Input data Ch1
D 8261	Input data Ch2	Output data Ch2	Input data Ch2
D 8262	Input data Ch3	Output data Ch3	Output data
D 8263	Input data Ch4	Output data Ch4	Not used
D 8264	Number of averaging times for Ch1 (1 to 4095)	Not used	Number of averaging times for Ch1 (1 to 4095)
D 8265	Number of averaging times for Ch2 (1 to 4095)	Not used	Number of averaging times for Ch2 (1 to 4095)
D 8266	Number of averaging times for Ch3 (1 to 4095)	Not used	Not used
D 8267	Number of averaging times for Ch4 (1 to 4095)	Not used	Not used
D 8268	Error status	Error status	Error status
D 8269	Model code: K1	Model code: K2	Model code: K50
2nd analog special adapter			
D 8270	Input data Ch1	Output data Ch1	Input data Ch1
D 8271	Input data Ch2	Output data Ch2	Input data Ch2
D 8272	Input data Ch3	Output data Ch3	Output data
D 8273	Input data Ch4	Output data Ch4	Not used
D 8274	Number of averaging times for Ch1 (1 to 4095)	Not used	Number of averaging times for Ch1 (1 to 4095)
D 8275	Number of averaging times for Ch2 (1 to 4095)	Not used	Number of averaging times for Ch2 (1 to 4095)
D 8276	Number of averaging times for Ch3 (1 to 4095)	Not used	Not used
D 8277	Number of averaging times for Ch4 (1 to 4095)	Not used	Not used
D 8278	Error status	Error status	Error status
D 8279	Model code: K1	Model code: K2	Model code: K50
3rd analog special adapter			
D 8280	Input data Ch1	Output data Ch1	Input data Ch1
D 8281	Input data Ch2	Output data Ch2	Input data Ch2
D 8282	Input data Ch3	Output data Ch3	Output data
D 8283	Input data Ch4	Output data Ch4	Not used
D 8284	Number of averaging times for Ch1 (1 to 4095)	Not used	Number of averaging times for Ch1 (1 to 4095)
D 8285	Number of averaging times for Ch2 (1 to 4095)	Not used	Number of averaging times for Ch2 (1 to 4095)
D 8286	Number of averaging times for Ch3 (1 to 4095)	Not used	Not used
D 8287	Number of averaging times for Ch4 (1 to 4095)	Not used	Not used
D 8288	Error status	Error status	Error status
D 8289	Model code: K1	Model code: K2	Model code: K50
4th analog special adapter			
D 8290	Input data Ch1	Output data Ch1	Input data Ch1
D 8291	Input data Ch2	Output data Ch2	Input data Ch2
D 8292	Input data Ch3	Output data Ch3	Output data
D 8293	Input data Ch4	Output data Ch4	Not used
D 8294	Number of averaging times for Ch1 (1 to 4095)	Not used	Number of averaging times for Ch1 (1 to 4095)
D 8295	Number of averaging times for Ch2 (1 to 4095)	Not used	Number of averaging times for Ch2 (1 to 4095)
D 8296	Number of averaging times for Ch3 (1 to 4095)	Not used	Not used
D 8297	Number of averaging times for Ch4 (1 to 4095)	Not used	Not used
D 8298	Error status	Error status	Error status
D 8299	Model code: K1	Model code: K2	Model code: K50

*1. In the case of FX3U PLCs, all versions are applicable.

37 Operation of Special Devices (M8000 -, D8000 -)
37.2 Supplement of Special Devices (M8000 - and D8000 -)

Number	Operation and function		
	FX3U-4AD-PT(W)-ADP	FX3U-4AD-TC-ADP	FX3U-4AD-PNK-ADP
Applicable version	Ver. 1.30 or later ${ }^{* 1}$	Ver. 1.30 or later ${ }^{* 1}$	Ver. 1.30 or later ${ }^{* 1}$
1st analog special adapter			
D 8260	Measured temperature Ch1	Measured temperature Ch1	Measured temperature Ch1
D 8261	Measured temperature Ch2	Measured temperature Ch2	Measured temperature Ch2
D 8262	Measured temperature Ch3	Measured temperature Ch3	Measured temperature Ch3
D 8263	Measured temperature Ch4	Measured temperature Ch4	Measured temperature Ch4
D 8264	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)
D 8265	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)
D 8266	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)
D 8267	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)
D 8268	Error status	Error status	Error status
D 8269	Model code: K20, K21*2	Model code: K10	Model code: K11
2nd analog special adapter			
D 8270	Measured temperature Ch1	Measured temperature Ch1	Measured temperature Ch1
D 8271	Measured temperature Ch2	Measured temperature Ch2	Measured temperature Ch2
D 8272	Measured temperature Ch3	Measured temperature Ch3	Measured temperature Ch3
D 8273	Measured temperature Ch4	Measured temperature Ch4	Measured temperature Ch4
D 8274	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)
D 8275	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)
D 8276	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)
D 8277	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)
D 8278	Error status	Error status	Error status
D 8279	Model code: K20, K21*2	Model code: K10	Model code: K11
3rd analog special adapter			
D 8280	Measured temperature Ch1	Measured temperature Ch1	Measured temperature Ch1
D 8281	Measured temperature Ch2	Measured temperature Ch2	Measured temperature Ch2
D 8282	Measured temperature Ch3	Measured temperature Ch3	Measured temperature Ch3
D 8283	Measured temperature Ch4	Measured temperature Ch4	Measured temperature Ch4
D 8284	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)
D 8285	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)
D 8286	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)
D 8287	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)
D 8288	Error status	Error status	Error status
D 8289	Model code: K20, K21*2	Model code: K10	Model code: K11
4th analog special adapter			
D 8290	Measured temperature Ch1	Measured temperature Ch1	Measured temperature Ch1
D 8291	Measured temperature Ch2	Measured temperature Ch2	Measured temperature Ch2
D 8292	Measured temperature Ch3	Measured temperature Ch3	Measured temperature Ch3
D 8293	Measured temperature Ch4	Measured temperature Ch4	Measured temperature Ch4
D 8294	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)
D 8295	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)
D 8296	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)
D 8297	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)
D 8298	Error status	Error status	Error status
D 8299	Model code: K20, K21*2	Model code: K10	Model code: K11

*1. In the case of FX 3 PLCs , all versions are applicable.
*2. The model code is "20" for the PT-ADP, and " 21 " for the PTW-ADP.

- FX3s/FX3G/FX3Gc PLCs

Number	Operation and function		
	FX3U-4AD-ADP	FX3U-4DA-ADP	FX3U-3A-ADP
Applicable version	Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.20 or later ${ }^{* 1}$
1st analog special adapter			
D 8280	Input data Ch1	Output data Ch1	Input data Ch1
D 8281	Input data Ch2	Output data Ch2	Input data Ch2
D 8282	Input data Ch3	Output data Ch3	Output data
D 8283	Input data Ch4	Output data Ch4	Not used
D 8284	Number of averaging times for Ch1 (1 to 4095)	Not used	Number of averaging times for Ch1 (1 to 4095)
D 8285	Number of averaging times for Ch2 (1 to 4095)	Not used	Number of averaging times for Ch2 (1 to 4095)
D 8286	Number of averaging times for Ch3 (1 to 4095)	Not used	Not used
D 8287	Number of averaging times for Ch4 (1 to 4095)	Not used	Not used
D 8288	Error status	Error status	Error status
D 8289	Model code: K1	Model code: K2	Model code: K50
2nd analog special adapter*2			
D 8290	Input data Ch1	Output data Ch1	Input data Ch1
D 8291	Input data Ch2	Output data Ch2	Input data Ch2
D 8292	Input data Ch3	Output data Ch3	Output data
D 8293	Input data Ch4	Output data Ch4	Not used
D 8294	Number of averaging times for Ch1 (1 to 4095)	Not used	Number of averaging times for Ch1 (1 to 4095)
D 8295	Number of averaging times for Ch2 (1 to 4095)	Not used	Number of averaging times for Ch2 (1 to 4095)
D 8296	Number of averaging times for Ch3 (1 to 4095)	Not used	Not used
D 8297	Number of averaging times for Ch4 (1 to 4095)	Not used	Not used
D 8298	Error status	Error status	Error status
D 8299	Model code: K1	Model code: K2	Model code: K50

*1. In the case of $\mathrm{FX}_{3} \mathrm{~S} / \mathrm{FX} 3 \mathrm{G}$ PLCs, all versions are applicable.
*2. Can be connected only to FX3G PLC (40-point and 60-point type) and FX3GC PLC.

Number	Operation and function		
	FX3U-4AD-PT(W)-ADP	FX3U-4AD-TC-ADP	FX3U-4AD-PNK-ADP
Applicable version	Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.00 or later
1st analog special adapter			
D 8280	Measured temperature Ch1	Measured temperature Ch1	Measured temperature Ch1
D 8281	Measured temperature Ch2	Measured temperature Ch2	Measured temperature Ch2
D 8282	Measured temperature Ch3	Measured temperature Ch3	Measured temperature Ch3
D 8283	Measured temperature Ch4	Measured temperature Ch4	Measured temperature Ch4
D 8284	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)
D 8285	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)
D 8286	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)
D 8287	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)
D 8288	Error status	Error status	Error status
D 8289	Model code: K20, K21*2	Model code: K10	Model code: K11
2nd analog special adapter*			
D 8290	Measured temperature Ch1	Measured temperature Ch1	Measured temperature Ch1
D 8291	Measured temperature Ch2	Measured temperature Ch2	Measured temperature Ch2
D 8292	Measured temperature Ch3	Measured temperature Ch3	Measured temperature Ch3
D 8293	Measured temperature Ch4	Measured temperature Ch4	Measured temperature Ch4
D 8294	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)	Number of averaging times for Ch1 (1 to 4095)
D 8295	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)	Number of averaging times for Ch2 (1 to 4095)
D 8296	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)	Number of averaging times for Ch3 (1 to 4095)
D 8297	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)	Number of averaging times for Ch4 (1 to 4095)
D 8298	Error status	Error status	Error status
D 8299	Model code: K20, K21*2	Model code: K10	Model code: K11

*1. Can be connected only to FX3G PLC (40-point and 60-point type) and FX3GC PLC.
*2. The model code is " 20 " for the PT-ADP, and " 21 " for the PTW-ADP.

## 38. Error Check Method and Error Code List

When an error occurs while the program is being executed, troubleshoot the cause of the error in accordance with this chapter.
For error details, refer to the Data Communication Edition and the Hardware Edition of the PLC main unit.

### 38.1 States and Colors of LEDs PLC Operation Status

When an error has occurred, the PLC state can be checked using the LED status lights on the PLC.

FX3S PLC


FX3G PLC


FX3U PLC


FX3Gc PLC


FX3uc(D, DS, DSS) PLC


FX3uc-32MT-LT(-2) PLC


### 38.1.1 POWER (POW) LED [lit, flickering or unlit]

LED status	PLC status	Action
Lit	The voltage is correctly supplied to the power terminal.	The power supply is normal.
Flickering	One of the following has occurred:   - The voltage or current is incorrectly supplied to the power terminal.   - The wiring is incorrect.   - There is fault inside the PLC.	- Check the power supply voltage.   - Disconnect cables except the power cable, turn the PLC power ON again, and verify that the status is changed. If the status is not improved, consult a Mitsubishi Electric representative.
Unlit	One of the following has occurred:   - The power is OFF.   - The voltage is incorrectly supplied to the power terminal.   - There is a break in the power cable.	When the power is not OFF, check the power supply and power line route.   When the power is correctly supplied, consult a Mitsubishi Electric representative.

### 38.1.2 RUN LED [lit or unlit]

LED status	PLC status	Action
Lit	Sequence program is executing.	The PLC operation status is indicated.   This LED is not lit depending on the ERROR (ERR) LED status.   (Refer to Subsection 38.1.4.)
Unlit	Sequence program is stopped.	(ER

### 38.1.3 BATT (BAT) LED [lit or unlit] [FX3U/FX3uc]

LED status	PLC status	Action
Lit	The battery voltage is low.	Replace the battery as soon as possible.   (Refer to FX3U/FX3UC Hardware edition.)
Unlit	The battery voltage exceeds the value set in   D8006.	The battery is normal.

### 38.1.4 ALM LED [lit or unlit] [FX3G/FX3GC]

This LED is valid when the optional battery is installed and the battery mode is selected using a parameter.

LED status	PLC status	Action
Lit	The battery voltage is low.	Replace the battery as soon as possible.   (Refer to FX3G/FX3GC Hardware edition.)
Unlit	The battery voltage exceeds the value set in   D8006.	The battery is normal.

### 38.1.5 ERROR (ERR) LED [lit, flickering or unlit]

LED status	PLC status	Action
Lit	A watchdog timer error has occurred, or the hardware of the PLC may be damaged.	1) Change the PLC mode to STOP, and turn ON the PLC power again.   When the ERROR (ERR) LED is off, a watchdog timer error occurred. Take one of the following actions:   - Review the program, and make sure that the maximum value (D8012) of the scan time is not larger than the set value (D8000) of the watchdog timer.   - Make sure that an input used for input interrupt or pulse catch does not abnormally turn ON and OFF several times in one scan time.   - Make sure that the frequency of the pulse (duty: $50 \%$ ) input to a high-speed counter is within the specifications range.   - Adding a WDT instruction Use two or more WDT instructions in a program so that the watchdog timer is reset several times in one scan time.   - Change the set value of the watchdog timer Change the set value (D8000) of the watchdog timer in a program so that it is larger than the maximum value (D8012) of the scan time.   2) Remove the PLC, and connect another power supply to the PLC.   If the ERROR (ERR) LED is off, the cause of the error may be noise. Examine the following action:   - Check the wiring for grounding, and then review the wiring route and installation location.   - Add a noise filter in the power line.   3) If the ERROR (ERR) LED is not off even after the step 1) or 2), consult a Mitsubishi Electric representative.
Flickering	One of the following errors occur in PLC:   - Parameter error   - Syntax error   - Circuit error	Execute PLC diagnostics and program check by programming tool. For instructions, refer to Section 38.4.
Unlit	Error which stops PLC has not occurred.	If PLC operation is a failure, execute the PLC diagnostics or program check by programming tool.   An I/O configuration error, serial communication error, or operation error may occur.

### 38.1.6 L RUN LED [FX3Uc-32MT-LT(-2)]

Mode	LED status	PLC status	Action
ONLINE	Lit	Data link is executing	-
	Unlit	Data link is stopped	- Take action according to the L ERR LED status.
TEST	Unlit	Data link is executing	Data link is stopped

*1. FX3uc-32MT-LT only.

### 38.1.7 L ERR LED [FX3uc-32MT-LT(-2)]

Mode	LED status	PLC status	Action
ONLINE	Lit	- Unit disconnected   - Outside-control-range station error   - RD station number setting error	- Securely connect the built-in master to remote I/O units and remote device stations on the network.   - Make sure that the connected remote I/O units and remote device stations are consistent with the detailed information on remote stations.
	Flickering	All stations are abnormal	- Securely connect the built-in master to remote I/O units and remote device stations on the network.   - Make sure that the connected remote I/O units and remote device stations are consistent with the detailed information on remote stations.
	Unlit	Data link is being normally executed	-
CONFIG*1	Lit	Used station numbers mismatch. (Remote stations are checked while the remote station information is edited.)	- Securely connect the built-in master to remote I/O units and remote device stations on the network.   - Make sure that the connected remote I/O units and remote device stations are consistent with the detailed information on remote stations.   - Verify that remote device station numbers are within the allowable range.
	Flickering	All stations are abnormal. (Remote stations are checked while the remote station information is edited.)	
	Unlit	Data link is being normally executed	-
TEST	Lit	The self-loopback test is abnormally finished.	- Make sure that the power is correctly supplied to the PLC.   - If the L RUN LED is on even after the above check, consult a Mitsubishi Electric representative.
	Unlit	The self-loopback test is normally finished.   (This LED is off while the selfloopback test is executing.)	-

*1. FX3UC-32MT-LT only
$\rightarrow$ For details, refer to the Hardware Edition of the PLC main unit.

## 38．2 Error Code Check Method and Indication

## 38．2．1 Error code check method by display module

The error code can be checked by programming tool and display module．
This subsection explains how to set the real time clock in the display module FX3U－7DM（built in the FX3UC－32MT－LT （－2））．
Refer to the following manual for the display module FX3G－5DM．
$\rightarrow$ FX3G Series User＇s Manual－Hardware Edition

## Error code check method by display module

1）Scroll to＂ErrorCheck＂by pressing［＋］or［－］key on＂MENU screen＂（shown on the right figure）．
For the menu system，refer to FX3u／FX3Uc Hardware Edition． On this menu screen，the operation keys are as shown below：

Operation   key	Contents of operation
ESC	Return to＂TOP screen＂．
-	Moves the cursor up．Moves the cursor at high－speed when   pressed for 1 second or more．When the cursor is located at   the top，［－］key operation is invalid．
+	Moves the cursor down．Moves the cursor at high－speed   when pressed for 1 second or more．When the cursor is   located at the bottom，$[+]$ key operation is invalid．
OK	Selects a flickering item with the cursor．

2）Pressing［OK］key executes the error check and displays the result on＂error display screen＂（shown in the right figure）．
Press［ESC］key to cancel the operation and return to＂Top screen＂．
3）If two or more errors occur，press［＋］or［－］key to changeover the page．

Operation   key	Contents of operation		
ESC	Returns to＂menu screen＂．		
-	When one or no error	Is invalid．	
	When two or more errors	Displays the previous error   display screen．	
	When one or no error	Is invalid．	
	When two or more errors	Displays the next error display   screen．	
OK	Returns to＂menu screen＂．		

Displayed contents

	Displayed contents
$[1]$	Error flag
$[2]$	Error name
$[3]$	Error code
$[4]$	Number of errors at same time（When two or more errors occur，   this information displays．）

4）Press［ESC］key to cancel the operation and return to＂menu screen＂．

Monitor／Test   ＞シErrorCheck   LANGUAGE   Contrast
ClockMenu
EntryCode
ClearAllDev
PLC status
ScanTime
Cassette
CC－Link／LT ${ }^{\text {1 }}$

＊1．Displayed in the FX3UC－32MT－LT－2．


### 38.2.2 Error code check method by GX Works2

## 1 <br> Connect a personal computer to PLC.

## 2

Execute PLC diagnostics.
Click [Diagnostics] $\rightarrow$ [PLC Diagnostics] on the menu bar, and execute the PLC diagnostics.


## 3 Check the diagnostics result.

When the following dialog box appears, check the contents of the error.

> Example: one error occurs


## 38．2．3 Error indication

The table below shows the error expression in this manual，GX Works2，GX Developer，and display modules（FX3U－ 7DM）．
－Comparison between this manual and GX Works2．

This manual	GX Works2	
	SWロDNC－GXW2－E	SWロDNC－GXW2－J
I／O configuration error	I／O Configuration Error	I／0構成エラー
PLC hardware error	PLC Hardware Error	PCハードエラー
PLC／PP communication error	PLC／PP Communication Error	PC／PP通信エラー
Serial communication error 1［ch1］	Link Error	リンクエラー
Serial communication error 2［ch2］	Serial Communication Error 2［ch2］	シリアル通信エラー2［ch2］
Parameter error	Parameter Error	パラメータエラー
Syntax error	Syntax Error	文法エラー
Circuit error	Ladder Error	回路エラー
Operation error	Operation Error	演算エラー
USB communication error	USB communication error	USB通信エラー
Special block error	Special Block Error	特殊ブロックエラー
Special parameter error	Special Parameter Error	特殊パラメータエラー

－Comparison between this manual and GX Developer

This manual	GX Developer	
	SWロD5C－GPPW－E	SWロD5C－GPPW－J
I／O configuration error	I／O config err	I／0 構成エラー
PLC hardware error	PLC H／W error	PC ハードウェア エラー
PLC／PP communication error	PLC／PP comm err	PC／PP 通信 エラー
Serial communication error 1［ch1］	Link error	リンク エラー
Serial communication error 2［ch2］	Link Error 2	シリアル通信エラー（CH2）
Parameter error	Param error	パラメータ エラー
Syntax error	Syntax error	文法 エラー
Circuit error	Ladder error	回路 エラー
Operation error	Operation err	演算 エラー
USB communication error		
Special block error	SFB Error	特殊ブロックエラー
Special parameter error		

－Comparison between this manual and the display module（FX3U－7DM）

This manual	Display module（FX3U－7DM）	
	Display in English	Display in Japan
I／O configuration error	I／O error	1／0構成エう－
PLC hardware error	PLC H／W error	PCハードェラー
PLC／PP communication error	Comms．error	PC／PP通信エラー
Serial communication error 1 ［ch1］	Link error1	沙アル通信エラ－1
Serial communication error 2 ［ch2］	Link error2	シ少アル通信エう－2
Parameter error	Parameter error	パラメータェラー
Syntax error	Grammer error	文法Iう－
Circuit error	Ladder error	回路士う－
Operation error	Runtime error	演算Iう－
USB communication error	－	－
Special block error	SFB error	特殊ブロツクエラー
Special parameter error	－	－

### 38.3 Supplementary Explanation of Devices for Error Detection

### 38.3.1 Error detection (M8060 to/D8060 to)

When the M8060, M8061, M8064 to M8067 turn ON, the smallest ON device number is stored in D8004, and M8004 turns ON.

1) M8060,M8061,M8064 to M8067 are cleared when the PLC mode switches from STOP to RUN. Note that M8068 and D8068 do not clear.
2) When turning M8069 ON in advance, PLC will enter STOP mode (as M8061 PLC hardware error occurs) if a failure occurs in an I/O extension unit, an extension power supply module, or an extension unit/block. When turning M8069 ON, PLC executes I/O bus check. If an error is found, error code 6103 or 6104 is stored to D8061, and M8061 turns ON.
When error code 6104 is stored, M8009 turns ON, and the PLC stores the I/O numbers following the extension power supply module or the powered extension unit with DC 24 V output failure to D8009.
3) Turn on M8484 to stop the PLC when an extension bus error is detected (M8061 PLC hardware error occurs). When M8484 is OFF, the status of the PLC does not change.
4) If the unit or block corresponding to a programmed I/O number is not actually loaded, M8060 is set to ON and the first device number of the erroneous block is written to D8060.

Example: When X020 is unconnected

*1. 10 to 337 in FX3U/FX3uc PLCs, and 10 to 177 in $F_{3} 3 / F X_{3 G C}$ PLCs
5) When a device number is specified directly or indirectly with an index by the LD, AND, OR or OUT instruction, and if the device numbers specified in those instructions are not actually loaded, M8316 will turn ON and the error step number in the instruction will be written to D8317 (high-order bits) and D8316 (low-order bits).

### 38.3.2 Operations of special devices for error detection

Special auxiliary relays for error detection and special data registers for error detection operate in the relationship shown below.
The state of error occurrence can be checked by monitoring the contents of auxiliary relays and data registers or by using the PLC diagnosis function programming tool.


After clearing errors, forcibly clear M8068 using the device monitor function in a programming tool.

M8316	Unconnected I/O designation error	D8317	D8316	Error step number
M8318	BFM initialization failure	D8318		Error unit number
		D8319		Error BFM number

$$
\begin{array}{ll}
\text { D8487 } \longrightarrow \text { M8487 } & \text { USB communication error } \\
\text { D8449 } \longrightarrow \text { M8449 } & \text { Special block error } \\
\text { D8489 } \longrightarrow \text { M8489 } & \text { Special parameter error }
\end{array}
$$

### 38.4 Error Code List and Action

When a program error occurs in the PLC, the error code is stored in the special data registers D8060 to D8067, D8438, D8449, D8487 and D8489, and the error bit turns ON in the special data register D8166 as follows. The following actions should be taken.

$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$	PLC operation at error occurrence	Contents of error	Action
I/O configuration error [M8060(D8060)]			
Example: 1020	Continues operation	The head number of unconnected I/O device   Example: When X020 is unconnected   - 1st to 3rd digits: Device number   FX3G/FX3GC:10 to 177   FX3U/FX3UC:10 to 337   - 4th digit: I/O type $(1=\text { input }(\mathrm{X}), 0=\text { output }(\mathrm{Y}))$   Example: When 1020 is stored in D8060 Inputs X020 and later are unconnected.	Unconnected I/O relay numbers are programmed. The PLC continues its operation. Modify the program, check wiring connection, or add the appropriate unit/ block.
Serial communication error 2 [M8438(D8438)]			
0000	-	No error	
3801	Continues operation	Parity, overrun or framing error	- Ethernet communication, inverter communication, computer link and programming:   Ensure the parameters are correctly set according to their applications.   - $\mathrm{N}: \mathrm{N}$ network, parallel link, MODBUS communication, etc.:   Check programs according to applications.   - Remote maintenance:   Ensure modem power is ON and check the settings of the AT commands.   - Wiring:   Check the communication cables for correct wiring.
3802		Communication character error	
3803		Communication data sum check error	
3804		Communication data format error	
3805		Command error	
3806		Communication time-out detected	
3807		Modem initialization error	
3808		N:N network parameter error	
3809		N:N Network setting error	
3812		Parallel link character error	
3813		Parallel link sum error	
3814		Parallel link format error	
3820		Inverter communication error	
3821		MODBUS communication error	
3830		Memory access error	When the memory cassette is used, check whether it is mounted correctly.   If the problem persists or if the memory cassette is not used, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.
3840		Special adapter connection error	Check connection of the special adapter.
PLC hardware error [M8061(D8061)]			
0000	-	No error	
6101		Memory access error	When the memory cassette is used, check whether it is mounted correctly.   If the problem persists or if the memory cassette is not used, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.
6102	Stops operation	Operation circuit error	Isolate the PLC and supply power to it using a different power supply.   If the ERROR(ERR) LED turns OFF, noise may be affecting the PLC. Take the following measures.   - Check the ground wiring, and reexamine the wiring route and installation location.   - Fit a noise filter onto the power supply line. If the ERROR(ERR) LED does not turn OFF even after the above actions are taken, consult your local Mitsubishi Electric representative.


$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$	PLC operation at error occurrence	Contents of error	Action
PLC hardware error [M8061(D8061)]			
6103	Stops operation	I/O bus error (M8069 = ON)	Verify that extension cables are correctly connected.
6104		Powered extension unit 24 V failure (M8069 = ON)	
6105		Watchdog timer error	Confirm user program.   The scan time exceeds the value stored in D8000.
6106		I/O table creation error (CPU error)	- When turning the power ON to the main unit, a 24 V power failure occurs in a powered extension unit. (The error occurs if the 24 V power is not supplied for 10 seconds or more after main power turns ON.)   - When turning main power ON, I/O assignment to CCLink/LT (built into the FX3UC-32MT-LT(-2) PLC) is disabled.
6107		System configuration error	Check the number of connected special function units/ blocks. Some special function units/blocks have a connection number limit.
6108		Extension bus error	Verify that extension cables are correctly connected.
6112		Changed settings for the built-in CC-Link/LT special function block cannot be written to the attached flash memory cassette.	Verify that the memory cassette is installed correctly.
6113		Changed settings for the built-in CC-Link/LT special function block cannot be written to the attached writeprotected flash memory cassette.	Set the protect switch to OFF.
6114		CC-Link/LT settings cannot be written to the built-in CCLink/LT special function block.	Set the configuration again. If the problem persists, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.
6115		A built-in CC-Link/LT special function block EEPROM writing time-out error occurred, or the built-in CC-Link/LT special function block configuration could not be completed normally in self CONFIG mode.	
PLC/PP communication error, Serial communication error 0 [M8062(D8062)]			
0000	-	No error	
6201	Continues operation	Parity, overrun or framing error	Confirm the cable connection between the programming panel (PP)/programming device and the PLC. This error may occur when a cable is disconnected and reconnected during PLC monitoring.
6202		Communication character error	
6203		Communication data sum check error	
6204		Data format error	
6205		Command error	
6230		Memory access error	When the memory cassette is used, check whether it is mounted correctly.   If the problem persists or if the memory cassette is not used, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.


Error   code	PLC operation at   error occurrence	Contents of error		Action	


$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$	PLC operation at error occurrence	Contents of error	Action
Syntax error [M8065(D8065)]			
0000	-	No error	
6501	Stops operation	Incorrect combination of instruction, device symbol and device number	During programming, each instruction is checked. If a syntax error is detected, modify the instruction correctly.
6502		No OUT T or OUT C before setting value	
6503		- No setting value after OUT T or OUT C   - Insufficient number of operands for an applied instruction	
6504		- Same label number is used more than once.   - Same interrupt input or high-speed counter input is used more than once.	
6505		Device number is out of allowable range.	
6506		Invalid instruction	
6507		Invalid label number [P]	
6508		Invalid interrupt input [I]	
6509		Other error	
6510		MC nesting number error	
Circuit error [M8066(D8066)]			
0000	-	No error	
6610		LD, LDI is continuously used 9 times or more.	
6611		More ANB/ORB instructions than LD/LDI instructions	
6612		Less ANB/ORB instructions than LD/LDI instructions	
6613		MPS is continuously used 12 times or more.	
6614		No MPS instruction	
6615		No MPP instruction	
6616		No coil between MPS, MRD and MPP, or incorrect combination	
6617		Instruction below is not connected to bus line: STL, RET, MCR, P, I, DI, EI, FOR, NEXT, SRET, IRET,	


Error code	PLC operation at error occurrence	Contents of error	Action
Operation error [M8067(D8067)]			
0000	-	No error	
6701		- No jump destination (pointer) for CJ or CALL instruction   - Label is undefined or out of P0 to P4095 due to indexing   - Label P63 is executed in CALL instruction; cannot be used in CALL instruction as P63 is for jumping to END instruction.	This error occurs in the execution of operation. Review the program and check the contents of the operands used in applied instructions.   Even if the syntax or circuit design is correct, an operation error may still occur.   For example:   "T500Z" itself is not an error. But if $Z$ had a value of 100, the timer T600 would be attempted to be accessed. This would cause an operation error since there is no T600 device available.
6702		CALL instruction nesting level is 6 or more	
6703		Interrupt nesting level is 3 or more	
6704		FOR-NEXT instruction nesting level is 6 or more.	
6705		Operand of applied instruction is inapplicable device.	
6706		Device number range or data value for operand of applied instruction exceeds limit.	
6707		File register is accessed without parameter setting of file register.	
6708		FROM/TO instruction error	This error occurs in the execution of operation.   - Review the program and check the contents of the operands used in applied instructions.   - Verify that the specified buffer memories exist in the counterpart equipment.   - Verify that extension cables are correctly connected.
6709	Continues operation	Other (e.g. improper branching)	This error occurs in the execution of operation. Review the program and check the contents of the operands used in applied instructions.   Even if the syntax or circuit design is correct, an operation error may still occur.   For example:   "T500Z" itself is not an error. But if $Z$ had a value of 100, the timer T600 would be attempted to be accessed. This would cause an operation error since there is no T600 device available.
6710		Mismatch among parameters	This error occurs when the same device is used within the source and destination in a shift instruction, etc.
6730		Incorrect sampling time (TS) ( $\mathrm{TS} \leq 0$ )	<PID instruction is stopped.>   This error occurs in the parameter setting value or operation data executing PID instruction.   Check the contents of the parameters.
6732		Incompatible input filter constant ( $\alpha$ ) ( $\alpha<0$ or $100 \leq \alpha$ )	
6733		Incompatible proportional gain (KP) ( KP < 0)	
6734		Incompatible integral time ( TI ) ( $\mathrm{TI}<0$ )	
6735		Incompatible derivative gain (KD) (KD < 0 or $201 \leq K D$ )	
6736		Incompatible derivative time (TD) (TD < 0)	
6740		Sampling time (TS) $\leq$ Scan time	<Auto tuning is continued.> The operation is continued in the condition "sampling time (TS) = cyclic time (scan time)".
6742		Variation of measured value exceeds limit. ( $\triangle \mathrm{PV}<-32768$ or $+32767<\triangle \mathrm{PV}$ )	<PID operation is continued.>   The operation is continued with each parameter set to the maximum and minimum value.
6743		Deviation exceeds limit. $(E V<-32768 \text { or }+32767<E V)$	
6744		Integral result exceeds limit. (Outside range from -32768 to +32767 )	
6745		Derivative value exceeds limit due to derivative gain (KD).	
6746		Derivative result exceeds limit. (Outside range from -32768 to +32767 )	
6747		PID operation result exceeds limit. (Outside range from -32768 to +32767 )	


$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$	PLC operation at error occurrence	Contents of error	Action
Operation error [M8067(D8067)]			
6748	Continues operation	PID output upper limit set value < PID output lower limit set value.	<Transpose of output upper limit value and output lower limit value. $\rightarrow$ PID operation is continued.> Verify that the target setting contents are correct.
6749		Abnormal PID input variation alarm set value or output variation alarm set value (Set value $<0$ )	<Alarm output is not given. $\rightarrow$ PID operation is continued.>   Verify that the target setting contents are correct.
6750		<Step response method> Improper auto tuning result	<Auto tuning is finished. $\rightarrow$ PID operation is started.>   - The deviation at start of auto tuning is 150 or less.   - The deviation at end of auto tuning is $1 / 3$ or more of the deviation at start of auto tuning.   Check the measured value and target value, and then execute auto tuning again.
6751		<Step response method> Auto tuning operation direction mismatch	<Auto tuning is forcibly finished. $\rightarrow$ PID operation is not started.>   The operation direction estimated from the measured value at the start of auto tuning was different from the actual operation direction of the output during auto tuning.   Correct the relationship among the target value, output value for auto tuning, and the measured value, and then execute auto tuning again.
6752		<Step response method> Improper auto tuning operation	<Auto tuning is finished. $\rightarrow$ PID operation is not started.> Because the set value was fluctuated during auto tuning, auto tuning was not executed correctly.   Set the sampling time to a value larger than the output change cycle, or set a larger value for the input filter constant.   After changing the setting, execute auto tuning again.
6753		<Limit cycle method> Abnormal output set value for auto tuning [ULV (upper limit) $\leq$ LLV (lower limit)]	<Auto tuning is forcibly finished. $\rightarrow$ PID operation is not started >
6754		LLimit cycle method>   Abnormal PV threshold (hysteresis) set value for auto   tuning (SHPV < 0)	
6755		<Limit cycle method> Abnormal auto tuning transfer status (Data of device controlling transfer status is abnormally overwritten.)	<Auto tuning is forcibly finished. $\rightarrow$ PID operation is not started.>   Ensure that devices occupied by PID instruction are not overwritten in the program.
6756		<Limit cycle method> Abnormal result due to excessive auto tuning measurement time ( $\tau 0 \mathrm{n}>\tau, \tau \circ \mathrm{n}<0, \tau<0$ )	<Auto tuning is forcibly finished. $\rightarrow$ PID operation is not started.>   The auto tuning time is longer than necessary. Increase the difference (ULV - LLV) between the upper limit and lower limit of the output value for auto tuning, set a smaller value to the input filter constant ( $\alpha$ ), or set a smaller value to the PV threshold (SHPV) for auto tuning, and then check the result for improvement.
6757		<Limit cycle method> Auto tuning result exceeds proportional gain. (KP= outside range from 0 to 32767)	<Auto tuning is finished (KP = 32767). $\rightarrow$ PID operation is started.>   The variation of the measured value (PV) is small compared with the output value. Multiply the measured value (PV) by " 10 " so that the variation of the measured value will increase during auto tuning.
6758		<Limit cycle method> Auto tuning result exceeds integral time. ( $\mathrm{TI}=$ outside range from 0 to 32767)	<Auto tuning is finished (KP = 32767). $\rightarrow$ PID operation is started.>   The auto tuning time is longer than necessary. Increase the difference (ULV - LLV) between the upper limit and lower limit of the output value for auto tuning, set a smaller value to the input filter constant ( $\alpha$ ), or set a smaller value to the PV threshold (SHPV) for auto tuning, and then check the result for improvement.
6759		<Limit cycle method> Auto tuning result exceeds derivative time. ( $\mathrm{TD}=$ outside range from 0 to 32767)	
6760		ABS data read from servo sum check error	Check servo wiring and parameter setting. Also check the ABS instruction.


Error code	PLC operation at error occurrence	Contents of error	Action
Operation error [M8067(D8067)]			
6762	Continues operation	Port specified by inverter communication instruction is already used in another communication.	Check to make sure the port is not specified by another instruction.
6763		1) Input ( $X$ ) specified by a DSZR, DVIT or ZRN instruction is already used in another instruction.   2) The interrupt signal device for a DVIT instruction is outside the allowable setting range.	1) Check to make sure the input ( $X$ ), as specified by a DSZR, DVIT or ZRN instruction, is not being used for the following purposes:   - Input interrupt (including the delay function)   - High-speed counter C235 to C255   - Pulse catch M8170 to M8177   - SPD instruction   2) Check the contents of D8336 for the correct interrupt signal specification for a DVIT instruction.
6764		Pulse output number is already used in a positioning instruction or pulse output instruction (PLSY, PWM, etc.).	Check to make sure the pulse output destination is not being driven by another positioning instruction.
6765		Number of applied instruction exceeds limit.	Verify that the number of times that applied instructions are used in the program does not exceed the specified limit.
6770		Memory access error	When the memory cassette is used, check whether it is mounted correctly.   If the problem persists or if the memory cassette is not used, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.
6771		Memory cassette is not connected.	Check for the correct attachment of the memory cassette.
6772		Memory cassette is protected against writing.	The write-protect switch of the memory cassette was set to ON when data was transferred to the flash memory. Set the protect switch to OFF.
6773		Access error to memory cassette during writing in RUN mode	While data was written in the RUN mode, data was transferred to (read from or written to) the memory cassette.
USB communication error [M8487(D8487)]			
8702	Continues operation	Communication character error	Confirm the cable connection between the programming device and the PLC. This error may occur when a cable is disconnected and reconnected during PLC monitoring.
8703		Communication data sum check error	
8704		Data format error	
8705		Command error	
8730		Memory access error	When the memory cassette is used, check whether it is mounted correctly.   If the problem persists or if the memory cassette is not used, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.
Special block error [M8449(D8449)]			
$\square 020^{* 1}$	Continues operation	General data sum error	Verify that extension cables are correctly connected.
$\square 021{ }^{* 1}$		General data message error	
$\square 022^{* 1}$		System access error	
$\square 025^{* 1}$		Access sum error in other station via CC-Link	
$\square 026^{* 1}$		Message error in other station via CC-Link	
$\square 030^{* 1}$		Memory access error	When the memory cassette is used, check whether it is mounted correctly.   If the problem persists or if the memory cassette is not used, something may be malfunctioning inside the PLC. Consult your local Mitsubishi Electric representative.
$\square 080{ }^{* 1}$		FROM/TO error	This error occurs in the execution of operation.   - Review the program and check the contents of the operands used in applied instructions.   - Verify that specified buffer memories exist in the counterpart equipment.   - Verify that extension cables are correctly connected.
$\square 090{ }^{* 1}$		Peripheral equipment access error	- Check the cable connection between the programming panel (PP) / programming device and the PLC.   - Verify that extension cables are correctly connected.

*1. The unit number 0 to 7 of the special function unit/block error is put in $\square$.

$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$	PLC operation at error occurrence	Contents of error	Action
Special parameter error [M8489(D8489)]			
$\square \square 01{ }^{* 1}$	Continues operation	Special parameter setting time-out error	Turn OFF the power, and check the power supply and connection of special adapters/special blocks.
$\square \square 02 * 1$		Special parameter setting error	Special parameters are set improperly.   - Confirm troubleshooting for special adapters/special blocks, and set special parameters correctly.   - Set special parameters correctly, turn OFF the power, and then turn ON the power.
$\square \square 03 * 1$		Special parameter transfer target unconnected error	Special parameters are set, but special adapters/special blocks are not connected.   Check whether special adapters/special blocks are connected.
$\square \square 04 * 1$		Special parameter unsupported function	Check that special parameters with unsupported settings are not set for connected special adapters/special blocks.


Value of $\square \square$ (decimal)	Special adapter/special block where an error has occurred
00	Unit number 0 (Special block)
10	Unit number 1 (Special block)
20	Unit number 2 (Special block)
30	Unit number 3 (Special block)
40	Unit number 4 (Special block)
50	Unit number 5 (Special block)
60	Unit number 6 (Special block)
70	Unit number 7 (Special block)
81	Communication channel 1 (Special adapter)
82	Communication channel 2 (Special adapter)


$\begin{gathered} \text { Error } \\ \text { bit } \end{gathered}$	PLC operation at error occurrence	Contents of error	Action
Special block error condition [D8166]			
b0	Continues operation	Unit 0 access error	This error occurs when an operation is executed or when the END instruction is executed.   - Review the program and check the contents of the operands used in applied instructions.   - Verify that the specified buffer memories exist in the counterpart equipment.   - Verify that extension cables are correctly connected.
b1		Unit 1 access error	
b2		Unit 2 access error	
b3		Unit 3 access error	
b4		Unit 4 access error	
b5		Unit 5 access error	
b6		Unit 6 access error	
b7		Unit 7 access error	
$\begin{aligned} & \hline \text { b8 to } \\ & \text { b15 } \end{aligned}$	-	Not available	

## Appendix A: Programming Tool Applicability and Version Upgrade History

## Appendix A-1 Programming Tool Applicability

## Appendix A-1-1 Programming tool applicability

## 1. Applicable versions of programming tool

1) GX Works 2

- GX Works2 English version (SWDDNC-GXW2-E) is applicable to FX3S/FX3G/FX3GC/FX3U/FX3uc PLCs from the following versions.

Model name	PLC version	Applicable GX Works2 version	Remarks
FX3S PLC	Ver. 1.00	Ver. 1.492N or later	-
FX3G PLC	Before Ver. 1.40	Ver. 1.08J or later	-
	Before Ver. 2.00	Ver. 1.62Q or later	
	Ver. 2.00	Ver. 1.87R or later	
FX3GC PLC	Before Ver. 2.00	Ver. 1.77F or later	-
	Ver. 2.00	Ver. 1.87R or later	
FX3U PLC	Before Ver. 2.70	Ver. 1.08J or later	-
	Before Ver. 3.00	Ver. 1.48A or later	
	Before Ver. 3.10	Ver. 1.62Q or later	
	Ver. 3.10	Ver. 1.73B or later	
FX3UC PLC	Before Ver. 2.70	Ver. 1.08J or later	-
	Before Ver. 3.00	Ver. 1.48A or later	
	Before Ver. 3.10	Ver. 1.62Q or later	
	Ver. 3.10	Ver. 1.73B or later	

- GX Works2 Japanese version (SWDDNC-GXW2-J) is applicable to FX3s/FX3G/FX3GC/FX3U/FX3uc PLCs from the following versions.

Model name	PLC version	Applicable GX Works2 version	Remarks
FX3S PLC	Ver. 1.00	Ver. 1.492N or later	-
FX3G PLC	Before Ver. 1.40	Ver. 1.07H or later	-
	Before Ver. 2.00	Ver. 1.56J or later	
	Ver. 2.00	Ver. 1.86Q or later	
FX3GC PLC	Before Ver. 2.00	Ver. 1.77F or later	-
	Ver. 2.00	Ver. 1.86Q or later	
FX3U PLC	Before Ver. 2.70	Ver. 1.07H or later	-
	Before Ver. 3.00	Ver. 1.45X or later	
	Before Ver. 3.10	Ver. 1.56J or later	
	Ver. 3.10	Ver. 1.73 B or later	
FX3UC PLC	Before Ver. 2.70	Ver. 1.07H or later	-
	Before Ver. 3.00	Ver. 1.45X or later	
	Before Ver. 3.10	Ver. 1.56J or later	
	Ver. 3.10	Ver. 1.73B or later	

2) GX Developer

- GX Developer English version (SWDD5C-GPPW-E) is applicable to $F_{3} X_{3} / F X_{3} U / F X_{3} U C$ PLCs from the following versions.

Model name	PLC version	Applicable GX Developer version	Remarks
FX3G PLC	Before Ver. 1.10	Ver. 8.72A or later	-
	Ver. 1.10	Ver. 8.78G or later	
FX3U PLC	Before Ver. 2.30	Ver. 8.24A or later	
	Before Ver. 2.41	Ver. 8.29 F or later	
	Before Ver. 2.61	Ver. 8.29F or later	Ver. 8.89T and later versions support the baud rate " 38400 bps " in the communication setting for RS and RS2 instructions, inverter communication and computer link.
	Ver. 2.61	Ver. 8.82L or later	
FX3Uc PLC	Before Ver. 2.20	Ver. 8.18 U or later	-
	Before Ver. 2.30	Ver. 8.24A or later	
	Before Ver. 2.41	Ver. 8.29 F or later	
	Before Ver. 2.53	Ver. 8.29 F or later	Ver. 8.89T and later versions support the baud rate "38400 bps" in the communication setting for RS and RS2 instructions, inverter communication and computer link.
	Before Ver. 2.61	Ver. 8.68 W or later	
	Ver. 2.61	Ver. 8.82L or later	

- GX Developer Japanese version (SWDD5C-GPPW-J) is applicable to FX3G/FX3U/FX3UC PLCs from the following versions.

Model name	PLC version	Applicable GX Developer version	Remarks
FX3G PLC	Before Ver. 1.10	Ver. 8.72A or later	-
	Ver. 1.10	Ver. 8.76E or later	
FX3U PLC	Before Ver. 2.30	Ver. 8.23 Z or later	-
	Before Ver. 2.41	Ver. 8.29 F or later	
	Before Ver. 2.61	Ver. 8.29 F or later	Ver. 8.88 S and later versions support the baud rate " 38400 bps " in the communication setting for RS and RS2 instructions, inverter communication and computer link.
	Ver. 2.61	Ver. 8.82L or later	
FX3UC PLC	Before Ver. 1.30	Ver. 8.13P or later	-
	Before Ver. 2.20	Ver. 8.18 U or later	
	Before Ver. 2.30	Ver. 8.23 Z or later	
	Before Ver. 2.41	Ver. 8.29F or later	
	Before Ver. 2.53	Ver. 8.29 F or later	Ver. 8.88 S and later versions support the baud rate "38400 bps" in the communication setting for RS and RS2 instructions, inverter communication and computer link.
	Before Ver. 2.61	Ver. 8.68 W or later	
	Ver. 2.61	Ver. 8.82L or later	

3) $\mathrm{FX}-30 \mathrm{P}$

FX-30P is applicable to $\mathrm{FX}_{3} / \mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 340$ PLCs starting with the following version:

Model name	PLC version	Applicable FX-30P version	Remarks
FX3S PLC	Ver. 1.00	Ver. 1.50 or later	-
FX3G PLC	Ver. 1.00	Ver. 1.00 or later	- FX-30P (from first version) supports FX3G PLC (Ver. 1.10 or later).   - FX-30P (Ver. 1.50 or later) supports IVMC instruction.
FX3GC PLC	Ver. 1.40	Ver. 1.30 or later	FX-30P (Ver. 1.50 or later) supports IVMC instruction.
FX3U PLC	Before Ver. 2.41	Ver. 1.00 or later	-
	Ver. 2.70	Ver. 1.20 or later	
FX3UC PLC	Before Ver. 2.41	Ver. 1.00 or later	-
	Ver. 2.70	Ver. 1.20 or later	

2. In the case of programming tool (version)

Even using a programming tool not applicable to the $\mathrm{FX}_{3} / / \mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs, programming is enabled when an alternative model is set.

Using an alternative model

Model to be programmed	Model to be set			Priority High $\rightarrow$ Low			
FX3S PLC	FX3S	$\rightarrow$	FX3G	$\rightarrow$	FX1N*2	$\rightarrow$	FX2N*2
FX3G PLC	FX3G	$\rightarrow$	FX1N* ${ }^{*}$	$\rightarrow$	FX2N*2	$\rightarrow$	FX2
FX3GC PLC	FX3GC	$\rightarrow$	FX3G	$\rightarrow$	FX1N*2	$\rightarrow$	FX2N*2
FX3U PLC	FX3U(C) ${ }^{* 1}$	$\rightarrow$	FX3UC	$\rightarrow$	FX2N	$\rightarrow$	FX2
FX3UC PLC	FX3U(C)**	$\rightarrow$	FX3UC	$\rightarrow$	FX2N	$\rightarrow$	FX2

*1. For Ver. 8.18U to 8.24A of GX Developer, the PLC type is FX3UC.
*2. "FX2N" is selected when the $\mathrm{FX}-10 \mathrm{P}(-\mathrm{E})$ is used.

## Contents of restrictions

- Programming is enabled only in the function ranges such as instruction/device range and program size available in both the PLC model to be programmed and the alternative PLC model.
- In the FX3s PLC, memory capacity setting of the PLC parameter must be set to 4,000 steps or less.
- Use a programming tool which can select $F X_{3 S}, F X_{3 G}, F X_{3 G c}, F X_{3} \cup$ or $F X_{3} \cup c$ when changing the parameters such as memory capacity and file register capacity.
- Use a programming tool which can select FX3G when executing communication using the standard (USB) built-in port of the FX3s/FX3G/FX3Gc PLCs.


## 3. Program transfer speed and programming tools

## In FX ${ }_{3 S} / F^{\prime} X_{3 G} / F X_{3 G}$ PLCs

1) Built-in USB communication

The FX3S/FX3G/FX3GC PLCs has a built-in USB communication port, and performs program writing, program reading and monitoring at high speed ( 12 Mbps ) with a personal computer that supports USB.
a) Supported programming tools ${ }^{* 3}$

GX Works2 (Ver. 1.08J or later), GX Developer (Ver. 8.72A or later)
b) In programming tools not supporting USB

Communication is performed via RS-422 or RS-232C.
2) RS-422/RS-232C communication

The FX ${ }_{3 S} / \mathrm{FX}_{3} / \mathrm{FF}_{3}$ GC PLCs can write and read programs and perform monitoring at 115.2 kbps through RS-422/ RS-232C communication.
a) 115.2 kbps supported programming tools ${ }^{* 3}$

GX Works2 (Ver. 1.08J or later), GX Developer (Ver. 8.72A or later), FX-30P (Ver. 1.00 or later)
b) 115.2 kbps supported interfaces

- Standard built-in port(RS-422) or expansion board FX3G-422-BD for RS-422

When the RS-232C/RS-422 converter FX-232AWC-H is connected.

- Expansion board FX3G-232-BD for RS-232C
- Special adapter FX3u-232ADP(-MB) for RS-232C
c) In programming tools not supporting 115.2 kbps

Communication is executed at 9,600 or $19,200 \mathrm{bps}$.
*3. Select "FX3G" for a programming tool not supporting $F X_{3 S} / F X_{3} G C$ PLCs.

## In FX ${ }_{3}$ /FX ${ }_{3}$ uc PLCs

1) RS-422/RS-232C/USB communication

The FX3U/FX3UC PLCs can write and read programs and perform monitoring at 115.2 kbps through RS-422/RS232C/USB communication.
a) 115.2 kbps supported programming tools

GX Works2 (Ver. 1.08J or later), GX Developer (Ver. 8.18U or later), FX-30P (Ver. 1.00 or later)
b) 115.2 kbps supported interfaces

- Standard built-in port or expansion board FX3U-422-BD for RS-422

When the RS-232C/RS-422 converter FX-232AWC-H or USB/RS-422 converter FX-USB-AW is connected.

- Expansion board FX3U-232-BD for RS-232C
- Special adapter FX3U-232ADP(-MB) for RS-232C
- Expansion board FX3U-USB-BD for USB

In programming tools not supporting 115.2 kbps
Communication is executed at 9,600 or $19,200 \mathrm{bps}$.

## Appendix A-1-2 Cautions on writing during RUN

"In the FX3S, FX3G, FX3GC, FX3U and FX3uc PLCs, writing is enabled during RUN (program changes during RUN mode) using the following programming tools".
$\rightarrow$ For the operating procedure of and cautions on writing during RUN, refer to the respective programming tool manual.

## Programming tools which support writing during RUN

Programming tool	PLC	Version	Remarks
GX Works2 ${ }^{* 1}$ (SWDDNC-GXW2-E)	FX3S	Ver. 1.492N or later	Writing in the instruction and device ranges during RUN is supported in FX3S PLC earlier than Ver. 1.00.
	FX3G/FX3GC	Ver. 1.08J or later	Writing in the instruction and device ranges during RUN is supported in FX3G PLC earlier than Ver. 1.40.
		Ver. 1.77F or later	Writing in the instruction and device ranges during RUN is supported in FX3G and FX3GC PLCs earlier than Ver. 1.40.
	FX3U/FX3UC	Ver. 1.08J or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs earlier than Ver. 2.70.
		Ver. 1.48A or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs Ver. 2.70.
GX Developer ${ }^{*}{ }^{2}$ (SWDD5C-GPPW-E)	FX3G	Ver. 2.00A or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 1.00.
		Ver. 5.00A or later	Writing in the instruction and device ranges during RUN is supported in FX1N PLC Ver. 1.00.
		Ver. 8.72A or later	Writing in the instruction and device ranges during RUN is supported in FX3G PLC earlier than Ver. 1.10.
		Ver. 8.78G or later	Writing in the instruction and device ranges during RUN is supported in FX3G PLC Ver. 1.10.
	FX3U/FX3UC	Ver. 7.00A or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 3.00.
		Ver. 8.18U or later	Writing in the instruction and device ranges during RUN is supported in FX3UC PLC earlier than Ver. 2.20.
		Ver. 8.24A or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs earlier than Ver. 2.30.
		Ver. 8.29F or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs earlier than Ver. 2.61.
		Ver. 8.82L or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs Ver. 2.61.
FX-PCS/WIN-E*2	FX3G	Ver. 3.00 or later	Writing in the instruction and device ranges during RUN is supported in FX1N PLC Ver. 1.00.
	FX3U/FX3UC	Ver. 1.00 or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 1.00.
		Ver. 3.10 or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 3.00.

*1. Write during RUN is not possible with a SFC program.
*2. Write during RUN is not possible with a list program or a SFC program.

Programming tool	PLC	Version	Remarks
GX Works2 ${ }^{* 1}$   (SWDDNC-GXW2-J)	FX3S	Ver. 1.492N or later	Writing in the instruction and device ranges during RUN is supported in FX3S PLC earlier than Ver. 1.00.
	FX3G/FX3GC	Ver. 1.07 H or later	Writing in the instruction and device ranges during RUN is supported in FX3G PLC earlier than Ver. 1.40.
		Ver. 1.77F or later	Writing in the instruction and device ranges during RUN is supported in FX3G and FX3GC PLCs earlier than Ver. 1.40.
	FX3U/FX3UC	Ver. 1.07H or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs earlier than Ver. 2.70.
		Ver. 1.45X or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs Ver. 2.70.
GX Developer ${ }^{* 2}$ (SWDD5C-GPPW-J)	FX3G	Ver. 2.00A or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 1.00.
		Ver. 5.00A or later	Writing in the instruction and device ranges during RUN is supported in FX1N PLC Ver. 1.00.
		Ver. 8.72A or later	Writing in the instruction and device ranges during RUN is supported in FX3G PLC earlier than Ver. 1.10.
		Ver. 8.76E or later	Writing in the instruction and device ranges during RUN is supported in FX3G PLC Ver. 1.10.
	FX3U/FX3UC	Ver. 7.00A or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 3.00.
		Ver. 8.13P or later	Writing in the instruction and device ranges during RUN is supported in FX3UC PLC earlier than Ver. 1.30.
		Ver. 8.18U or later	Writing in the instruction and device ranges during RUN is supported in FX3UC PLC earlier than Ver. 2.20.
		Ver. 8.23 Z or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs earlier than Ver. 2.30.
		Ver. 8.29F or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs earlier than Ver. 2.61.
		Ver. 8.82L or later	Writing in the instruction and device ranges during RUN is supported in FX3U and FX3UC PLCs Ver. 2.61.
FX-PCS/WIN*2	FX3G	Ver. 4.00 or later	Writing in the instruction and device ranges during RUN is supported in FX1N PLC Ver. 1.00.
	FX3U/FX3UC	Ver. 1.00 or later	Writing in the instruction and device ranges during RUN is supported in FX2 PLC Ver. 3.30.
		Ver. 2.00 or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 1.00.
		Ver. 4.20 or later	Writing in the instruction and device ranges during RUN is supported in FX2N PLC Ver. 3.00.

*1. Write during RUN is not possible with a SFC program.
*2. Write during RUN is not possible with a list program or a SFC program.

Cautions on writing during RUN

Item		Caution
Program memory which can be written in RUN mode		Built-in RAM and optional memory cassette (whose write protect switch is set to OFF)
Number of program steps which can be written for circuit change in RUN mode	- GX Works2   Ver. 1.08J or later   - GX Developer Ver. 8.72A or later	- For FX3S/FX3G/FX3GC PLCs   256 steps or less after edit (addition/deletion) (including NOP immediately after circuit blocks except final circuit
	- GX Works2   Ver. 1.08J or later   - GX Developer Ver. 8.24A or later	- For FX3U/FX3UC PLCs Ver. 2.20 or later   256 steps or less after edit (addition/deletion) (including NOP immediately after circuit blocks except final circuit)   - For FX3UC PLC earlier than Ver. 2.20   127 steps or less after edit (addition/deletion) (including NOP immediately after circuit blocks except final circuit)
	- GX Developer Ver. 8.22Y and earlier   - FX-PCS/WIN(-E)	127 steps or less after edit (addition/deletion) (including NOP immediately after circuit blocks except final circuit)
Circuit blocks which cannot be written during RUN		Circuit blocks ${ }^{* 1}$ in which labels $P$ and $I$ are added, deleted, or changed in edited circuits Circuit blocks in which 1-ms timers (T246 to T249 and T256 to T511) are added in edited circuits Circuit blocks in which the following instructions are included in edited circuits   - Instruction to output high-speed counters C235 to C255 (OUT instruction)   - SORT2 (FNC149), TBL (FNC152), RBFM (FNC278) and/or WBFM (FNC279) instructions


*2. The PLS instruction is not executed.
When writing to a circuit block during RUN, which includes the following instructions, the following results.

- Pulse instruction during rising edge of operation results (MEP instruction)

After writing to the circuit with MEP instructions during RUN, the MEP instruction result turns ON (conductive) while the operation results leading up to the MEP instruction are ON.

- Pulse instruction during falling edge of operation results (MEF instruction)

After writing to the circuit with MEF instructions during RUN, the MEF instruction result turns OFF (nonconductive), regardless of the operation results up to the MEF instruction
The operation results of the MEF instruction turns ON (conductive) when the operation results leading up to the MEF instruction are turned OFF.

Operation results leading up to   MEP/MEF instruction	MEP instruction	MEF instruction
OFF	OFF (non-conductive)	OFF (non-conductive)
ON	ON (conductive)	OFF (non-conductive)


Item	
	$\cdot$ When GX Works2 Ver．1．08J or later or GX Developer Ver．8．72A or later is used in FX3S／FX3G／FX3GC

If the number of program steps is reduced by deleting contact or coil application instructions，etc．，the program becomes shorter by the number of reduced steps．
－When GX Works2 Ver．1．08J or later or GX Developer Ver． 8.18 U or later is used in FX3U／FX3UC PLCs to write data during RUN，the following will occur．

Other
If the number of program steps is reduced by deleting contact or coil application instructions，etc．，the program becomes shorter by the number of reduced steps
－FX3U／FX3UC PLCs Ver． 3.00 or later and GX Works2 Ver．1．62Q or later．
Writing during RUN is enabled only when the protection status（valid or invalid）by the setting＂Read－protect the execution program＂for the block password is same as the protection status of the PLC designated as the target of writing during RUN．
－Errors cannot be detected in write during RUN even in a circuit which causes errors． Errors are detected after the PLC is stopped once，and then run again．

## Appendix A-1-3 Precautions on Use of (Built-in USB) Programming Port

Make sure to set the contents described in this section when using the (built-in USB) programming port of the FX3G/ FX3GC PLC to execute ladder monitor, device monitor, program read/write, etc by GX Developer. For GX Developer prior to Ver. 8.72A, communication using the (built-in USB) programming port is not available.

1. Installation of USB driver

It is necessary to install the USB driver to execute USB communication using the (built-in USB) programming port. For the USB driver installation method and procedure, refer to the following manual.
$\rightarrow$ GX Developer Operating Manual (Startup)
2. Setting in GX Developer

1) Select [Online] $\rightarrow$ [Transfer setup...] to open Transfer setup dialog box.
2) Double-click [Serial] in [PC side I/F] to open PC side I/F Serial setting dialog box.
3) Select "USB (Built-in port)".


A display screen is the example of Ver. 8.72A.
4) Click [OK] button to finish the setting.

## Appendix A-1-4 Cautions on using transparent function by way of USB in GOT1000 Series

Make sure to provide the following setting when executing ladder monitor, device monitor, and reading/writing
 USB in the GOT1000 Series.
If the following setting is not provided, a communication error occurs.

	GX Developer Ver. 8.21X or former	GX Developer Ver. 8.22Y or later
When using transparent function by way of USB in   GOT1000 Series	Not supported (not available)	Setting shown below is required.
When using transparent function by way of RS-232 in   GOT1000 Series	Set "COM port" and "Transmission   speed" on "PC side I/F Serial setting"   dialog box.	Select "RS-232C" in setting shown   below, and set "COM port" and   "Transmission speed".
When directly connecting GX Developer to PLC    When directly connecting GX Developer to PLC   (standard built-in RS-422 port)		

## Setting in GX Developer

1. Select [Online] $\rightarrow$ [Transfer setup...] to open Transfer setup dialog box.
2. Double-click [Serial] in [PC side I/F] to open PC side I/F Serial setting dialog box.
3. Select "USB (GOT Transparent mode)".


FX3U/FX3UC PLCs



This example shows a window displayed when GX Developer Ver. 8.72A is used.


## Appendix A-1-5 Cautions on using transparent (2-port) function of GOT-F900 Series

Make sure to provide the following setting when executing ladder monitor, device monitor, etc. in an FX3G/FX3GC/ FX3U/FX3UC PLC using GX Developer and the transparent (2-port) function of the GOT-F900 Series.
If the following setting is not provided, write to PLC, read from PLC, verify with PLC, etc. operate normally, but monitoring (ladder monitor, entry data monitor, etc.) cannot be normally executed.

	GX Developer   Ver. 8.12N or earlier		GX Developer   Ver. 8.18U or later
When directly   connecting GX   Developer to PLC   (standard built-in RS-422   port)Set "COM port" and "Transmission speed" on "PC side I/F   Serial setting" dialog box.	Gelect "RS-232C" on "PC side I/F Serial setting"   dialog box, and set "COM port" and   "Transmission speed".		
When using transparent   function in GOT-F900   Series	Setting shown below is not   required.	Setting shown below is   required.	Select "RS-232C" on "PC side I/F Serial setting"   dialog box, and execute settings shown below.

## Setting in GX Developer

1. Select [Online] $\rightarrow$ [Transfer setup...] to open Transfer Setup dialog box.
2. Double-click [PLC module] in [PLC side I/F] to open PLC side I/F Detailed setting of PLC module dialog box.
3. Put a check mark in the check box [via GOT-F900 transparent mode] as shown below.

4. Click $[O K]$ button to finish the setting.

## Appendix A-2 Peripheral product applicability (except programming tools)

## Appendix A-2-1 Peripheral product applicability

FX3S PLC		
Product Name	Applicability	Remarks
GOT1000 Series	Applicable	Standard monitor OS, communication driver and option OS which support the FX3S PLC are required.   For details, refer to the GOT manual.   This series is subject to the following restrictions when connected using unsupported standard monitor OS, communication driver or option OS.   Contents of restrictions   - When connected using standard monitor OS, communication driver and option OS which support the FX3G PLC   - Programming is enabled only in the function range such as instructions, device ranges and program sizes available in both the FX3S PLC and the FX3G PLC.   - When connected using standard monitor OS, communication driver and option OS which do not support the FX3G PLC   - Programming is enabled only in the function range such as instructions, device ranges and program sizes available in both the FX3S PLC and the FX1N PLC.   - The list editor function for MELSEC-FX is not available. When using the list editor function for MELSEC-FX, upgrade the standard monitor OS, communication driver and option OS to the version compatible with the FX3S PLC.   Check the applicability of other items in the GOT manual.
GOT-F900 Series	Not applicable	The following restriction applies when connected.   Contents of restrictions   Programming is enabled only in the function range such as instructions, device ranges and program sizes available in both the FX3S PLC and the FX1N PLC. For applicable models, refer to the GOT manual.   For connection using the 2-port interface function ${ }^{* 1}$, refer to Appendix A-1-4.
FX-10DM(-SET0)	Not applicable	The following restriction applies when connected.   Contents of restrictions   Programming is enabled only in the function range such as instructions, device ranges and program sizes available in both the FX3S PLC and the FX1N PLC. For supported models and device ranges, refer to the FX-10DM USER' MANUAL (Manual No. JY992D86401).

FX3G/FX3GC PLCs

Product Name	Applicability	Remarks
GOT1000 Series	Applicable	Standard monitor OS, communication driver and option OS which support the FX3G/FX3GC   PLCs are required.   For details, refer to the GOT manual.   This series is subject to the following restrictions when connected using unsupported   standard monitor OS, communication driver or option OS.   Contents of restrictions   Programming is enabled only in the function ranges such as instructions, device ranges   and program sizes available in the FX1N and FX1NC PLCs.
The list editor function for MELSEC-FX is not available. When using the list editor   function for MELSEC-FX, upgrade the standard monitor OS, communication driver and   option OS to the version compatible with the FX3G PLC.		
F940WGOT	Not applicable	Check the applicability of other items in the GOT manual.
The following restriction applies when connected.		
F940GOT,	Not applicable	Contents of restrictions   Programming is enabled only in the function ranges such as instructions, device ranges and   program sizes available in the FX1N and FX1NC PLCs.   For applicable models, refer to the GOT manual.
F930GOT (-K)	Not applicable	

FX3u/FX3Uc PLC

Product Name	Applicability	Remarks
GOT1000 Series	Applicable (From first product)	The GOT1000 Series is applicable to the device ranges in the FX3U/FX3UC PLCs. Check the applicability of other items in the GOT manual.
F940WGOT	Not applicable	The following restriction applies when connected.   Contents of restrictions   Programming is enabled only in the function ranges such as instructions, device ranges and program sizes available in the FX2N and FX2NC PLCs.   For applicable models, refer to the GOT manual.   For connection using the 2-port interface function ${ }^{* 1}$, refer to Appendix A-1-4.
F940GOT,   F940 Handy GOT	Not applicable	
F930GOT (-K)	Not applicable	
F920GOT (-K)	Not applicable	
ET-940	Not applicable	
FX-10DM (-SET0)	Not applicable	The following restriction applies when connected.   Contents of restrictions   Programming is enabled only in the function ranges such as instructions, device ranges and program sizes available in the FX2N and FX2NC PLCs.   For supported models and device ranges, refer to the FX-10DM USER'S MANUAL (Manual No. JY992D86401).
FX-10DU	Not applicable	The following restriction applies when connected.   Contents of restrictions   It is limited to the device range and function range supported by the highest class model (FX2N or FX2) applicable in the product version.   For supported models and device ranges, refer to the FX-10DU Operation Manual (Manual No. JY992D34701).

*1. The F940GOT and ET-940 whose version is earlier than Ver. 1.10 do not support the transparent (2-port) function of the GX Developer.

## Appendix A-3 Version Upgrade History

## Appendix A-3-1 Manufacturer's serial number check method

The year and month of production of the PLC main unit can be checked on the nameplate, and "LOT" indicated on the front of the product.

1. Checking the nameplate

The year and month of production of the product can be checked from the manufacturer's serial number $\mathrm{S} / \mathrm{N}$ indicated on the label adhered to the right side of the product.


## Appendix A-3-2 Version check

The PLC version can be verified by monitoring the special data register D8001 or D8101 and checking the last three digits. Or for the FX3U and FX3UC PLCs, the PLC version can be verified in "PLC Status" within the display module.
$\rightarrow$ For the operating procedure of the display module, refer to the Hardware Edition Manual of the PLC to be checked.

D8001/D8101
PLC type and version


## Appendix A-3-3 Version upgrade history [FX3s]

Version	Manufacturer's serial number	Contents of version upgrade
Ver. 1.00	$133^{* * * *}$ (March, 2013)	First product
Ver. 1.10	$\begin{gathered} 13 X^{* * * *} \\ \text { (October, 2013) } \end{gathered}$	- FX3S-30MD/ED-2AD (First product)   - Supports connection of the following expansion board:   - FX3G-4EX-BD, FX3G-2EYT-BD   - Supports the following inverters.   - FREQROL-F800 Series   - FREQROL-A800 Series

$\rightarrow$ For the manufacturer' serial number check method, refer to Appendix A-3-1.

## Appendix A-3-4 Version upgrade history [FX3G]

Version	Manufacturer's serial number	Contents of version upgrade
Ver. 1.00	86**** (June, 2008)	First product
Ver. 1.10	$\begin{gathered} 8 X^{* * * *} \\ \text { (October, 2008) } \end{gathered}$	- Supports following 15 instructions:   FLT (FNC 49), VRRD (FNC 85), VRSC (FNC 86), ECMP (FNC110), EMOV (FNC112), EADD (FNC120), ESUB (FNC121), EMUL (FNC122), EDIV (FNC123), ESQR (FNC127), INT (FNC129), IVCK (FNC270), IVDR (FNC271), IVRD (FNC272), IVWR (FNC273)   - Supports connection of FX3G-8AV-BD, FX3G-2AD-BD, and FX3G-1DA-BD.   - Supports connection of display module (FX3G-5DM).   - Supports the floating point operation function.   - Supports the inverter communication function.   - Supports the pulse width/pulse period measurement function.
Ver. 1.20	$\begin{gathered} 96 * * * * \\ \text { (June, 2009) } \end{gathered}$	- Supports connection of following analog special adapters:   - FX3U-3A-ADP   - Supports the hardware error function of $\mathrm{FX} 3 \mathrm{U}-4 \mathrm{DA}-\mathrm{ADP}$.
Ver. 1.30	$9 Z^{* * * *}$ (December, 2009)	- Supports the following instructions: ADPRW(FNC276)
Ver. 1.40	$111^{* * * *}$ (January, 2011)	- Supports the following instructions: IVMC(FNC275)
Ver. 2.00	$\begin{gathered} 124^{* * * *} \\ \text { (April, 2012) } \end{gathered}$	- Supports the following functions of the FX3U-16CCL-M:   - Network parameter   - Accessing the other station from CC-Link   - Remote device station initialization procedure registration   - CC-Link diagnostics   - Special parameter error (M8489 and D8489) is added.
Ver. 2.10	$134^{* * * *}$ (April, 2013)	- Supports the IP address change function of Ethernet adapter.
Ver. 2.20	$13 X^{* * * *}$ (October, 2013)	- Supports connection of the following expansion board:   - FX3G-4EX-BD, FX3G-2EYT-BD
Ver. 2.22	1472001 or later (July, 2014)	- Supports the following inverters.   - FREQROL-F800 Series   - FREQROL-A800 Series
Ver. 2.30	$165^{* * * *}$ (May, 2016)	- Supports extension bus check function.

## Appendix A-3-5 Version upgrade history [FX3GC]

Version	Manufacturer's serial number	Contents of version upgrade
Ver. 1.40	$121^{* * * *}$ (January, 2012)	First product Corresponds to FX3G PLC Ver. 1.40.
Ver. 2.00	$\begin{gathered} 124^{* * * *} \\ \text { (April, 2012) } \end{gathered}$	- Supports the following functions of the FX3U-16CCL-M:   - Network parameter   - Accessing the other station from CC-Link   - Remote device station initialization procedure registration   - CC-Link diagnostics   - Special parameter error (M8489 and D8489) is added.
Ver. 2.10	$134^{* * * *}$ (April, 2013)	- Supports the IP address change function of Ethernet adapter.
Ver. 2.22	1472001 or later (July, 2014)	- Supports the following inverters.   - FREQROL-F800 Series   - FREQROL-A800 Series
Ver. 2.30	$165^{* * * *}$ (May, 2016)	- Supports extension bus check function.

$\rightarrow$ For the manufacturer' serial number check method, refer to Appendix A-3-1.

## Appendix A-3-6 Version upgrade history [ $\mathrm{FX}_{3} \mathrm{U}$ ]

Version	Manufacturer's serial number	Contents of version upgrade
Ver. 2.20	$55^{* * * *}$ (May, 2005)	First product (supporting the functions described as "Ver. 2.20 or later" in this manual) Corresponds to FX3UC PLC Ver. 2.20.
Ver. 2.30	$\begin{gathered} 5 Y^{* * * *} \\ \text { (November, 2005) } \end{gathered}$	- Adding the following instructions and function up.   - Adding MEP and MEF instructions   - Function up of MUL (FNC 22), DIV (FNC 23), and RS2 (FNC 87) instructions
Ver. 2.40	$74^{* * * *}$ (April, 2007)	- Supports the following instructions: ADPRW (FNC276)
Ver. 2.41	$7 Y^{* * * *}$ (November, 2007)	- The baud rate "38400 bps" is supported in the RS and RS2 instructions, inverter communication and computer link.
Ver. 2.61	$\begin{gathered} 97^{* * * *} \\ \text { (July, 2009) } \end{gathered}$	- Supports following 6 instructions:   FLCRT (FNC300), FLDEL (FNC301), FLWR (FNC302), FLRD (FNC303), FLCMD (FNC304), FLSTRD (FNC305)   - Supports connection of following special adapters:   - FX3U-3A-ADP   - FX3U-CF-ADP   - Supports the hardware error function of FX3U-4DA-ADP.   - Customer keyword / permanent PLC lock is supported.
Ver. 2.70	$\begin{gathered} 107_{* * * *} \\ \text { (July, 2010) } \end{gathered}$	- Supports the following 3 instructions:   VRRD (FNC85), VRSC (FNC86), IVMC (FNC275)   - Supports connection of following analog volume expansion board:   - FX3U-8AV-BD   - Supports the lower over-scale detection function of FX3U-4AD-ADP and FX3U-3A-ADP.
Ver. 3.00	$\begin{gathered} 115^{* * * *} \\ (\text { May, 2011) } \end{gathered}$	- Supports storage of symbolic information.   - Support of the setting "Read-protect the execution program" for block passwords.   - Special block error condition (D8166) is added.   - Supports connection of following memory cassette.   - FX3U-FLROM-1M
Ver. 3.10	$11 \mathrm{Y}^{* * * *}$ (November, 2011)	- Supports the following functions of the FX3U-16CCL-M:   - Network parameter   - Accessing the other station from CC-Link   - Remote device station initialization procedure registration   - CC-Link diagnostics   - Special parameter error (M8489 and D8489) is added.
Ver. 3.11	$\begin{gathered} 125^{* * * *} \\ (\text { May, 2012) } \end{gathered}$	- Supports the following inverters.   - FREQROL-F800 Series   - FREQROL-A800 Series
Ver. 3.20	1664001 or later (June, 2016)	- Supports extension bus check function.

## Appendix A-3-7 Version upgrade history [FX3UC]

Version	Manufacturer's serial number	Contents of version upgrade
Ver. 1.00	$41^{* * * *}$ (January, 2004)	First product
Ver. 1.20	$\begin{gathered} 44^{* * * *} \\ \text { (April, 2004) } \end{gathered}$	Supports connection of the following special analog adapters:   - FX3U-4AD-ADP   - FX3U-4DA-ADP
Ver. 1.30	$\begin{gathered} 48^{* * * *} \\ \text { (August, 2004) } \end{gathered}$	- Supports connection of the following special analog adapters:   - FX3U-4AD-PT-ADP   - FX3U-4AD-TC-ADP   - Supports connection of the following special function block:   - FX3UC-4AD   - Supports the following 3 instructions:   - SCL2 (FNC269), RWER (FNC 294), and INITER (FNC 295)   - Adds function of the following instruction:   - DVIT (FNC151)
Ver. 2.20	$55^{* * * *}$ (May, 2005)	Supports the functions described as "Ver. 2.20 or later" in this manual.   - Supports the following 28 instructions:   ZPUSH (FNC102), ZPOP (FNC103), WSUM (FNC140), WTOB (FNC141),   BTOW (FNC142), UNI (FNC143), DIS (FNC144), SORT2 (FNC149), TBL (FNC152),   COMRD (FNC182), DUTY (FNC186), BK+ (FNC192), BK- (FNC193),   BKCMP $=$ (FNC194), BKCMP> (FNC195), BKCMP< (FNC196),   BKCMP<> (FNC197), BKCMP<= (FNC198), BKCMP>= (FNC199), STR (FNC200),   VAL (FNC201), INSTR (FNC208), FDEL (FNC210), FINS (FNC211),   DABIN (FNC260), BINDA (FNC261), RBFM (FNC278), WBFM (FNC279)   - Adds function of the following 5 instructions:   SPD (FNC 56), DSZR (FNC150), DVIT (FNC151), ZRN (FNC156), PLSV (FNC157),   HCMOV (FNC189)   - Supports connection of FREQROL-F700/A700 inverters supporting the following 5 instructions: IVCK (FNC270), IVDR (FNC271), IVRD (FNC272), IVWR (FNC273), and IVBWR (FNC274)   - Adds second entry code (when GX Developer SW8.23Z (Ver. $8.23 Z$ or later) is used).   - Supports BFM initial value setting function (when GX Developer SW8.23Z (Ver. $8.23 Z$ or later) is used).   - Mitigates restriction in writing during RUN (when GX Developer SW8.23Z (Ver. $8.23 Z$ or later) is used).   - Number of steps which can be changed by one-time write during RUN is changed. 127 steps $\rightarrow 256$ steps   - Handling of circuit blocks which can be changed by one-time write during RUN is changed. Program of continuous circuit blocks having 127 steps or less $\rightarrow$ Program of circuit blocks having 256 steps or less in total
Ver. 2.30	$5 Y^{* * * *}$ (November, 2005)	- Adding the following instructions and function upgrade.   - Adding MEP and MEF instructions   - Function upgrade of MUL (FNC 22), DIV (FNC 23), and RS2 (FNC 87) instructions.
Ver. 2.40	$74^{* * * *}$ (April, 2007)	- Supports the following instructions: ADPRW(FNC276)
Ver. 2.41	$\begin{gathered} 79^{* * * * * 1} \\ \text { (September, 2007) } \end{gathered}$	- FX3UC- $\square \square M T / D(S S)$ (First product)   - The baud rate "38400 bps" is supported in the RS and RS2 instructions, inverter communication and computer link.
Ver. 2.53	$84^{* * * *}$ (April, 2008)	FX3UC-32MT-LT-2 (First product)
Ver. $2.61{ }^{* 2}$	$\begin{gathered} 97^{* * * *} \\ \text { (July, 2009) } \end{gathered}$	- Supports the following 6 instructions:   FLCRT (FNC300), FLDEL (FNC301), FLWR (FNC302), FLRD (FNC303),   FLCMD (FNC304), FLSTRD (FNC305)   - Supports connection of the following special adapters:   - FX3U-3A-ADP   - FX3U-CF-ADP   - Supports the hardware error function of FX3U-4DA-ADP.   - Customer keyword / permanent PLC lock is supported.
Ver. 2.70	$\begin{gathered} 107 * * * * \\ (J u l y, 2010) \end{gathered}$	- FX3UC-16MR/D-T, FX3UC-16MR/DS-T (First product)   - Supports the following 3 instructions:   VRRD(FNC85), VRSC(FNC86), IVMC(FNC275)   - Supports connection of the following analog volume expansion board:   - FX3U-8AV-BD*3   - Supports the lower over-scale detection function of FX3U-4AD-ADP and FX3U-3A-ADP.
Ver. 3.00	$\begin{gathered} 115^{* * * *} \\ (\text { May, 2011) } \end{gathered}$	- Supports storage of symbolic information.   - Support of the setting "Read-protect the execution program" for block passwords.   - Special block error condition (D8166) is added.   - Supports connection of following memory cassette.   - FX3U-FLROM-1M


Version	Manufacturer's serial number	Contents of version upgrade
Ver. 3.10	$\begin{gathered} 11 Y^{* * * *} \\ \text { (November, 2011) } \end{gathered}$	- Supports the following functions of the FX3U-16CCL-M:   - Network parameter   - Accessing the other station from CC-Link   - Remote device station initialization procedure registration   - CC-Link diagnostics   - Special parameter error (M8489 and D8489) is added.
Ver. 3.11	$\begin{gathered} 125^{* * * *} \\ (\text { May, 2012) } \end{gathered}$	- Supports the following inverters.   - FREQROL-F800 Series   - FREQROL-A800 Series
Ver. 3.20	1664001 or later (June, 2016)	- Supports extension bus check function.

*1. The FX3Uc-32MT-LT supports Ver. 2.41 from the manufacturer's serial number "7X****" (October 2007).
*2. Available in Ver. 2.70 or later of $\mathrm{FX}_{3} \cup \mathrm{c}-32 \mathrm{MT}$-LT-2 PLC.
*3. This function is supported only in the FX3UC-32MT-LT(-2).
$\rightarrow$ For the manufacturer' serial number check method, refer to Appendix A-3-1.

## Appendix B: Instruction Execution Time

The instruction execution time in $\mathrm{FX}_{3} \mathrm{~S} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC} / \mathrm{FX} 3 \mathrm{U} / \mathrm{FX} 3 \mathrm{UC}$ PLCs is as shown below:

## Measurement condition

- High-speed counters and interrupt instructions (I) are not used together.
- In operands, data registers are used as target devices.
- Indexing (V or Z ) is not provided.


## Appendix B-1 Basic Instruction Execution Time

- FX3S PLC

Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Contact instructions					
LD	0.21				$1.34 \mu \mathrm{~s}$ in 2-step instruction
LDI	0.21				$1.34 \mu \mathrm{~s}$ in 2-step instruction
LDP	2.32		2.28		
LDF	2.59		2.32		
AND	0.2				$1.16 \mu \mathrm{~s}$ in 2-step instruction
ANI	0.2				$1.16 \mu \mathrm{~s}$ in 2-step instruction
ANP	2.36		2.32		
ANF	2.4		2.36		
OR	0.21				$1.28 \mu \mathrm{~s}$ in 2-step instruction
ORI	0.21				$1.28 \mu \mathrm{~s}$ in 2-step instruction
ORP	2.36		2.36		
ORF	2.4		2.36		
Connection instructions					
ANB	0.2				
ORB	0.2				
MPS	0.21				
MRD	0.2				
MPP	0.17				
INV	0.17				
MEP	1.52				
MEF	1.6				


Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Output instructions					
OUT Y,M	0.21				$1.2 \mu \mathrm{~s}$ in 2-step instruction
OUT S	1.25		1.25		
OUT T K	2.41		2.16		
OUT T D	2.77		2.54		
OUT C K	1.9	2.25	1.57	1.72	C235 to C255   $1.6 \mu \mathrm{~s}$ in execution in ON status   $1.06 \mu \mathrm{~s}$ in execution in OFF status
OUT C D	2.26	1.49	1.93	2.35	C235 to C255   $2.21 \mu \mathrm{~s}$ in execution in ON status   $1.06 \mu \mathrm{~s}$ in execution in OFF status
SET Y,M	0.23				$1.25 \mu$ s in 2-step instruction
SET S	1.23 or $1.33+0.51 n$		0.59		n: Number of recombination $1.23 \mu \mathrm{~s}$ when there is no recombination
RST Y,M	0.23				$1.22 \mu$ s in 2-step instruction
RST S	1.17		0.59		
RST T	1.68		1.21		
RST C	1.77	1.82	1.18	1.19	
RST D	1.08		0.54		
PLS Y,M	1.52				
PLF Y,M	1.52				
Master control instructions					
MC	1.63		1.76		
MCR	1.3		-		
Other instruction					
NOP	0.21				
End instruction					
END	209		-		Even if FEND and END are used together, execution time of only END is required.

- FX3G/FX3GC PLCs (Standard mode)

Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Contact instructions					
LD	0.21				$1.34 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $1.34 \mu$ s in 3-step instruction ${ }^{* 3}$
LDI	0.21				$1.34 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.34 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
LDP	2.32		2.28		3-step instruction   $2.4 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.36 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
LDF	2.36		2.32		3-step instruction   $2.44 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.4 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
AND	0.2				$1.16 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.2 \mu \mathrm{~s}$ in 3-step instruction ${ }^{*} 3$
ANI	0.2				$1.16 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.2 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
ANP	2.36		2.32		3-step instruction   $2.48 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.44 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
ANF	2.4		2.36		3-step instruction   $2.48 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.44 \mu$ s in execution in OFF status ${ }^{* 3}$
OR	0.21				$1.28 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $1.32 \mu$ s in 3-step instruction ${ }^{* 3}$
ORI	0.21				$1.28 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.32 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
ORP	2.36		2.32		3-step instruction   $2.48 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.44 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
ORF	2.4		2.36		3-step instruction   $2.48 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.44 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
Connection instructions					
ANB	0.2				
ORB	0.2				
MPS	0.21				
MRD	0.2				
MPP	0.17				
INV	0.17				
MEP	1.52				
MEF	1.6				
Output instructions					
OUT Y,M	0.21				$1.2 \mu \mathrm{~s}$ in 2-step instruction ${ }^{*}{ }^{2}$   $1.2 \mu$ s in 3-step instruction ${ }^{* 3}$
OUT S	1.25		1.25		
OUT T K	2.41		2.16		$\begin{aligned} & \text { T246 to T319 } \\ & 2.69 \mu \text { s in execution in ON status } \\ & 2.04 \mu \text { s in execution in OFF status } \end{aligned}$


Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Output instructions					
OUT T D	2.77		2.54		T246 to T319   $3.06 \mu \mathrm{~s}$ in execution in ON status   $2.41 \mu \mathrm{~s}$ in execution in OFF status
OUT C K	1.9	2.25	1.57	1.72	$\begin{aligned} & \hline \mathrm{C} 235 \text { to C255 } \\ & 1.6 \mu \mathrm{~s} \text { in execution in ON status } \\ & 1.06 \mu \mathrm{~s} \text { in execution in OFF status } \end{aligned}$
OUT C D	2.26	2.49	1.93	2.35	C235 to C255   $2.21 \mu \mathrm{~s}$ in execution in ON status   $1.06 \mu \mathrm{~s}$ in execution in OFF status
SET Y,M	0.23				$1.25 \mu$ s in 2-step instruction ${ }^{*}{ }^{2}$   $1.25 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
SET S	1.23 or $1.33+0.51 \mathrm{n}$		0.59		n : Number of recombination $1.23 \mu \mathrm{~s}$ when there is no recombination
RST Y,M	0.23				$1.22 \mu \mathrm{~s}$ in 2-step instruction ${ }^{*}{ }^{2}$   $1.22 \mu \mathrm{~s}$ in 3-step instruction*3
RST S	1.17		0.59		
RST T	1.68		1.21		
RST C	1.68	1.82	1.18	1.19	
RST D	1.08		0.54		
PLS Y,M	1.52				1.56 s in M3584 to M7679
PLF Y,M	1.52				$1.56 \mu$ s in M3584 to M7679
Master control instructions					
MC	1.63		1.76		
MCR	1.3		-		
Other instruction					
NOP	0.21				
End instruction					

$292+2.5 X+3.75 Y$
Even if FEND and END are used together, execution time of only END is required.
X: Number of input points
Y: Number of output points
*1. M1536 to M3583, M8256 to M8511, S1024 to S4095
*2. M1536 to M3583, M8000 to M8511
*3. M3584 to M7679

- $F X_{3 G} / F X_{3 G c}$ PLCs (Extension mode)

Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Contact instructions					
LD	0.42				$1.68 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.68 \mu \mathrm{~s}$ in 3-step instruction ${ }^{*} 3$
LDI	0.42				$1.68 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $1.68 \mu \mathrm{~s}$ in 3-step instruction*3
LDP	2.72		2.68		3-step instruction   $2.8 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.76 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
LDF	2.76		2.72		3-step instruction   $2.84 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.8 \mu$ s in execution in OFF status ${ }^{* 3}$
AND	0.41				$1.48 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $1.52 \mu$ s in 3-step instruction ${ }^{* 3}$
ANI	0.41				$1.48 \mu$ s in 2-step instruction ${ }^{* 1}$   $1.52 \mu$ s in 3-step instruction ${ }^{* 3}$
ANP	2.72		2.68		3-step instruction   $2.8 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.76 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
ANF	2.76		2.72		3-step instruction   $2.8 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.76 \mu$ s in execution in OFF status ${ }^{* 3}$
OR	0.42				$1.6 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.6 \mu \mathrm{~s}$ in 3 -step instruction ${ }^{*} 3$
ORI	0.42				$1.6 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$ $1.6 \mu$ s in 3-step instruction ${ }^{*} 3$
ORP	2.72		2.68		3-step instruction   $2.8 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.76 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
ORF	2.76		2.72		3-step instruction   $2.8 \mu \mathrm{~s}$ in execution in ON status ${ }^{* 3}$   $2.76 \mu \mathrm{~s}$ in execution in OFF status ${ }^{* 3}$
Connection instructions					
ANB	0.41				
ORB	0.41				
MPS	0.42				
MRD	0.41				
MPP	0.38				
INV	0.38				
MEP	1.73				
MEF	1.81				
Output instructions					
OUT Y,M	0.42				$\begin{aligned} & 1.52 \mu \mathrm{~s} \text { in } 2 \text {-step instruction }{ }^{* 2} \\ & 1.56 \mu \mathrm{~s} \text { in 3-step instruction }{ }^{* 3} \end{aligned}$
OUT S	1.65		1.65		
OUT T K	3.19		2.95		$\begin{aligned} & \text { T246 to T319 } \\ & 3.47 \mu \mathrm{~s} \text { in execution in ON status } \\ & 2.82 \mu \mathrm{~s} \text { in execution in OFF status } \end{aligned}$


Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Output instructions					
OUT T D	3.55		3.32		T246 to T319   $3.83 \mu \mathrm{~s}$ in execution in ON status   $3.19 \mu \mathrm{~s}$ in execution in OFF status
OUT C K	2.68	3.02	2.35	2.89	C235 to C255   $2.66 \mu \mathrm{~s}$ in execution in ON status $1.45 \mu \mathrm{~s}$ in execution in OFF status
OUT C D	3.04	3.25	2.72	3.1	C235 to C255   $3.00 \mu \mathrm{~s}$ in execution in ON status $1.45 \mu \mathrm{~s}$ in execution in OFF status
SET Y,M	0.44				$1.62 \mu \mathrm{~s}$ in 2-step instruction ${ }^{*}{ }^{2}$   $1.62 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
SET S	1.62 or $1.66+0.55 n$		0.78		n : Number of recombination $\mathrm{n}=1.62$ when there is no recombination
RST Y,M	0.44				$1.6 \mu \mathrm{~s}$ in 2-step instruction ${ }^{*}{ }^{2}$   $1.6 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
RST S	1.55		0.78		
RST T	2.08		1.6		
RST C	2.08	2.31	1.19	1.58	
RST D	1.66		0.74		
PLS Y,M	1.88				1.88 us in M3584 to M7679
PLF Y,M	1.88				1.88 ¢s in M3584 to M7679
Master control instructions					
MC	2.01		2.13		
MCR	1.51		-		
Other instruction					
NOP	0.42				
End instruction					

*1. M1536 to M3583, M8256 to M8511, S1024 to S4095
*2. M1536 to M3583, M8000 to M8511
*3. M3584 to M7679
Even if FEND and END are used together, execution time of only END is
END
$292+2.5 X+3.75 Y$ required.
X: Number of input points,
Y: Number of output points

- FX3U/FX3uc PLCs

Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Contact instructions					
LD	0.065				$0.129 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $0.193 \mu$ s in 3-step instruction ${ }^{*} 3$
LDI	0.065				$0.129 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $0.193 \mu$ s in 3-step instruction ${ }^{*} 3$
LDP	7.8		-		
LDF	7.8		-		
AND	0.065				$0.129 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $0.193 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
ANI	0.065				$0.129 \mu$ s in 2-step instruction ${ }^{* 1}$   $0.193 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
ANP	7.5		-		
ANF	7.5		-		
OR	0.065				$0.129 \mu \mathrm{~s}$ in 2-step instruction ${ }^{* 1}$   $0.193 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$
ORI	0.065				$0.129 \mu$ s in 2-step instruction ${ }^{* 1}$   $0.193 \mu$ s in 3-step instruction ${ }^{* 3}$
ORP	7.4		-		
ORF	7.4		-		
Connection instructions					
ANB	0.065				
ORB	0.065				
MPS	0.065				
MRD	0.065				
MPP	0.065				
INV	0.065				
MEP	3.4				
MEF	3.4				
Output instructions					
OUT Y,M	0.065				$0.129 \mu \mathrm{~s}$ in 2-step instruction *2   $0.193 \mu$ s in 3-step instruction ${ }^{*} 3$
OUT S	4.8		4.8		
OUT T K	0.71		0.71		T192 to T199, T246 to T511 $11.6 \mu \mathrm{~s}$ in execution in ON status $8.2 \mu \mathrm{~s}$ in execution in OFF status
OUT T D	0.71		0.71		T192 to T199, T246 to T511 $11.6 \mu \mathrm{~s}$ in execution in ON status $8.2 \mu \mathrm{~s}$ in execution in OFF status
OUT C K	0.71	6.1	0.71	6.1	C235 to C255 $9.5 \mu \mathrm{~s}$ in execution in ON status $9.0 \mu \mathrm{~s}$ in execution in OFF status
OUT C D	0.71	6.1	0.71	6.1	C235 to C255   $9.5 \mu \mathrm{~s}$ in execution in ON status   $9.0 \mu \mathrm{~s}$ in execution in OFF status
SET Y,M	0.065				$0.129 \mu$ s in 2-step instruction ${ }^{* 2}$   $0.193 \mu$ s in 3-step instruction ${ }^{* 3}$
SET S	4.7 or $6.6+0.9 n$		0.13		n : Number of recombination $4.7 \mu \mathrm{~s}$ when there is no recombination
RST Y,M	0.065				$0.129 \mu$ s in 2-step instruction ${ }^{*}{ }^{2}$   $0.193 \mu \mathrm{~s}$ in 3-step instruction ${ }^{* 3}$


Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Output instructions					
RST S	4.6		0.13		
RST T	0.45		0.45		
RST C	0.45	5.8	0.45	4.8	
RST D	5.4	-	0.195	-	
PLS Y,M	0.257				$0.321 \mu \mathrm{~s}$ in M3584 to M7679
PLF Y,M	0.257				$0.321 \mu \mathrm{~s}$ in M3584 to M7679
Master control instructions					
MC	4.3		4.7		
MCR	3.9		-		
Other instruction					
NOP	0.065				
End instruction					
END	$113.9+2.13 X+3.25 Y$		-		Even if FEND and END are used together, execution time of only END is required.   X: Number of input points   Y: Number of output points

*1. M1536 to M3583, M8256 to M8511, S1024 to S4095
*2. M1536 to M3583, M8000 to M8511
*3. M3584 to M7679

## Appendix B-2 Step Ladder Instruction Execution Time

- FX3s PLC

Instruction	Execution time in ON status $(\mu \mathbf{s})$		Execution time in OFF status $(\mu \mathbf{s})$		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
STL	n: Number of recombination   $n=0$   recombination				
	-				

- FX3G/FX3GC PLCs

Instruction	Standard mode				Extension mode				Remarks
	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		
	16-bit instruction	32-bit instruction							
STL	$3.36+$	1.19n	-		$3.35+$	1.46n			n : Number of recombination $\mathrm{n}=0$ : When there is no recombination
RET	2.1		-		2.1			-	

- FX3u/FX3uc PLCs

Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
STL	$5.1+1.6 n$				n : Number of recombination $\mathrm{n}=0$ : When there is no recombination
RET	2.9		-		

## Appendix B-3 Label (P/I) Execution Time

- FX3s PLC

Instruction	Execution time in ON status $(\mu \mathrm{s})$		Execution time in OFF status $(\mu \mathrm{s})$		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
$\mathrm{P}^{* * *}$	0.21				
$\mathrm{I}^{* * *}$	0.21				

- FX3G/FX3Gc PLCs

Instruction	Standard mode				Extension mode				Remarks
	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	16-bit instruction	$\begin{gathered} \text { 32-bit } \\ \text { instruction } \end{gathered}$	16-bit instruction	32-bit instruction	
$\mathrm{P}^{* * *}$	0.21				0.42				
\|***	0.21				0.42				

- FX3U/FX3uc PLCs

Instruction	Execution time in ON status $(\mu \mathbf{s})$		Execution time in OFF status ( $\mu \mathbf{s})$		Remarks
	16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
$\mathrm{P}^{* * *}$	0.065			$0.129 \mu \mathrm{~s}$ in P256 to P4095	
$\mathrm{I}^{* * *}$	0.065				

## Appendix B-4 Applied Instruction Execution Time

n and n 1 , which are not described in remarks, indicate the value of operand that is specified to each applied instruction.							
FNC	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks	32
No.		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction		
Program flow							(1)
00	CJ	2.59	-	0.61	-		
01	CALL	$\begin{gathered} 6.44 \\ (\mathrm{CALL}+\mathrm{SRET}) \end{gathered}$	-	0.61	-		$\bigcirc$
02	SRET		-	-	-		
03	IRET	6.34	-	-	-		$33$
04	El	2.52	-	-	-		
05	DI	1.94	-	-	-		爻
06	FEND	209		-	-	Even if FEND and END are used together, execution time of only END is required.	
07	WDT	1.94	-	0.61	-		-
08	FOR	$\begin{gathered} 4.98 \\ (\mathrm{FOR}+\mathrm{NEXT}) \end{gathered}$	-	-	-		4
09	NEXT		-	-	-		
Move and compare							※
10	CMP	11.18	11.54	0.61	0.61		,
11	ZCP	12.51	13.15	0.61	0.61		
12	MOV	0.52	0.61	0.38	0.41	For details, refer to Appendix B-6-2.	\%
13	SMOV	16.19	-	0.61	-		
14	CML	6.68	7.15	0.61	0.61		To
15	BMOV	15.95+3.96n	-	0.61	-		$\stackrel{0}{3}$
16	FMOV	10.20+0.77n	10.87+0.79n	0.61	0.61		
18	BCD	2.93	4.6	0.41	0.43		
19	BIN	2.93	4.61	0.41	0.43		
Arithmetic and logical operation							
20	ADD	1.79	2.13	0.41	0.45		T
21	SUB	1.79	2.13	0.41	0.45		
22	MUL	1.29	3.21	0.41	0.45		
23	DIV	1.93	3.7	0.41	0.45		
24	INC	0.78	1.01	0.41	0.41		
25	DEC	0.78	1.01	0.41	0.41		
26	WAND	1.24	1.59	0.41	0.45		0
27	WOR	1.24	1.59	0.41	0.45		-
28	WXOR	1.24	1.59	0.41	0.45		$\stackrel{\square}{0}$
Rotation and shift							¢
30	ROR	7.37	8.94	0.61	0.61		
31	ROL	7.37	8.94	0.61	0.61		$38$
34	SFTR	$14.51+0.46 \mathrm{n} 1$	-	0.61	-		!
35	SFTL	14.7+0.46n1	-	0.61	-		$\bigcirc$
36	WSFR	$11.74+1.44 \mathrm{n} 1$	-	0.61	-		응
37	WSFL	$12.02+1.48 \mathrm{n} 1$	-	0.61	-		
38	SFWR	7.46	-	0.61	-		
39	SFRD	9.27	-	0.61	-		A
Data operation							
40	ZRST(D)	$7.96+0.22 \mathrm{n}$	-	0.61	-	n : Number of reset points	응․
	ZRST(T)	8.77+0.46n	-	0.61	-	n : Number of reset points	
	ZRST(M)	14.76+0.37n	-	0.61	-	n : Number of reset points	
41	DECO	8.5	-	0.61	-		
42	ENCO	9.29	-	0.61	-		8
43	SUM	6.95	7.43	0.61	0.61		
44	BON	10.4	10.77	0.61	0.61		\%
45	MEAN	13.83+3.33n	14.69+3.5n	0.61	0.61		등
49	FLT	6.96	7.56	0.61	0.61		$\stackrel{\text { - }}{ }$


FNC No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
High-speed processing						
50	REF	$\begin{aligned} & X: 8.75+0.45 n \\ & Y: 8.85+0.90 n \end{aligned}$	-	0.61	-	
52	MTR	14.72	-	1.65	-	
53	HSCS	-	10.8	-	0.61	
54	HSCR	-	10.79	-	0.61	
55	HSZ	-	12.2	-	0.61	
56	SPD	15.51	15.86	3.08	3.12	
57	PLSY	38.21	38.61	6.23	6.23	
58	PWM	21.79	-	8.11	-	
59	PLSR	156.25	157.02	6.19	6.19	
Handy instructions						
60	IST	23.33	-	0.61	-	
61	SER	21.33+3.97n	$22.14+4.29 n$	2.4	2.3	
62	ABSD	14.72+2.25n	$15.22+3.44 n$	0.61	0.61	
63	INCD	23.69	-	3.04	-	
66	ALT	5.82	-	0.61	-	
67	RAMP	12.33	-	9.89	-	
External FX I/O device						
72	DSW	24.74	-	18	-	
74	SEGL	17.76	-	6.27	-	
External FX device						
80	RS	17.21	-	2.52	-	
81	PRUN	11.41+1.67n	$11.65+1.63 n$	0.61	0.61	
82	ASCI	$12.34+1.52 \mathrm{n}$	-	0.61	-	
83	HEX	11.89+2.66n	-	0.61	-	
84	CCD	11.98+1.16n	-	0.61	-	
85	VRRD	102.46	-	0.61	-	
86	VRSC	102.46	-	0.61	-	
87	RS2	23.48	-	2.68	-	
88	PID	29.1	-	15.41	-	
Floating point						
110	ECMP	-	12.46	-	0.61	
112	EMOV	-	6.36	-	0.61	
120	EADD	-	11.96	-	0.61	
121	ESUB	-	12.06	-	0.61	
122	EMUL	-	12.76	-	0.61	
123	EDIV	-	20.86	-	0.61	
127	ESQR	-	10.66	-	0.61	
129	INT	12.06	12.06	0.61	0.61	
Positioning control						
150	DSZR	166.48	-	6.19	-	
155	ABS	-	16.68	-	3.68	
156	ZRN	151.38	151.63	6.17	6.17	
157	PLSV	160.48	160.48	6.1	6.1	
158	DRVI	275.38	275.94	6.04	6.04	
159	DRVA	276.08	276.65	6.23	6.23	
Real time clock control						
160	TCMP	15.07	-	0.61	-	
161	TZCP	17.84	-	0.61	-	
162	TADD	11.98	-	0.61	-	
163	TSUB	11.98	-	0.61	-	
166	TRD	6.76	-	0.61	-	
167	TWR	337.1	-	0.61	-	
169	HOUR	10.86	11.57	10.44	10.44	


$\begin{aligned} & \text { FNC } \\ & \text { No. } \end{aligned}$	Instruction	Execution time in ON status ( $\mu \mathbf{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
External device						
170	GRY	11.46	11.81	0.61	0.61	
171	GBIN	11.46	11.83	0.61	0.61	
Data comparison						
224	LD=	1.56	1.8	1.52	1.76	For details, refer to Appendix B-6-2.
225	LD>	1.92	2.36	1.92	2.32	For details, refer to Appendix B-6-2.
226	LD<	1.96	2.4	1.88	2.28	For details, refer to Appendix B-6-2.
228	LD<>	1.52	1.76	1.56	1.8	For details, refer to Appendix B-6-2.
229	LD<=	1.84	2.28	1.96	2.4	For details, refer to Appendix B-6-2.
230	LD>=	1.84	2.28	1.92	2.36	For details, refer to Appendix B-6-2.
232	AND=	1.52	1.76	1.46	1.7	For details, refer to Appendix B-6-2.
233	AND>	1.88	2.24	1.84	2.28	For details, refer to Appendix B-6-2.
234	AND<	1.92	2.36	1.84	2.18	For details, refer to Appendix B-6-2.
236	AND<>	1.48	1.68	1.5	1.7	For details, refer to Appendix B-6-2.
237	AND<=	1.8	2.2	1.88	2.26	For details, refer to Appendix B-6-2.
238	AND>=	1.8	2.16	1.92	2.32	For details, refer to Appendix B-6-2.
240	$\mathrm{OR}=$	1.54	1.76	1.52	1.72	For details, refer to Appendix B-6-2.
241	OR>	1.92	2.32	1.88	2.32	For details, refer to Appendix B-6-2.
242	$\mathrm{OR}<$	1.96	2.36	1.84	2.28	For details, refer to Appendix B-6-2.
244	OR<>	1.52	1.72	1.56	1.76	For details, refer to Appendix B-6-2.
245	OR<=	1.84	2.2	1.92	2.32	For details, refer to Appendix B-6-2.
246	OR>=	1.84	2.2	1.96	2.36	For details, refer to Appendix B-6-2.
External device communication						
270	IVCK	32.6	-	4.46	-	
271	IVDR	31.6	-	4.46	-	
272	IVRD	35.3	-	4.46	-	
273	IVWR	34.6	-	4.46	-	
275	IVMC	44.2	-	4.46	-	
276	ADPRW	67.19	-	9.83	-	

- $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs
n and n 1 , which are not described in remarks, indicate the value of operand that is specified to each applied instruction.

FNC No.	Instruction	Standard mode				Extension mode				Remarks
		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		
		16-bit instruction	32-bit instruction	16-bit instruc tion	32-bit instruc tion	16-bit instruction	32-bit instruction	16-bit instruc tion	32-bit instruc tion	
Program flow										
00	CJ	2.59	-	0.61	-	2.93	-	0.8	-	
01	CALL	$\begin{gathered} 6.44 \\ (\mathrm{CALL}+\mathrm{SRET}) \end{gathered}$	-	0.61	-	$\begin{gathered} 7.38 \\ \text { (CALL+SRET) } \end{gathered}$	-	0.8	-	
02	SRET		-	-	-		-	-	-	
03	IRET	6.34	-	-	-	6.9	-	-	-	
04	EI	2.52	-	-	-	2.71	-	-	-	
05	DI	1.94	-	-	-	2.12	-	-	-	
06	FEND	$292+2.5 X+3.75 Y$		-	-	$292+2.5 X+3.75 Y$		-	-	Even if FEND and END are used together, execution time of only END is required.   X: Number of input points,   Y: Number of output points
07	WDT	1.94	-	0.61	-	2.16	-	0.8	-	
08	FOR	$\begin{gathered} 4.98 \\ (\mathrm{FOR}+\mathrm{NEXT}) \end{gathered}$	-	-	-	$\begin{gathered} 5.76 \\ (\text { FOR+NEXT }) \end{gathered}$	-	-	-	
09	NEXT		-	-	-		-	-	-	
Move and compare										
10	CMP	11.18	11.54	0.61	0.61	12.91	13.66	0.8	0.8	
11	ZCP	12.51	13.15	0.61	0.61	14.62	16.02	0.8	0.8	
12	MOV	0.52	0.61	0.38	0.41	1.29	1.56	0.61	0.65	For details, refer to Appendix B-6-2.
13	SMOV	16.19	-	0.61	-	18.68	-	0.8	-	
14	CML	6.68	7.15	0.61	0.61	8.03	8.5	0.8	0.8	
15	BMOV	15.08+5.58n	-	0.61	-	17.54+5.58n	-	0.8	-	
16	FMOV	10.20+0.77n	10.87+0.79n	0.61	0.61	$11.90+0.77 n$	$12.94+0.79 n$	0.8	0.8	
18	BCD	2.93	4.6	0.41	0.43	3.9	5.8	0.61	0.65	
19	BIN	2.93	4.61	0.41	0.43	4.01	5.82	0.61	0.65	
Arithmetic and logical operation										
20	ADD	1.79	2.13	0.41	0.45	3.14	3.87	0.61	0.65	
21	SUB	1.79	2.13	0.41	0.45	3.14	3.87	0.61	0.65	
22	MUL	1.29	3.21	0.41	0.45	2.78	4.88	0.61	0.65	
23	DIV	1.93	3.7	0.41	0.45	3.48	5.3	0.61	0.65	
24	INC	0.78	1.01	0.41	0.41	1.53	1.96	0.61	0.65	
25	DEC	0.78	1.01	0.41	0.41	1.53	1.96	0.61	0.65	
26	WAND	1.24	1.59	0.41	0.45	2.61	3.34	0.61	0.65	
27	WOR	1.24	1.59	0.41	0.45	2.61	3.34	0.61	0.65	
28	WXOR	1.24	1.59	0.41	0.45	2.61	3.34	0.61	0.65	
Rotation and shift										
30	ROR	7.37	8.94	0.61	0.61	8.21	10.21	0.8	0.8	
31	ROL	7.37	8.94	0.61	0.61	8.21	10.21	0.8	0.8	
34	SFTR	$14.51+0.46 \mathrm{n} 1$	-	0.61	-	$16.61+0.46 \mathrm{n}$	-	0.8	-	
35	SFTL	14.7+0.46n1	-	0.61	-	$16.82+0.46 n$	-	0.8	-	
36	WSFR	11.74+1.44n1	-	0.61	-	13.91+1.44n	-	0.8	-	
37	WSFL	$12.02+1.48 \mathrm{n} 1$	-	0.61	-	14.11+1.48n	-	0.8	-	
38	SFWR	7.46	-	0.61	-	9.19	-	0.8	-	
39	SFRD	9.27	-	0.61	-	10.99	-	0.8	-	


FNC   No.	Instruction	Standard mode				Extension mode				Remarks
		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		
		16-bit instruction	32-bit instruction	16-bit instruc tion	32-bit instruc tion	16-bit instruction	32-bit instruction	16-bit instruc tion	32-bit instruc tion	
Data operation										
40	ZRST(D)	$7.96+0.22 n$	-	0.61	-	$10.26+0.22 \mathrm{n}$	-	0.8	-	n : Number of reset points
	ZRST(T)	$8.77+0.46 n$	-	0.61	-	10.68+0.46n	-	0.8	-	n : Number of reset points
	ZRST(M)	14.76+0.37n	-	0.61	-	16.16+0.37n	-	0.8	-	n : Number of reset points
41	DECO	8.5	-	0.61	-	10.31	-	0.8	-	
42	ENCO	9.29	-	0.61	-	11.02	-	0.8	-	
43	SUM	6.95	7.43	0.61	0.61	8.3	8.76	0.8	0.8	
44	BON	10.4	10.77	0.61	0.61	12.13	12.83	0.8	0.8	
45	MEAN	$13.83+3.33 n$	14.69+3.5n	0.61	0.61	$16.28+3.32 \mathrm{n}$	$17.6+3.49 n$	0.8	0.8	
46	ANS	9.55	-	9.09	-	11.27	-	10.81	-	
47	ANR	11.08	-	0.61	-	11.12	-	0.8	-	
49	FLT	6.96	7.56	0.61	0.61	8.28	8.88	0.8	0.8	
High-speed processing										
50	REF	$9+1.43 n$	-	0.61	-	$10.27+1.42 \mathrm{n}$	-	0.8	-	
52	MTR	14.72	-	1.65	-	16.11	-	1.85	-	
53	HSCS	-	10.8	-	0.61	-	12.8	-	0.8	
54	HSCR	-	10.79	-	0.61	-	12.71	-	0.8	
55	HSZ	-	12.2	-	0.61	-	14.86	-	0.8	
56	SPD	15.51	15.86	3.08	3.12	17.25	18.01	3.27	3.31	
57	PLSY	38.21	38.61	4.63	4.78	40.1	41.33	5.5	5.36	
58	PWM	21.79	-	8.11	-	22.46	-	8.5	-	
59	PLSR	156.25	157.02	4.61	4.66	158.85	159.63	5.3	5.33	
Handy instructions										
60	IST	23.33	-	0.61	-	25.3	-	0.8	-	
61	SER	$21.33+3.97 n$	$22.14+4.29 n$	2.4	2.3	$23.99+3.96 n$	$25.7+4.29 n$	2.6	2.5	
62	ABSD	14.72+2.25n	$15.22+3.44 \mathrm{n}$	0.61	0.61	17.04+2.25n	$17.96+3.44 \mathrm{n}$	0.8	0.8	
63	INCD	23.69	-	3.04	-	25.02	-	3.23	-	
66	ALT	5.82	-	0.61	-	6.62	-	0.8	-	
67	RAMP	12.33	-	9.89	-	15.21	-	12.37	-	
External FX I/O device										
72	DSW	24.74	-	18	-	27.08	-	20.3	-	
74	SEGL	17.76	-	6.27	-	19.34	-	6.41	-	
78	FROM*1	$115.6+454.4 n$	119.14+904.86n	0.61	0.61	$117.29+454.74 n$	121.98+905.03n	0.8	0.8	n : Number of transfer points
	FROM $^{*} 2$	114.98+968.02n	119.62+1931.4n	0.61	0.61	117.81+968.19n	123.62+1931.4n	0.8	0.8	$n$ : Number of transfer points
	$\mathrm{FROM}^{*} 3$	$52.58+131.43 n$	$11.67+242.33 n$	0.61	0.61	$55.58+131.43 n$	$14.67+242.34 n$	0.8	0.8	n : Number of transfer points
79	TO*1	$74.84+515.17 n$	78.31+1025.7n	0.61	0.61	76.67+515.34n	$82.39+1025.7 n$	0.8	0.8	n : Number of transfer points
	TO*2	77.62+1025.4n	78.93+2047.1n	0.61	0.61	$81.62+1025.4 n$	$82.93+2047.1 \mathrm{n}$	0.8	0.8	n : Number of transfer points
	TO*3	$129.9+134.1 n$	$13.67+350.33 n$	0.61	0.61	$132.91+134.1 n$	$18.58+350.43 n$	0.8	0.8	n : Number of transfer points

[^4]| External FX device |  |  |  |  |  |  |  |  |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | RS | 17.21 | - | 2.52 | - | 19.99 | - | 2.91 | - |  |
| 81 | PRUN | $11.41+1.67 \mathrm{n}$ | $11.65+1.63 \mathrm{n}$ | 0.61 | 0.61 | $12.92+1.6 \mathrm{n}$ | $12.87+1.65 \mathrm{n}$ | 0.8 | 0.8 |  |
| 82 | ASCI | $12.34+1.52 \mathrm{n}$ | - | 0.61 | - | $14.07+1.52 \mathrm{n}$ | - | 0.8 | - |  |
| 83 | HEX | $11.89+2.66 \mathrm{n}$ | - | 0.61 | - | $13.66+2.66 \mathrm{n}$ | - | 0.8 | - |  |
| 84 | CCD | $11.98+1.16 \mathrm{n}$ | - | 0.61 | - | $13.7+1.16 \mathrm{n}$ | - | 0.8 | - |  |
| 85 | VRRD | 102.46 | - | 0.61 | - | 103.88 | - | 0.8 | - |  |
| 86 | VRSC | 102.46 | - | 0.61 | - | 103.88 | - | 0.8 | - |  |
| 87 | RS2 | 23.48 | - | 2.68 | - | 26.52 | - | 2.92 | - |  |
| 88 | PID | 29.1 | - | 15.41 | - | 31.5 | - | 18.005 | - |  |



FNC No.	Instruction	Standard mode				Extension mode				Remarks
		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		
		16-bit instruction	32-bit instruction	```16-bit instruc tion```	32-bit instruc tion	16-bit instruction	32-bit instruction	16-bit instruc tion	32-bit instruc tion	
Data comparison										
233	AND>	1.88	2.24	1.84	2.28	2.6	3.2	2.6	3.2	For details, refer to Appendix B-6-2.
234	AND<	1.92	2.36	1.84	2.18	2.68	3.28	2.56	3.16	For details, refer to Appendix B-6-2.
236	AND<>	1.48	1.68	1.5	1.7	2.24	2.64	2.24	2.64	For details, refer to Appendix B-6-2.
237	AND<=	1.8	2.2	1.88	2.26	2.56	3.16	2.68	3.24	For details, refer to Appendix B-6-2.
238	AND $>=$	1.8	2.16	1.92	2.32	2.52	3.12	2.64	3.24	For details, refer to Appendix B-6-2.
240	$\mathrm{OR}=$	1.54	1.76	1.52	1.72	2.28	2.68	2.24	2.64	For details, refer to Appendix B-6-2.
241	OR>	1.92	2.32	1.88	2.32	2.64	3.24	2.64	3.24	For details, refer to Appendix B-6-2.
242	$\mathrm{OR}<$	1.96	2.36	1.84	2.28	2.68	3.28	2.6	3.2	For details, refer to Appendix B-6-2.
244	OR<>	1.52	1.72	1.56	1.76	2.24	2.64	2.28	2.68	For details, refer to Appendix B-6-2.
245	$\mathrm{OR}<=$	1.84	2.2	1.92	2.32	2.56	3.16	2.64	3.24	For details, refer to Appendix B-6-2.
246	$\mathrm{OR}>=$	1.84	2.2	1.96	2.36	2.56	3.16	2.68	3.28	For details, refer to Appendix B-6-2.
External device communication										
270	IVCK	32.60	-	4.46	-	33.90	-	4.88	-	
271	IVDR	31.60	-	4.46	-	32.40	-	4.88	-	
272	IVRD	35.30	-	4.46	-	36.60	-	4.88	-	
273	IVWR	34.60	-	4.46	-	35.40	-	4.88	-	
275	IVMC	44.2	-	4.46	-	45.4	-	4.88	-	
276	ADPRW	68.15	-	8.83	-	71.48	-	9.77	-	
Extension file register control										
290	LOADR	$107.23+30.25 n$	-	0.61	-	$108.59+30.33 n$	-	0.8	-	
294	RWER	$4692.4+128.57 n$	-	0.61	-	$4700.4+128.57 n$	-	0.8	-	n:Number of write points (Unit: Word)

- FX3u/FX3uc PLCs
n and n 1 , which are not described in remarks, indicate the value of operand that is specified to each applied instruction.

FNC   No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Program flow						
00	CJ	8.0	-	0.195	-	
01	CALL	$\begin{gathered} 13.5 \\ (\mathrm{CALL}+\mathrm{SRET}) \end{gathered}$	-	0.195	-	
02	SRET		-	-	-	
03	IRET	4.4	-	-	-	
04	El	3.8	-	-	-	
05	DI	3.7	-	-	-	
06	FEND	$\begin{gathered} 113.9+2.13 \mathrm{X}+ \\ 3.25 \mathrm{Y} \end{gathered}$	-	-	-	Even if FEND and END are used together, execution time of only END is required.   X: Number of input points,   Y: Number of output points
07	WDT	5.4	-	0.065	-	
08	FOR	$\begin{gathered} 11.6 \\ (\mathrm{FOR}+\mathrm{NEXT}) \end{gathered}$	-	-	-	
09	NEXT		-	-	-	
Move and compare						
10	CMP	15.5	16.0	0.455	0.845	
11	ZCP	18.9	19.7	0.585	1.105	
12	MOV	0.64	1.48	0.32	1.48	For details, refer to Appendix B-6-2.
13	SMOV	22.9	-	0.715	-	
14	CML	10.6	10.2	0.325	0.585	
15	BMOV	$13.9+0.44 \mathrm{n}$	-	0.455	-	
16	FMOV	$14.2+0.19 n$	$14.0+0.38 n$	0.455	0.845	
17	XCH	10.7	11.4	0.325	0.585	
18	BCD	7.94	12.49	0.325	0.585	
19	BIN	4.38	5.32	0.325	0.585	
Arithmetic and logical operation						
20	ADD	4.77	5.72	0.455	0.845	
21	SUB	4.82	5.78	0.455	0.845	
22	MUL	4.6	5.7	0.455	0.845	
23	DIV	6.3	7.67	0.455	0.845	
24	INC	6.2	6.4	0.195	0.325	
25	DEC	6.2	6.4	0.195	0.325	
26	WAND	3.57	4.55	0.455	0.845	
27	WOR	3.57	4.55	0.455	0.845	
28	WXOR	3.57	4.55	0.455	0.845	
29	NEG	7.6	8.0	0.195	0.325	
Rotation and shift						
30	ROR	10.5	11.5	0.325	0.585	
31	ROL	10.5	11.5	0.325	0.585	
32	RCR	10.9	11.8	0.325	0.585	
33	RCL	10.9	11.8	0.325	0.585	
34	SFTR	$23.2+0.08 \mathrm{n} 1$	-	0.585	-	
35	SFTL	$23.2+0.08 \mathrm{n} 1$	-	0.585	-	
36	WSFR	$7.5+0.44 \mathrm{n} 1$	-	0.585	-	
37	WSFL	$7.5+0.44 \mathrm{n} 1$	-	0.585	-	
38	SFWR	8.1	-	0.455	-	
39	SFRD	7.7	-	0.455	-	


FNC No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Data operation						
40	ZRST(D)	$11.1+0.19 n$	-	0.325	-	n : Number of reset points
	ZRST(T)	$17.1+0.23 n$	-	0.325	-	n : Number of reset points
	ZRST(M)	$20.7+0.02 \mathrm{n}$	-	0.325	-	n : Number of reset points
41	DECO	13.5	-	0.455	-	
42	ENCO	18.0	-	0.455	-	
43	SUM	12.7	16.9	0.325	0.585	
44	BON	14.4	15.1	0.455	0.845	
45	MEAN	$11.8+0.41 \mathrm{n}$	$17.8+2.13 n$	0.455	0.845	
46	ANS	20.4	-	19.7	-	
47	ANR	7.0	-	0.065	-	
48	SQR	9.7	12.1	0.325	0.585	
49	FLT	9.8	9.5	0.325	0.585	
High-speed processing						
50	REF	$4.5+1.39 n$	-	0.325	-	
51	REFF	$14.4+0.24 n$	-	0.195	-	
52	MTR	5.9	-	5.5	-	
53	HSCS	-	20.0	-	0.845	
54	HSCR	-	20.0	-	0.845	
55	HSZ	-	22.0	-	1.105	
56	SPD	16.0	16.0	12.6	12.6	
57	PLSY	20.0	13.6	6.9	6.9	
58	PWM	10.6	-	6.2	-	
59	PLSR	11.2	11.2	7.0	7.0	
Handy instructions						
60	IST	28.5	-	0.455	-	
61	SER	$16.4+1.4 n$	$18.5+2.13 n$	0.585	1.105	
62	ABSD	$19+0.85 n$	$20.0+1.23 n$	0.585	1.105	
63	INCD	23.7	-	6.5	-	
64	TTMR	10.4	-	9.2	-	
65	STMR	19.0	-	21.0	-	
66	ALT	11.6	-	0.2	-	
67	RAMP	15.0	-	7.5	-	
68	ROTC	25.8	-	24.8	-	
69	SORT	18.4	-	6.6	-	
External FX I/O device						
70	TKY	21.5	21.8	5.2	5.2	
71	HKY	32.0	32.3	5.7	5.7	
72	DSW	26.8	-	22.1	-	
73	SEGD	10.8	-	0.325	-	
74	SEGL	22.3	-	7.5	-	
75	ARWS	28.8	-	5.2	-	
76	ASC	19.8	-	0.715	-	
77	PR	24.0	-	13.6	-	


FNC No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
External FX I/O device						
78	FROM ${ }^{*}$	$141+419 n$	$119+841 n$	0.585	1.105	n : Number of transfer points
	FROM ${ }^{*}$	$107+903 n$	$119+1791 n$	0.585	1.105	n : Number of transfer points
	FROM ${ }^{*}$	$27.9+108 n$	$17.6+187.4 n$	0.585	1.105	n: Number of transfer points
79	TO*1	$87+483 n$	$73+967 n$	0.585	1.105	n : Number of transfer points
	TO*2	$73+967 n$	$67+1923 n$	0.585	1.105	n : Number of transfer points
	TO*3	$96.7+119.2 n$	$17.3+297.7 n$	0.585	1.105	n : Number of transfer points

*1. When the instruction is executed to BFM \#0 to BFM \#31 in a special function unit/block for the FX0N/FX2N/ FX2NC Series or in the CC-Link/LT built in the FX3UC-32MT-LT(-2)
*2. When the instruction is executed to BFM \#32 or later in a special function unit/block for the FX0N/FX2N/FX2NC Series or in the CC-Link/LT built in the FX3UC-32MT-LT(-2)
*3. When the instruction is executed to a BFM in a special function unit/block for the FX3U/FX3Uc Series

External FX device						
80	RS	15.6	-	5.7	-	
81	PRUN	17.1 + 1.67n	$18.2+2.9 n$	0.325	0.585	
82	ASCI	$13.5+1.45 \mathrm{n}$	-	0.455	-	
83	HEX	$13.6+1.89 n$	-	0.455	-	
84	CCD	$13.6+1.63 n$	-	0.455	-	
85	VRRD	129.50	-	0.325	-	
86	VRSC	129.94	-	0.325	-	
87	RS2	18.1	-	5.3	-	
88	PID	20.0	-	8.9	-	
89	-	-	-	-	-	
Data move 2						
100	-	-	-	-	-	
101	-	-	-	-	-	
102	ZPUSH	16.0	-	0.195	-	
103	ZPOP	16.0	-	0.195	-	
104	-	-	-	-	-	
105	-	-	-	-	-	
106	-	-	-	-	-	
107	-	-	-	-	-	
108	-	-	-	-	-	
109	-	-	-	-	-	
Floating point						
110	ECMP	-	18.2	-	0.845	
111	EZCP	-	21.6	-	1.105	
112	EMOV	-	10.0	-	0.585	
113	-	-	-	-	-	
114	-	-	-	-	-	
115	-	-	-	-	-	
116	ESTR	-	$27+1.7 n+1.26 m$	-	0.845	n: Number of character digits   m : Number of digits in decimal part
117	EVAL	-	$26+3.8 n$	-	0.585	
118	EBCD	-	10.0	-	0.585	
119	EBIN	-	11.9	-	0.585	
120	EADD	-	14.2	-	0.845	
121	ESUB	-	14.2	-	0.845	
122	EMUL	-	14.1	-	0.845	
123	EDIV	-	17.7	-	0.845	


FNC No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Floating point						
124	EXP	-	11.9	-	0.585	
125	LOGE	-	24.0	-	0.585	
126	LOG10	-	24.3	-	0.585	
127	ESQR	-	10.6	-	0.585	
128	ENEG	-	8.9	-	0.325	
129	INT	13.2	13.0	0.325	0.585	
130	SIN	-	12.0	-	0.585	
131	COS	-	23.2	-	0.585	
132	TAN	-	12.0	-	0.585	
133	ASIN	-	13.5	-	0.585	
134	ACOS	-	13.5	-	0.585	
135	ATAN	-	12.0	-	0.585	
136	RAD	-	14.9	-	0.585	
137	DEG	-	14.9	-	0.585	
138	-	-	-	-	-	
139	-	-	-	-	-	
Data operation 2						
140	WSUM	$11.7+0.38 \mathrm{n}$	$14.1+1.94 n$	0.455	0.845	
141	WTOB	$12.6+1.43 n$	-	0.455	-	
142	BTOW	$12.6+0.92 \mathrm{n}$	-	0.455	-	
143	UNI	$11.6+0.4 n$	-	0.455	-	
144	DIS	$10.6+0.2 n$	-	0.455	-	
145	-	-	-	-	-	
146	-	-	-	-	-	
147	SWAP	7.7	8.0	0.195	0.325	
148	-	-	-	-	-	
149	SORT2	13.2	15.2	6.5	7.7	
Positioning control						
150	DSZR	170.0	-	7.0	-	
151	DVIT	178.0	178.0	7.1	7.1	
152	TBL	-	*1	-	7.1	
153	-	-	-	-	-	
154	-	-	-	-	-	
155	ABS	-	25.4	-	22.2	
156	ZRN	58.0	62.0	7.1	7.1	
157	PLSV	144.0	144.0	7.1	7.1	
158	DRVI	178.0	178.0	7.1	7.1	
159	DRVA	178.0	178.0	7.1	7.1	


Positioning type	Operation instruction	Instruction execution time in ON status $(\mu \mathbf{s})$
DDVIT (interrupt positioning)	DDVIT instruction	$178.0 \mu \mathrm{~s}$
DPLSV (variable speed pulse output)	DPLSV instruction	$144.0 \mu \mathrm{~s}$
DDRVI (drive to increment)	DDRVI instruction	$178.0 \mu \mathrm{~s}$
DDRVA (drive to absolute)	DDRVA instruction	$178.0 \mu \mathrm{~s}$


FNCNo.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Real time clock control						
160	TCMP	21.3	-	0.715	-	
161	TZCP	22.6	-	0.585	-	
162	TADD	13.4	-	0.455	-	
163	TSUB	13.4	-	0.455	-	
164	HTOS	10.8	11.0	0.325	0.585	
165	STOH	11.4	11.6	0.325	0.585	
166	TRD	10.0	-	0.195	-	
167	TWR	344.4	-	0.195	-	
168	-	-	-	-	-	
169	HOUR	15.5	16.1	15.2	15.9	
External device						
170	GRY	10.2	10.7	0.325	0.585	
171	GBIN	15.4	16.0	0.325	0.585	
176	RD3A(3A)	1404	-	0.455	-	FXON-3A
	RD3A(2AD)	1828	-	0.455	-	FX2N-2AD
177	WR3A(3A)	1466	-	0.455	-	FXON-3A
	WR3A(2DA)	2919	-	0.455	-	FX2N-2DA
Extension function						
180	-	-	-	-	-	
Other instructions						
181	-	-	-	-	-	
182	COMRD	33.7	-	0.325	-	
183	-	-	-	-	-	
184	RND	8.5	-	0.195	-	
185	-	-	-	-	-	
186	DUTY	6.0	-	6.0	-	
187	-	-	-	-	-	
188	CRC	$12.6+0.82 \mathrm{n}$	-	0.455	-	
189	HCMOV	-	14.8	-	0.845	
Block data operation						
190	-	-	-	-	-	
191	-	-	-	-	-	
192	BK+	13.1 + 0.66n	$13.9+1.23 n$	0.585	1.105	
193	BK-	$13.1+0.66 \mathrm{n}$	$13.9+1.23 n$	0.585	1.105	
194	BKCMP=	$19.6+1.88 \mathrm{n}$	$20.3+2.26 n$	0.585	1.105	
195	BKCMP>	$19.6+1.88 n$	$20.3+2.26 n$	0.585	1.105	
196	BKCMP<	$19.6+1.88 n$	$20.3+2.26 n$	0.585	1.105	
197	BKCMP<>	$19.6+1.88 \mathrm{n}$	$20.3+2.26 n$	0.585	1.105	
198	BKCMP<=	$19.6+1.88 \mathrm{n}$	$20.3+2.26 n$	0.585	1.105	
199	BKCMP>=	$19.6+1.88 n$	$20.3+2.26 n$	0.585	1.105	
Character string control						
200	STR	34.6	47.0	0.455	0.845	
201	VAL	20.7	29.2	0.455	0.845	
202	\$+	$24.8+1.5 m$	-	0.455	-	m: Number of character strings
203	LEN	$12+0.44 \mathrm{~m}$	-	0.325	-	m: Number of character strings
204	RIGHT	$18.1+1.06 \mathrm{n}+0.47 \mathrm{~m}$	-	0.455	-	n : Number of character strings   m: Number of character data
205	LEFT	$18.1+0.74 n+0.44 m$	-	0.455	-	n: Number of character strings   m: Number of character data


FNC No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Character string control						
206	MIDR	$25+0.59 n+0.68 \mathrm{~m}$	-	0.455	-	n: Character position   m: Number of characters
207	MIDW	$25.8+0.3 m+0.44 n$	-	0.455	-	n: Character position m: Number of stored characters
208	INSTR	20.6 + 2.98 m	-	0.585	-	m : Number of searched characters* ${ }^{*}$
209	\$MOV	$16+1.52 \mathrm{n}$	-	0.325	-	


Data operation 3						
210	FDEL	$43+0.95 m$	-	-	-	m : Number of data shifted forward ${ }^{*}$ 2
211	FINS	$63+0.98 m$	-	-	-	m : Number of data shifted backward ${ }^{*} 3$
212	POP	7.8	-	0.455	-	
213	SFR	9.3	-	0.325	-	
214	SFL	9.3	-	0.325	-	
215	-	-	-	-	-	
216	-	-	-	-	-	
217	-	-	-	-	-	
218	-	-	-	-	-	
219	-	-	-	-	-	

$\mathrm{m}=$ (Number of data tables) - (Table position of deleted data)
Number of data tables: Present value of (D• , table position of deleted data: $n$
*3. $\mathrm{m}=$ (Number of data tables) - (Table position of data insertion)
Number of data tables: Present value of (D. , table position data insertion: $n$

Data comparison						
220	-	-	-	-	-	
221	-	-	-	-	-	
222	-	-	-	-	-	
223	-	-	-	-	-	
224	LD=	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
225	LD>	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
226	LD<	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
227	-	-	-	-	-	
228	LD<>	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
229	LD<=	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
230	LD>=	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
231	-	-	-	-	-	
232	AND=	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
233	AND>	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
234	AND<	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
235	-	-	-	-	-	
236	AND<>	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.


FNC No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Data comparison						
237	AND<=	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
238	AND>=	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
239	-	-	-	-	-	
240	$\mathrm{OR}=$	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
241	OR>	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
242	$\mathrm{OR}<$	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
243	-	-	-	-	-	
244	OR<>	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
245	$\mathrm{OR}<=$	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
246	$\mathrm{OR}>=$	1.22	1.48	1.22	1.48	For details, refer to Appendix B-6-2.
247	-	-	-	-	-	
248	-	-	-	-	-	
249	-	-	-	-	-	
Data table processing						
250	-	-	-	-	-	
251	-	-	-	-	-	
252	-	-	-	-	-	
253	-	-	-	-	-	
254	-	-	-	-	-	
255	-	-	-	-	-	
256	LIMIT	8.1	8.6	0.585	1.105	
257	BAND	8.1	8.6	0.585	1.105	
258	ZONE	7.9	8.5	0.585	1.105	
259	SCL	15.9	16.8	0.455	0.845	
260	DABIN	13.7	19.5	0.325	0.585	
261	BINDA	16.7	23.1	0.325	0.585	
262	-	-	-	-	-	
263	-	-	-	-	-	
264	-	-	-	-	-	
265	-	-	-	-	-	
266	-	-	-	-	-	
267	-	-	-	-	-	
268	-	-	-	-	-	
269	SCL2	$2.79+5.21 \mathrm{n}$	$29.06+7.94 n$	0.455	0.845	n : Number of data
External device communication						
270	IVCK	24.5	-	6.5	-	
271	IVDR	22.7	-	6.5	-	
272	IVRD	26.8	-	6.5	-	
273	IVWR	24.7	-	6.5	-	
274	IVBWR	31.0	-	6.5	-	
275	IVMC	29.6	-	6.5	-	
276	ADPRW	106.55	-	30.4	-	


FNC   No.	Instruction	Execution time in ON status ( $\mu \mathrm{s}$ )		Execution time in OFF status ( $\mu \mathrm{s}$ )		Remarks
		16-bit instruction	32-bit instruction	16-bit instruction	32-bit instruction	
Data move 3						
277	-	-	-	-	-	
278	RBFM ${ }^{* 1}$	$50+900 n$	-	0.715	-	n : Number of points transferred in one operation cycle
	RBFM ${ }^{*}$	$244+103 n$	-	0.715	-	
279	WBFM ${ }^{* 1}$	$24+966 n$	-	0.715	-	n : Number of points transferred in one operation cycle
	WBFM ${ }^{*}$	$292+116 n$	-	0.715	-	

in the CC-Link/LT built in the FX3UC-32MT-LT(-2)
*2. When the instruction is executed to a BFM in a special function unit/block for the FX3U/FX3UC Series

High-speed processing 2						
280	HSCT	-	30.0	-	1.365	
281	-	-	-	-	-	
282	-	-	-	-	-	
283	-	-	-	-	-	
284	-	-	-	-	-	
285	-	-	-	-	-	
286	-	-	-	-	-	
287	-	-	-	-	-	
288	-	-	-	-	-	
289	-	-	-	-	-	
Extension file register control						
290	LOADR	$13.2+0.44 n$	-	0.325	-	
291	SAVER	166n	-	6.4	-	
292	INITR	17600n	-	0.325	-	
293	LOGR	$244+17.9 n$	-	0.715	-	
294	RWER	46700n	-	0.325	-	n : Number of write target sectors
295	INITER	17300n	-	0.325	-	
$\begin{gathered} 296 \\ \text { to } \\ 299 \end{gathered}$	-	-	-	-	-	
FX3U-CF-ADP						
300	FLCRT	83.2	-	6.64	-	
301	FLDEL	49.1	-	6.32	-	
302	FLWR	$77.9+2.9 n$	-	6.26	-	n : Number of written data points ${ }^{* 3}$
303	FLRD	$59.2+4.25 n$	-	6.18	-	n : Number of read data points ${ }^{* 3}$
304	FLCMD	50.9	-	6.26	-	
305	FLSTRD	50.9	-	6.24	-	

## Appendix B-5 Execution Time of Pulse Generation Instruction P in Each Applied Instruction

- FX3S PLC

Applied instruction	Execution time	Remarks
MOV instruction (FNC 12)	Execution time at rising edge of input: Execution time in ON status $=4.98 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
BCD instruction (FNC 18)	Execution time at rising edge of input: Execution time in ON status $=7.81 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
BIN instruction (FNC 19)	Execution time at rising edge of input: Execution time in ON status $=7.77 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
ADD instruction (FNC 20)	Execution time at rising edge of input: Execution time in ON status $=6.37 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
SUB instruction (FNC 21)	Execution time at rising edge of input: Execution time in ON status $=6.47 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
MUL instruction (FNC 22)	Execution time at rising edge of input: Execution time in ON status $=7.07 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
DIV instruction (FNC 23)	Execution time at rising edge of input: Execution time in ON status $=7.03 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
INC instruction (FNC 24)	Execution time at rising edge of input: Execution time in ON status $=3.48 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
DEC instruction (FNC 25)	Execution time at rising edge of input: Execution time in ON status $=3.48 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
WAND instruction (FNC 26)	Execution time at rising edge of input: Execution time in ON status $=6.42 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
WOR instruction (FNC 27)	Execution time at rising edge of input: Execution time in ON status $=6.42 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
WXOR instruction (FNC 28)	Execution time at rising edge of input: Execution time in ON status $=6.42 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
Other applied instructions	Execution time at rising edge of input: Execution time in ON status $+0.68 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $+0.6 \mu \mathrm{~s}$	

- FX3G/FX3GC PLCs (Standard mode)

Applied instruction	Execution time	Remarks
MOV instruction (FNC 12)	Execution time at rising edge of input: Execution time in ON status $=4.98 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
BCD instruction (FNC 18)	Execution time at rising edge of input: Execution time in ON status $=7.81 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
BIN instruction (FNC 19)	Execution time at rising edge of input: Execution time in ON status $=7.77 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
ADD instruction (FNC 20)	Execution time at rising edge of input: Execution time in ON status $=6.37 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
SUB instruction (FNC 21)	Execution time at rising edge of input: Execution time in ON status $=6.47 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
MUL instruction (FNC 22)	Execution time at rising edge of input: Execution time in ON status $=7.07 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
DIV instruction (FNC 23)	Execution time at rising edge of input: Execution time in ON status $=7.03 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
INC instruction (FNC 24)	Execution time at rising edge of input: Execution time in ON status $=3.48 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
DEC instruction (FNC 25)	Execution time at rising edge of input: Execution time in ON status $=3.48 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
WAND instruction (FNC 26)	Execution time at rising edge of input: Execution time in ON status $=6.42 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
WOR instruction (FNC 27)	Execution time at rising edge of input: Execution time in ON status $=6.42 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
WXOR instruction (FNC 28)	Execution time at rising edge of input: Execution time in ON status $=6.42 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.44 \mu \mathrm{~s}$	
Other applied instructions	Execution time at rising edge of input: Execution time in ON status $+0.68 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $+0.6 \mu \mathrm{~s}$	

## - $\mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{Gc}$ PLCs (Extension mode)

Applied instruction	Execution time	Remarks
MOV instruction (FNC 12)	Execution time at rising edge of input: Execution time in ON status $=5.43 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
BCD instruction (FNC 18)	Execution time at rising edge of input: Execution time in ON status $=9.13 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
BIN instruction (FNC 19)	Execution time at rising edge of input: Execution time in ON status $=9.08 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
ADD instruction (FNC 20)	Execution time at rising edge of input: Execution time in ON status $=6.68 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
SUB instruction (FNC 21)	Execution time at rising edge of input: Execution time in ON status $=6.78 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
MUL instruction (FNC 22)	Execution time at rising edge of input: Execution time in ON status $=7.24 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
DIV instruction (FNC 23)	Execution time at rising edge of input: Execution time in ON status $=7.44 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
INC instruction (FNC 24)	Execution time at rising edge of input: Execution time in ON status $=3.49 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
DEC instruction (FNC 25)	Execution time at rising edge of input: Execution time in ON status $=3.49 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
WAND instruction (FNC 26)	Execution time at rising edge of input: Execution time in ON status $=6.81 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
WOR instruction (FNC 27)	Execution time at rising edge of input: Execution time in ON status $=6.81 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
WXOR instruction (FNC 28)	Execution time at rising edge of input: Execution time in ON status $=6.81 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $=1.81 \mu \mathrm{~s}$	
Other applied instructions	Execution time at rising edge of input: Execution time in ON status $+0.7 \mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $+0.6 \mu \mathrm{~s}$	

- FX3U/FX3UC PLCs

Applied instruction	Execution time	Remarks
MOV instruction (FNC 12)	Execution time at rising edge of input: Execution time in ON status	$1.22 \mu \mathrm{~s}$ in MOVP instruction
	Non-execution time: Execution time in OFF status	
Other applied instructions	Execution time at rising edge of input: Execution time in ON status +0.45   $\mu \mathrm{~s}$	
	Non-execution time: Execution time in OFF status $+0.45 \mu \mathrm{~s}$	

## Appendix B-6 Execution Time on Combination of Applicable Devices and Indexing

In examples shown below for basic instructions, the MOV instruction and data comparison instructions, the instruction execution time varies depending on the combination of target devices and absence/presence of indexing.
The combinations of target devices marked with "*1" and "*2" are handled as exceptions because high-speed processing is adopted in the technique.

Appendix B-6-1 Basic instruction (LD/LDI/AND/ANI/OR/ORI) execution time

- $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{U}$ C PLCs

Specified device type	Condition	Instruction execution time $(\mu \mathbf{s})$
Bit device	Without indexing	0.065
	With indexing	11.9
Word device	Bit specification	8.8

- $\mathrm{FX}_{3} / \mathrm{FX} 3 \mathrm{G} / \mathrm{FX} 3 \mathrm{GC}$ PLCs do not support indexing of bit devices and contact instructions with bit specification of word devices in basic instructions.


## Appendix B-6-2 Applied instruction execution time

1. MOV (FNC 12) instruction execution time

- FX3s PLC
- MOV instruction (16-bit operation)

Command contact	S (source)	D (destination)			
		Without indexing ( $\mu \mathbf{s}$ )		With indexing ( $\mu \mathbf{s}$ )	
		KnY,KnM, Kns*1	T,C,D	KnY,KnM,KnS	T,C,D
ON	KnX,KnY,KnM, KnS ${ }^{* 1}$	0.64	0.72	14.68	8.28
	T,C,D	0.88	0.84	13.08	6.68
	K, H	0.48	0.52	12.28	5.78
OFF	KnX,KnY,KnM,KnS ${ }^{* 1}$	0.36		0.58	
	T,C,D				
	K, H				

*1. When K 4 is specified, and the head bit device number is a multiple of 8 (K4M0, K4M8 ...)

- DMOV instruction (32-bit instruction)

Command contact	S (source)	D (destination)			
		Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathbf{s}$ )	
		KnY,KnM,Kns ${ }^{* 1}$	T,C,D	KnY,KnM,KnS	T,C,D
ON	KnX,KnY,KnM,Kns**	0.68	0.88	19.48	8.68
	T,C,D	1.24	1.04	18.18	7.28
	K, H	0.56	0.56	17.18	6.28
OFF	KnX,KnY,KnM,Kns ${ }^{* 1}$	0.4		0.58	
	T,C,D				
	K, H				

*1. When K 8 is specified, and the head bit device number is a multiple of 8 (K8M0, K8M8 ...)

FX3G/FX3Gc PLCs

- MOV instruction (16-bit operation)

Command contact	S (source)	D (destination)							
		Standard mode				Extension mode			
		Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathbf{s}$ )		Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathbf{s}$ )	
		KnY, KnM, $K_{n s}{ }^{* 1}$	T,C,D,R	KnY , KnM, KnS	T,C,D,R	KnY , KnM, $K_{n s}{ }^{* 1}$	T,C,D,R	KnY , KnM, KnS	T,C,D,R
ON	KnX,KnY,KnM, Kns ${ }^{* 1}$	0.64	0.72	14.68	8.28	1.56	1.8	16.42	9.92
	T,C,D,R	0.88	0.84	13.08	6.68	1.84	1.96	14.82	8.32
	K, H	0.48	0.52	12.28	5.78	1.24	1.4	13.22	7.22
OFF	KnX,KnY,KnM,Kns*1	0.36		0.58		0.52		0.82	
	T,C,D,R								
	K,H								

*1. When K4 is specified, and the head bit device number is a multiple of 8 (K4M0, K4M8 ...)

- DMOV instruction (32-bit instruction)

Command contact	S (source)	D (destination)							
		Standard mode				Extension mode			
		Without indexing ( $\mu \mathbf{s}$ )		With indexing ( $\mu \mathrm{s}$ )		Without indexing ( $\mu \mathbf{s}$ )		With indexing ( $\mu \mathrm{s}$ )	
		KnY, KnM, $K_{n S}{ }^{* 1}$	T,C,D,R	KnY, KnM, KnS	T,C,D,R	KnY, KnM, $\mathrm{KnS}^{* 1}$	T,C,D,R	KnY, KnM, KnS	T,C,D,R
ON	KnX,KnY,KnM,Kns ${ }^{* 1}$	0.68	0.88	19.48	8.68	1.6	2.12	21.32	10.32
	T,C,D,R	1.24	1.04	18.18	7.28	2.2	2.4	19.92	9.02
	K, H	0.56	0.56	17.18	6.28	1.48	1.88	19.12	8.22
OFF	KnX,KnY,KnM,Kns ${ }^{* 1}$	0.4		0.58		0.62		0.82	
	T,C,D,R								
	K, H								

*1. When K 8 is specified, and the head bit device number is a multiple of 8 (K8M0, K8M8 ...)

- FX3u/FX3uc PLCs
- MOV instruction (16-bit operation)

Command contact	S (source)	D (destination)							
		Without indexing ( $\mu \mathrm{s}$ )				With indexing ( $\mu \mathrm{s}$ )			
		KnY,KnM,KnS	T,C,D	R	U $\square$ IG $\square^{* 3}$	KnY,KnM,KnS	T,C,D	R	U $\square$ IG $\square^{* 3}$
ON	KnX,KnY,KnM,KnS	15.5	12.1	13.8	212.9	18.6	16.6	16.9	214.7
	T,C,D	12.1	$0.64{ }^{* 1}$	10.4	209.7	16.6	14.5	14.8	212.8
	R	13.8	10.4	12.1	211.3	16.9	14.8	15.1	213.1
	U $\square$ IG $\square^{*}$ 3	131.8	128.5	130.2	377.9	133.1	129.9	131.5	379.4
	K, H	12.5	$0.64{ }^{* 1}$	10.8	210.1	15.4	13.3	13.6	211.6
OFF	KnX,KnY,KnM,KnS	$0.32^{* 2}$		0.325$(0.325$ in combinations other than *2.)					
	T,C,D								
	R								
	U $\square$ \G $\square^{* 3}$								
	K, H		$0.32{ }^{*}$						

*1. *2.These combinations are handled as exceptions because high-speed processing is adopted in the technique.
*3. When the instruction is executed for a BFM in a special function unit/block for $\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \mathrm{U}$ C Series.

- DMOV instruction (32-bit instruction)


2. Data comparison instruction execution time

- FX3s PLC
- Data comparison instruction (16-bit operation)

S (source)	D (destination)			
	Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathrm{s}$ )	
	KnY,KnM, Kns*1	T,C,D	KnY,KnM,KnS	T,C,D
KnX,KnY,KnM, KnS*1	2.12	2.2	11.28	9.18
T,C,D	2.24	2.36	9.78	7.58
K,H	1.4	1.52	8.88	6.78

*1. When K 4 is specified, and the head bit device number is a multiple of 8 (K4M0, K4M8 ...)

S (source)	D (destination)			
	Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathrm{s}$ )	
	KnY,KnM,Kns*1	T,C,D	KnY,KnM,KnS	T,C,D
KnX,KnY,KnM, Kns*1	2.52	2.76	11.68	9.68
T,C,D	2.8	3	10.72	8.28
K,H	1.4	1.76	9.28	7.28

*1. When K8 is specified, and the head bit device number is a multiple of 8 (K8M0, K8M8 ...)

- $\mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX} X_{3} \mathrm{Gc}$ PLCs
- Data comparison instruction (16-bit operation)

S (source)	D (destination)							
	Standard mode				Extension mode			
	Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathrm{s}$ )		Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathrm{s}$ )	
	KnY , KnM, $K_{n s}{ }^{* 1}$	T,C,D,R	KnY , $K n M$, Kns	T,C,D,R	KnY, KnM, KnS	T,C,D,R	KnY, KnM, KnS	T,C,D,R
KnX,KnY,KnM, KnS ${ }^{* 1}$	2.12	2.2	11.28	9.18	3	3.12	13.12	10.7
T,C,D,R	2.24	2.36	9.78	7.58	3.16	3.24	11.52	9.32
K,H	1.4	1.52	8.88	6.78	2.12	2.24	10.32	8.12

*1. When K4 is specified, and the head bit device number is a multiple of 8 (K4M0, K4M8 ...)

- Data comparison instruction (32-bit operation)

S (source)	D (destination)							
	Standard mode				Extension mode			
	Without indexing ( $\mu \mathrm{s}$ )		With indexing ( $\mu \mathrm{s}$ )		Without indexing ( $\mu \mathbf{s}$ )		With indexing ( $\mu \mathrm{s}$ )	
	KnY, KnM, $\mathrm{KnS}^{* 1}$	T,C,D,R	KnY, KnM , Kns	T,C,D,R	KnY, KnM, KnS	T,C,D,R	KnY , KnM, KnS	T,C,D,R
KnX,KnY,KnM, KnS ${ }^{* 1}$	2.52	2.76	11.68	9.68	3.48	3.68	13.32	11.32
T,C,D,R	2.8	3	10.72	8.28	3.72	3.92	11.92	9.92
K,H	1.4	1.76	9.28	7.28	2.36	2.68	11.12	9.12

*1. When K8 is specified, and the head bit device number is a multiple of 8 (K8M0, K8M8 ...)

## - FX3u/FX3uc PLCs

- Data comparison instruction (16-bit operation)

S (source)	D (destination)							
	Without indexing ( $\mu \mathrm{s}$ )				With indexing ( $\mu \mathbf{s}$ )			
	KnY,KnM, KnS	T,C,D	R	U $\square \mathbf{I G} \square^{* 2}$	KnY,KnM, KnS	T,C,D	R	U $\square$ IG $\square^{*}{ }^{2}$
KnX,KnY,KnM,KnS	16.2	13.0	14.7	133.1	19.4	17.4	17.6	134.7
T,C,D	13.0	$1.22{ }^{* 1}$	11.3	129.9	17.4	15.4	15.7	132.8
R	14.7	11.3	12.9	131.4	17.6	15.7	16.0	133.1
U $\square$ \G $\square^{*}{ }^{\text {2 }}$	133.0	129.3	131.4	298.2	134.3	131.0	138.9	299.4
K,H	13.4	1.22*1	11.7	130.2	16.3	14.2	14.5	131.6

*1. These combinations are handled as exceptions because high-speed processing is adopted in the technique.
*2. When the instruction is executed for a BFM in a special extension unit/block for FX3U/FX3Uc Series.

- Data comparison instruction (32-bit operation)

S (source)	D (destination)							
	Without indexing ( $\mu \mathbf{s}$ )				With indexing ( $\mu \mathbf{s}$ )			
	KnY,KnM, KnS	T,C,D	R	U $\square$ IG $\square^{*}{ }^{2}$	KnY,KnM, KnS	T,C,D	R	U $\square \mathbf{I G} \square^{* 2}$
KnX,KnY,KnM, KnS	16.4	13.2	14.7	201.1	19.6	17.9	18.0	202.7
T,C,D	13.2	$1.48{ }^{* 1}$	11.6	197.1	17.9	16.1	16.2	200.3
R	14.7	11.6	13.0	198.6	18.0	16.2	16.3	200.4
U $\square$ IG $\square^{*}$ 2	201.0	197.1	198.6	432.4	202.4	198.5	200.0	433.8
K,H	13.9	$1.48{ }^{* 1}$	12.3	197.8	17.1	15.3	15.4	199.4

*1. These combinations are handled as exceptions because high-speed processing is adopted in the technique.
*2. When the instruction is executed for a BFM in a special extension unit/block for FX3U/FX3Uc Series.

## Appendix C: Applied Instruction List [by Instruction Type/in Alphabetic Order]

## Appendix C-1 Applied instructions [by instruction type]

Applied instructions are classified into the following nineteen types:

1	Data transfer instructions
2	Data conversion instructions
3	Comparison instructions
4	Arithmetic operation instructions
5	Logical operation instructions
6	Special function instructions
7	Rotation instructions
8	Shift instructions
9	Data operation instructions
10	Character string operation instructions


11	Program flow control instructions		
12	I/O refresh instructions		
13	Real time clock control instructions		
14	Pulse output/positioning control instructions		
15	Serial communication instructions		
16	Special unit/block control instructions		
17	Extension register/extension file   instructions	register	control
18	FX3U-CF-ADP instructions		
19	Other handy instructions		

## 1. Data move instructions

Mnemonic	FNC No.	Function	Ref.   Page
MOV	FNC 12	Move	249
SMOV	FNC 13	Shift Move	252
CML	FNC 14	Complement	254
BMOV	FNC 15	Block Move	256
FMOV	FNC 16	Fill Move	260
PRUN	FNC 81	Parallel Run (Octal Mode)	458
XCH	FNC 17	Exchange	262
SWAP	FNC147	Byte Swap	542
EMOV	FNC112	Floating Point Move	490
HCMOV	FNC189	High-Speed Counter Move	596

## 2. Data conversion instructions

Mnemonic	FNC No.	Function	Ref.   Page
BCD	FNC 18	Conversion to   Binary Coded Decimal	264
BIN	FNC 19	Conversion to Binary	267
GRY	FNC170	Decimal to   Gray Code Conversion	581
GBIN	FNC171	Gray Code to   Decimal Conversion	582
INT	FNC 49	Conversion to   Floating Point	336
EBCD	FNC118	Floating Point to   Integer Conversion	Floating Point to Scientific   Notation Conversion
EBIN	FNC119	Scientific Notation to   Floating Point Conversion	503
RAD	FNC136	Floating Point Degrees to   Radians Conversion	528
DEG	FNC137	Floating Point Radians to   Degrees Conversion	530

## 3. Comparison instructions

Mnemonic	FNC No.	Function	Ref.   Page
LD=	FNC224	Load Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	654
LD>	FNC225	Load Compare $\mathrm{S}_{1}>\mathrm{S}_{2}$	654
LD<	FNC226	Load Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	654
LD<>	FNC228	Load Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	654
LD<=	FNC229	Load Compare $\mathrm{S}_{1} \leq \mathrm{S}_{2}$	654
LD>=	FNC230	Load Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	654
AND=	FNC232	AND Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	656
AND>	FNC233	AND Compare $\mathrm{S}_{1}>\mathrm{S} 2$	656
AND<	FNC234	AND Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	656
AND<>	FNC236	AND Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	656
AND<=	FNC237	AND Compare $\mathrm{S}_{1} \leq \mathrm{S}_{2}$	656
AND>=	FNC238	AND Compare $\mathrm{S} 1 \geq \mathrm{S} 2$	656
$\mathrm{OR}=$	FNC240	OR Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	658
OR>	FNC241	OR Compare $\mathrm{S}_{1}>\mathrm{S}_{2}$	658
$\mathrm{OR}<$	FNC242	OR Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	658

3. Comparison instructions

Mnemonic	FNC No.	Function	Ref. Page
OR<>	FNC244	OR Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	658
$\mathrm{OR}<=$	FNC245	OR Compare $\mathrm{S}_{1} \leq \mathrm{S}_{2}$	658
$\mathrm{OR}>=$	FNC246	OR Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	658
CMP	FNC 10	Compare	245
ZCP	FNC 11	Zone Compare	247
ECMP	FNC110	Floating Point Compare	487
EZCP	FNC111	Floating Point Zone Compare	488
HSCS	FNC 53	High-Speed Counter Set	350
HSCR	FNC 54	High-Speed Counter Reset	356
HSZ	FNC 55	High-Speed Counter Zone Compare	359
HSCT	FNC280	High-Speed Counter Compare With Data Table	709
BKCMP=	FNC194	Block Data Compare $S_{1}=S_{2}$	607
BKCMP>	FNC195	Block Data Compare $S_{1}>S_{2}$	607
BKCMP<	FNC196	Block Data Compare $S_{1}<S_{2}$	607
BKCMP<>	FNC197	Block Data Compare $\left.\mathrm{S}_{1}\right) \neq \mathrm{S}_{2}$	607
BKCMP<=	FNC198	Block Data Compare $S_{1} \leq S_{2}$	607
BKCMP>=	FNC199	Block Data Compare $\mathrm{S} 1$	607

4. Arithmetic operation instructions

Mnemonic	FNC No.	Function	Ref.   Page
ADD	FNC 20	Addition	271
SUB	FNC 21	Subtraction	273
MUL	FNC 22	Multiplication	275
DIV	FNC 23	Division	278
EADD	FNC120	Floating Point Addition	505
ESUB	FNC121	Floating Point Subtraction	506
EMUL	FNC122	Floating Point   Multiplication	507
EDIV	FNC123	Floating Point Division	508
BK+	FNC192	Block Data Addition	601
BK-	FNC193	Block Data Subtraction	604
INC	FNC 24	Increment	281
DEC	FNC 25	Decrement	283

## 5. Logical operation instructions

Mnemonic	FNC No.	Function	Ref.   Page
WAND	FNC 26	Logical Word AND	284
WOR	FNC 27	Logical Word OR	286
WXOR	FNC 28	Logical Exclusive OR	288

## 6. Special function instructions

Mnemonic	FNC No.	Function	Ref.   Page
SQR	FNC 48	Square Root	335
ESQR	FNC127	Floating Point Square Root	515
EXP	FNC124	Floating Point Exponent	509
LOGE	FNC125	Floating Point   Natural Logarithm	511
LOG10	FNC126	Floating Point   Common Logarithm	513
SIN	FNC130	Floating Point Sine	519
COS	FNC131	Floating Point Cosine	520
TAN	FNC132	Floating Point Tangent	521
ASIN	FNC133	Floating Point Arc Sine	522
ACOS	FNC134	Floating Point Arc Cosine	524
ATAN	FNC135	Floating Point Arc Tangent	526
RND	FNC184	Random Number   Generation	589

## 7. Rotation instructions

Mnemonic	FNC No.	Function	Ref.   Page
ROR	FNC 30	Rotation Right	293
ROL	FNC 31	Rotation Left	295
RCR	FNC 32	Rotation Right with Carry	297
RCL	FNC 33	Rotation Left with Carry	299

## 8. Shift instructions

Mnemonic	FNC No.	Function	Ref.   Page
SFTR	FNC 34	Bit Shift Right	301
SFTL	FNC 35	Bit Shift Left	303
SFR	FNC213	Bit Shift Right with Carry	648
SFL	FNC214	Bit Shift Left with Carry	650
WSFR	FNC 36	Word Shift Right	306
WSFL	FNC 37	Word Shift Left	308
SFWR	FNC 38	Shift Write   [FIFO/FILO Control]	310
SFRD	FNC 39	Shift Read [FIFO Control]	313
POP	FNC212	Shift Last Data Read   [FILO Control]	645

9. Data operation instructions

Mnemonic	FNC No.	Function	Ref.   Page
ZRST	FNC 40	Zone Reset	316
DECO	FNC 41	Decode	320
ENCO	FNC 42	Encode	323
MEAN	FNC 45	Mean	330
WSUM	FNC140	Sum of Word Data	532
SUM	FNC 43	Sum of Active Bits	325
BON	FNC 44	Check Specified Bit Status	328
NEG	FNC 29	Negation	290
ENEG	FNC128	Floating Point Negation	516
WTOB	FNC141	WORD to BYTE	534
BTOW	FNC142	BYTE to WORD	536
UNI	FNC143	4-bit Linking of Word Data	538
DIS	FNC144	4-bit Grouping of   Word Data	540

9. Data operation instructions

Mnemonic	FNC No.	Function	Ref.   Page
CCD	FNC 84	Check Code	466
CRC	FNC188	Cyclic Redundancy Check	592
LIMIT	FNC256	Limit Control	661
BAND	FNC257	Dead Band Control	664
ZONE	FNC258	Zone Control	667
SCL	FNC259	Scaling   (Coordinate by Point Data)	670
SCL2	FNC269	Scaling 2   (Coordinate by X/Y Data)	680
SORT	FNC 69	Sort Tabulated Data	418
SORT2	FNC149	Sort Tabulated Data 2	543
SER	FNC 61	Search a Data Stack	399
FDEL	FNC210	Deleting Data from Tables	641
FINS	FNC211	Inserting Data to Tables	643

## 10.Character string operation instructions

Mnemonic	FNC No.	Function	Ref. Page
ESTR	FNC116	Floating Point to Character String Conversion	491
EVAL	FNC117	Character String to Floating Point Conversion	497
STR	FNC200	BIN to Character String Conversion	612
VAL	FNC201	Character String to BIN Conversion	617
DABIN	FNC260	Decimal ASCII to   BIN Conversion	674
BINDA	FNC261	BIN to Decimal ASCII Conversion	677
ASCI	FNC 82	Hexadecimal to ASCII Conversion	460
HEX	FNC 83	ASCII to Hexadecimal Conversion	463
\$MOV	FNC209	Character String Transfer	638
\$+	FNC202	Link Character Strings	622
LEN	FNC203	Character String Length Detection	624
RIGHT	FNC204	Extracting Character String Data From the Right	626
LEFT	FNC205	Extracting Character String Data from the Left	628
MIDR	FNC206	Random Selection of Character Strings	630
MIDW	FNC207	Random Replacement of Character Strings	633
INSTR	FNC208	Character string search	636
COMRD	FNC182	Read Device Comment Data	587

## 11.Program flow control instructions

Mnemonic	FNC No.	Function	Ref.   Page
CJ	FNC 00	Conditional Jump	221
CALL	FNC 01	Call Subroutine	228
SRET	FNC 02	Subroutine Return	232
IRET	FNC 03	Interrupt Return	233
EI	FNC 04	Enable Interrupt	235

## 11.Program flow control instructions

Mnemonic	FNC No.	Function	Ref.   Page
DI	FNC 05	Disable Interrupt	236
FEND	FNC 06	Main Routine Program End	237
FOR	FNC 08	Start a FOR/NEXT Loop	241
NEXT	FNC 09	End a FOR/NEXT Loop	242

## 12.I/O refresh instructions

Mnemonic	FNC No.	Function	Ref.   Page
REF	FNC 50	Refresh	339
REFF	FNC 51	Refresh and Filter Adjust	343

## 13.Real time clock control instructions

Mnemonic	FNC No.	Function	Ref.   Page
TCMP	FNC160	RTC Data Compare	563
TZCP	FNC161	RTC Data Zone Compare	565
TADD	FNC162	RTC Data Addition	567
TSUB	FNC163	RTC Data Subtraction	569
TRD	FNC166	Read RTC data	575
TWR	FNC167	Set RTC data	576
HTOS	FNC164	Hour to Second   Conversion	571
STOH	FNC165	Second to Hour   Conversion	573

14.Pulse output/positioning control instructions

Mnemonic	FNC No.	Function	Ref.   Page
ABS	FNC155	Absolute Current Value   Read	553
DSZR	FNC150	DOG Search Zero Return	548
ZRN	FNC156	Zero Return	554
TBL	FNC152	Batch Data Positioning   Mode	552
DVIT	FNC151	Interrupt Positioning	550
DRVI	FNC158	Drive to Increment	558
DRVA	FNC159	Drive to Absolute	560
PLSV	FNC157	Variable Speed Pulse   Output	556
PLSY	FNC 57	Pulse Y Output	375
PLSR	FNC 59	Acceleration/Deceleration   Setup	383

15.Serial communication instructions

Mnemonic	FNC No.	Function	Ref.   Page
RS	FNC 80	Serial Communication	456
RS2	FNC 87	Serial Communication 2	473
IVCK	FNC270	Inverter Status Check	685
IVDR	FNC271	Inverter Drive	687
IVRD	FNC272	Inverter Parameter Read	689
IVWR	FNC273	Inverter Parameter Write	691
IVBWR	FNC274	Inverter Parameter   Block Write	693
IVMC	FNC275	Inverter Multi Command	695
ADPRW	FNC276	MODBUS Read/Write	697

## 16. Special unit/block control instructions

Mnemonic	FNC No.	Function	Ref.   Page
FROM	FNC 78	Read From a Special   Function Block	448
TO	FNC 79	Write To a Special   Function Block	453
RD3A	FNC176	Read form Dedicated   Analog Block	583
WR3A	FNC177	Write to Dedicated   Analog Block	584
RBFM	FNC278	Divided BFM Read	702
WBFM	FNC279	Divided BFM Write	706

## 17.Extension register/extension file register control instructions

Mnemonic	FNC No.	Function	Ref.   Page
LOADR	FNC290	Load From ER	715
SAVER	FNC291	Save to ER	718
RWER	FNC294	Rewrite to ER	733
INITR	FNC292	Initialize R and ER	726
INITER	FNC295	Initialize ER	739
LOGR	FNC293	Logging R and ER	729

## 18.FX3U-CF-ADP instructions

Mnemonic	FNC No.	Function	Ref.   Page
FLCRT	FNC300	File create / check	743
FLDEL	FNC301	File delete / CF card format	745
FLWR	FNC302	Data write	747
FLRD	FNC303	Data read	750
FLCMD	FNC304	FX3U-CF-ADP command	752
FLSTRD	FNC305	FX3U-CF-ADP status read	754

19.Other handy instructions

Mnemonic	FNC No.	Function	Ref.   Page
WDT	FNC 07	Watchdog Timer Refresh	239
ALT	FNC 66	Alternate State	411
ANS	FNC 46	Timed Annunciator Set	332
ANR	FNC 47	Annunciator Reset	334
HOUR	FNC169	Hour Meter	578
RAMP	FNC 67	Ramp Variable Value	413
SPD	FNC 56	Speed Detection	371
PWM	FNC 58	Pulse Width Modulation	380
DUTY	FNC186	Timing Pulse Generation	590
PID	FNC 88	PID Control Loop	476
ZPUSH	FNC102	Batch Store of Index Register	481
ZPOP	FNC103	Batch POP of Index Register	484
TTMR	FNC 64	Teaching Timer	407
STMR	FNC 65	Special Timer	409
ABSD	FNC 62	Absolute Drum Sequencer	402
INCD	FNC 63	Incremental Drum Sequencer	405
ROTC	FNC 68	Rotary Table Control	415
IST	FNC 60	Initial State	389
MTR	FNC 52	Input Matrix	346
TKY	FNC 70	Ten Key Input	422
HKY	FNC 71	Hexadecimal Input	425
DSW	FNC 72	Digital Switch (Thumbwheel Input)	429
SEGD	FNC 73	Seven Segment Decoder	432
SEGL	FNC 74	Seven Segment With Latch	434
ARWS	FNC 75	Arrow Switch	439
ASC	FNC 76	ASCII Code Data Input	443
PR	FNC 77	Print (ASCII Code)	445
VRRD	FNC 85	Volume Read	469
VRSC	FNC 86	Volume Scale	471

## Appendix C-2 Applied instructions [in alphabetical order]

Mnemonic	FNC No.	Function	Ref.   Page
Symbol			
\$+	FNC202	Link Character Strings	622
\$MOV	FNC209	Character String Transfer	638
A			
ABS	FNC155	Absolute Current Value Read	553
ABSD	FNC 62	Absolute Drum Sequencer	402
ACOS	FNC134	Floating Point Arc Cosine	524
ADD	FNC 20	Addition	271
ADPRW	FNC276	MODBUS Read/Write	697
ALT	FNC 66	Alternate State	411
AND<	FNC234	AND Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	656
AND<>	FNC236	AND Compare $\mathrm{S} 1$	656
AND=	FNC232	AND Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	656
AND>	FNC233	AND Compare $\mathrm{S} 1$	656
AND<=	FNC237	AND Compare $\mathrm{S} 1$	656
AND>=	FNC238	AND Compare S1 $\geq$ S2	656
ANR	FNC 47	Annunciator Reset	334
ANS	FNC 46	Timed Annunciator Set	332
ARWS	FNC 75	Arrow Switch	439
ASC	FNC 76	ASCII Code Data Input	443
ASCI	FNC 82	Hexadecimal to ASCII Conversion	460
ASIN	FNC133	Floating Point Arc Sine	522
ATAN	FNC135	Floating Point Arc Tangent	526
B			
BAND	FNC257	Dead Band Control	664
BCD	FNC 18	Conversion to Binary Coded Decimal	264
BIN	FNC 19	Conversion to Binary	267
BINDA	FNC261	BIN to Decimal ASCII Conversion	677
BK-	FNC193	Block Data Subtraction	604
BK+	FNC192	Block Data Addition	601
BKCMP<	FNC196	Block Data Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	607
BKCMP<=	FNC198	Block Data Compare $\mathrm{S} 1$	607
BKCMP<>	FNC197	Block Data Compare $\mathrm{S} 1$	607
BKCMP=	FNC194	Block Data Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	607
BKCMP>	FNC195	Block Data Compare $\mathrm{S} 1$	607
BKCMP>=	FNC199	Block Data Compare $\mathrm{S} 1$	607


Mnemonic	FNC No.	Function	Ref.   Page
BMOV	FNC 15	Block Move	256
BON	FNC 44	Check Specified Bit Status	328
BTOW	FNC142	BYTE to WORD	536
C			
CALL	FNC 01	Call Subroutine	228
CCD	FNC 84	Check Code	466
CJ	FNC 00	Conditional Jump	221
CML	FNC 14	Complement	254
CMP	FNC 10	Compare	245
COMRD	FNC182	Read Device Comment Data	587
COS	FNC131	Floating Point Cosine	520
CRC	FNC188	Cyclic Redundancy Check	592
D			
DABIN	FNC260	Decimal ASCII to BIN Conversion	674
DEC	FNC 25	Decrement	283
DECO	FNC 41	Decode	320
DEG	FNC137	Floating Point Radians to Degrees Conversion	530
DI	FNC 05	Disable Interrupt	236
DIS	FNC144	4-bit Grouping of Word Data	540
DIV	FNC 23	Division	278
DRVA	FNC159	Drive to Absolute	560
DRVI	FNC158	Drive to Increment	558
DSW	FNC 72	Digital Switch (Thumbwheel Input)	429
DSZR	FNC150	DOG Search Zero Return	548
DUTY	FNC186	Timing Pulse Generation	590
DVIT	FNC151	Interrupt Positioning	550
E			
EADD	FNC120	Floating Point Addition	505
EBCD	FNC118	Floating Point to Scientific Notation Conversion	502
EBIN	FNC119	Scientific Notation to Floating Point Conversion	503
ECMP	FNC110	Floating Point Compare	487
EDIV	FNC123	Floating Point Division	508
El	FNC 04	Enable Interrupt	235
EMOV	FNC112	Floating Point Move	490
EMUL	FNC122	Floating Point Multiplication	507
ENCO	FNC 42	Encode	323
ENEG	FNC128	Floating Point Negation	516
ESQR	FNC127	Floating Point Square Root	515
ESTR	FNC116	Floating Point to Character String Conversion	491
ESUB	FNC121	Floating Point Subtraction	506
EVAL	FNC117	Character String to Floating Point Conversion	497
EXP	FNC124	Floating Point Exponent	509
EZCP	FNC111	Floating Point Zone Compare	488

$\mathrm{FX}_{3 \mathrm{~s}} / \mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{G}} / \mathrm{FX}_{3 \mathrm{u}} / \mathrm{FX}_{3}{ }_{3}$ Series
Programming Manual - Basic \& Applied Instruction Edition

C Applied Instruction List [by Instruction Type/in Alphabetic Order]
C-2 Applied instructions [in alphabetical order]

Mnemonic	FNC No.	Function	Ref.   Page
F			
FDEL	FNC210	Deleting Data from Tables	641
FEND	FNC 06	Main Routine Program End	237
FINS	FNC211	Inserting Data to Tables	643
FLCMD	FNC304	FX3U-CF-ADP command	752
FLCRT	FNC300	File create / check	743
FLDEL	FNC301	File delete / CF card format	745
FLRD	FNC303	Data read	750
FLSTRD	FNC305	FX3U-CF-ADP status read	754
FLT	FNC 49	Conversion to Floating Point	336
FLWR	FNC302	Data write	747
FMOV	FNC 16	Fill Move	260
FOR	FNC 08	Start a FOR/NEXT Loop	241
FROM	FNC 78	Read From a Special Function Block	448
G			
GBIN	FNC171	Gray Code to Decimal Conversion	582
GRY	FNC170	Decimal to Gray Code Conversion	581
H			
HCMOV	FNC189	High-Speed Counter Move	596
HEX	FNC 83	ASCII to Hexadecimal Conversion	463
HKY	FNC 71	Hexadecimal Input	425
HOUR	FNC169	Hour Meter	578
HSCR	FNC 54	High-Speed Counter Reset	356
HSCS	FNC 53	High-Speed Counter Set	350
HSCT	FNC280	High-Speed Counter Compare With Data Table	709
HSZ	FNC 55	High-Speed Counter Zone Compare	359
HTOS	FNC164	Hour to Second Conversion	571
I			
INC	FNC 24	Increment	281
INCD	FNC 63	Incremental Drum Sequencer	405
INITER	FNC295	Initialize ER	739
INITR	FNC292	Initialize R and ER	726
INSTR	FNC208	Character string search	636
INT	FNC129	Floating Point to Integer Conversion	517
IRET	FNC 03	Interrupt Return	233
IST	FNC 60	Initial State	389
IVBWR	FNC274	Inverter Parameter Block Write	693
IVCK	FNC270	Inverter Status Check	685
IVDR	FNC271	Inverter Drive	687
IVMC	FNC275	Inverter Multi Command	695
IVRD	FNC272	Inverter Parameter Read	689
IVWR	FNC273	Inverter Parameter Write	691


Mnemonic	FNC No.	Function	Ref.   Page
L			
LD<	FNC226	Load Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	654
LD<>	FNC228	Load Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	654
LD=	FNC224	Load Compare $\mathrm{S}_{1}=\mathrm{S}_{2}$	654
LD>	FNC225	Load Compare $\mathrm{S}_{1}>\mathrm{S}_{2}$	654
LD<=	FNC229	Load Compare $\mathrm{S}_{1} \leq \mathrm{S}_{2}$	654
LD>=	FNC230	Load Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	654
LEFT	FNC205	Extracting Character String Data from the Left	628
LEN	FNC203	Character String Length Detection	624
LIMIT	FNC256	Limit Control	661
LOADR	FNC290	Load From ER	715
LOG10	FNC126	Floating Point Common Logarithm	513
LOGE	FNC125	Floating Point Natural Logarithm	511
LOGR	FNC293	Logging R and ER	729
M			
MEAN	FNC 45	Mean	330
MIDR	FNC206	Random Selection of Character Strings	630
MIDW	FNC207	Random Replacement of Character Strings	633
MOV	FNC 12	Move	249
MTR	FNC 52	Input Matrix	346
MUL	FNC 22	Multiplication	275
N			
NEG	FNC 29	Negation	290
NEXT	FNC 09	End a FOR/NEXT Loop	242
0			
OR<	FNC242	OR Compare $\mathrm{S}_{1}<\mathrm{S}_{2}$	658
OR<>	FNC244	OR Compare $\mathrm{S}_{1} \neq \mathrm{S} 2$	658
$\mathrm{OR}=$	FNC240	OR Compare $S_{1}=S_{2}$	658
OR>	FNC241	OR Compare $\mathrm{S}_{1}>\mathrm{S}_{2}$	658
OR<=	FNC245	OR Compare $\mathrm{S}_{1} \leq \mathrm{S} 2$	658
OR>=	FNC246	OR Compare $\mathrm{S}_{1} \geq \mathrm{S} 2$	658


Mnemonic	FNC No.	Function	Ref.   Page
P			
PID	FNC 88	PID Control Loop	476
PLSR	FNC 59	Acceleration/Deceleration Setup	383
PLSV	FNC157	Variable Speed Pulse Output	556
PLSY	FNC 57	Pulse Y Output	375
POP	FNC212	Shift Last Data Read [FILO Control]	645
PR	FNC 77	Print (ASCII Code)	445
PRUN	FNC 81	Parallel Run (Octal Mode)	458
PWM	FNC 58	Pulse Width Modulation	380
R			
RAD	FNC136	Floating Point Degrees to Radians Conversion	528
RAMP	FNC 67	Ramp Variable Value	413
RBFM	FNC278	Divided BFM Read	702
RCL	FNC 33	Rotation Left with Carry	299
RCR	FNC 32	Rotation Right with Carry	297
RD3A	FNC176	Read form Dedicated Analog Block	583
REF	FNC 50	Refresh	339
REFF	FNC 51	Refresh and Filter Adjust	343
RIGHT	FNC204	Extracting Character String Data From the Right	626
RND	FNC184	Random Number Generation	589
ROL	FNC 31	Rotation Left	295
ROR	FNC 30	Rotation Right	293
ROTC	FNC 68	Rotary Table Control	415
RS	FNC 80	Serial Communication	456
RS2	FNC 87	Serial Communication 2	473
RWER	FNC294	Rewrite to ER	733
S			
SAVER	FNC291	Save to ER	718
SCL	FNC259	Scaling (Coordinate by Point Data)	670
SCL2	FNC269	Scaling 2 (Coordinate by X/Y Data)	680
SEGD	FNC 73	Seven Segment Decoder	432
SEGL	FNC 74	Seven Segment With Latch	434
SER	FNC 61	Search a Data Stack	399
SFL	FNC214	Bit Shift Left with Carry	650
SFR	FNC213	Bit Shift Right with Carry	648
SFRD	FNC 39	Shift Read [FIFO Control]	313
SFTL	FNC 35	Bit Shift Left	303
SFTR	FNC 34	Bit Shift Right	301
SFWR	FNC 38	Shift Write [FIFO/FILO Control]	310
SIN	FNC130	Floating Point Sine	519
SMOV	FNC 13	Shift Move	252
SORT	FNC 69	Sort Tabulated Data	418
SORT2	FNC149	Sort Tabulated Data 2	543
SPD	FNC 56	Speed Detection	371
SQR	FNC 48	Square Root	335
SRET	FNC 02	Subroutine Return	232

## Appendix D: Discontinued models

The table below shows discontinued models of MELSEC-F Series PLCs and programming tools described in this manual.

Discontinued model	Production stop date	Repair acceptance period
FX1S	December 31, 2015	Until December 31, 2022
FX1N	December 31, 2015	Until December 31, 2022
FX1NC	December 31, 2015	Until December 31, 2022
FX3U-232ADP	September 30, 2013	Until September 30, 2020
FX3U-485ADP	September 30, 2013	Until September 30, 2020
FX-PCS/WIN(-E)	March 31, 2013	
FX-20P(-E)	December 31, 2012	Until December 31, 2019
FX-10DU(-E)	December 31, 2012	Until December 31, 2019
FX2N	September 30, 2012	Until September 30, 2019
FX2NC	September 30, 2012	Until September 30, 2019
FX-10P(-E)	June 30, 2008	Until June 30, 2015
FX-20DU	June 30, 2008	Until June 30, 2015
FX-232AW	September 30, 2004	Until September 30, 2011
FX-232AWC	June 30, 2004	Until June 30, 2011
FX-25DU-E	September 30, 2002	Until September 30, 2009

## MEMO

## Warranty

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company. However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

## [Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

## [Gratis Warranty Range]

(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Relay failure or output contact failure caused by usage beyond the specified Life of contact (cycles).
6. Failure caused by external irresistible forces such as fires or abnormal voltages, and failure caused by force majeure such as earthquakes, lightning, wind and water damage
7. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
8. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

## 2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

## 3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

## 4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.
5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

## 6. Product application

(1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
(2) The Mitsubishi programmable logic controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable logic controller applications.
In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable logic controller range of applications.
However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.
(3) Mitsubishi shall have no responsibility or liability for any problems involving programmable controller trouble and system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

## Revised History

Date Created	Revision	Description	
7/2005	A	First Edition	
2/2006	B	FX3U and FX3UC series version 2.30 compatible   - Two instructions are added.   - MEP, MEF [Section 3.1, Chapter 7, Appendix A-1-2, Appendix 8-1]   - Functions of instructions are added   - MUL (FNC 22) [Section 6.5.2, Section 10.3, Section 36.1.1]   - DIV (FNC 23) [Section 6.5.2, Section 10.4, Section 36.1.1]   - RS2 (FNC 87) [Section 36.1.1]   - Example of index modification for instructions having limitation on number of executions [Section 5.7.3]   - Other   - Configuration	
		Revision A	Revision B
		7.11 PLS, PLF	7.11 MEP, MEF
		7.12 SET, RST	7.12 PLS, PLF
		7.13 NOP	7.13 SET, RST
		7.14 END	7.14 NOP
		7.15 Number of Instruction Steps and Specified Devices	7.15 END
			7.16 Number of Instruction Steps and Specified Devices
		Appendix A-2 Version Upgrade History	Appendix A-2 Peripheral Products applicability (except programming tools)
		Appendix A-2-1 Version check method	Appendix A-2-1 Applicable products and versions
		Appendix A-2-2 How to look at manufacturer's serial number	Appendix A-2-2 Incompatible peripheral products
		- -	Appendix A-3 Version Upgrade History
			Appendix A-3-1 Version check method
		-	Appendix A-3-2 How to look at manufacturer's serial number
			Appendix A-3-3 Version Upgrade history $\quad\left[F X_{3 U}\right]$
			Appendix A-3-4 Version Upgrade history [FX3UC]
		FX3U transistor output compatibility (change the [illegible] from FX3UC to FX3U)[Section 13.3, Item 13.3.1, Section 13.8, Section 13.9, Section 13.10, Section 15.2, Section 15.3, Section 15.5]	
3/2007	C	- The FX3U-4AD, FX3U-4DA and FX3U-20SSC-H are added in the related manual introduction section.   - Note on battery voltage drop is added [Subsection 2.6.2].   - The expression of battery maintenance is modified [Subsection 2.6.3].   - The contents of latched type device initialization methods are modified and added [Subsection 2.6.5].   - Caution on using header and terminator in RS2 instruction is added [Section 16.6].   - Note on setting the clock data from the FX-10DU-E/20DU-E/25DU-E is added [Section 21.8 and Subsection 36.2.7].	


Date Created	Revision	Description
3/2007	C	- Caution on storing sign data of character string is added [Section 26.2].   - The sentence describing rough guide to the watchdog timer set value is modified [Sections 33.3 and 33.6].   - Note on using state relays (S) in contact instructions is added [Subsections 34.1.2 and 34.2.2].   - Note on state relays (S) in interrupt programs is added [Subsections 34.1.7, 34.2.5 and 35.2.3].   - Errors are corrected.
11/2007	D	- FX3UC(D, DSS) Series PLC was added.   - FX3U-232ADP-MB, FX3U-485ADP-MB was added.   - Timing chart was added [Subsections 4.7.11, 35.3.2].   - Errors are corrected.
11/2008	E	- FX3G Series PLC was added.   - FX3UC-32MT-LT-2 PLC was added.   - Note is added for the allowable number of times of writing to the memory. [Section 4.9, 4.10, 9.6 and Chapter 33]   - 15 instructions are added:   FLT(FNC49), VRRD(FNC85), VRSC(FNC86), ECMP(FNC110), EMOV(FNC112), EADD(FNC120), ESUB(FNC121), EMUL(FNC122), EDIV(FNC123), ESQR(FNC127), INT(FNC129), IVCK(FNC270), IVDR(FNC271), IVRD(FNC272), IVWR(FNC273)   - Supports connection of FX3G-8AV-BD, FX3G-2AD-BD, and FX3G-1DA-BD. [Section 16.6, 16.7 and Chapter 36]   - Supports connection of display module (FX3G-5DM). [Chapter 2, Chapter 36 and Chapter 37]   - Supports the floating point operation function. [Chapter 12 and Chapter 18]   - Supports the inverter communication function. [Chapter 30]   - Supports the pulse width/pulse period measurement function. [Section 35.8]   - Instruction Execution Time was added (FX3G)
6/2009	F	- 6 instructions are added:   FLCRT(FNC300), FLDEL(FNC301), FLWR(FNC302), FLRD(FNC303), FLCMD(FNC304), FLSTRD(FNC305) [Chapter 34]   - Supports connection of FX3U-CF-ADP. [Chapter 34, Section 37.1 and Appendix B-4,C]   - Supports connection of FX3U-3A-ADP. [Section 37.2]   - FX-30P was added. [Chapter 2 and Appendix A-1-1]   - Explanation corrections for manufacturer's serial number.   - Errors are corrected.
11/2009	G	- The baud rate " 38400 bps " is supported in the RS and RS2 instructions, inverter communication and computer link.   - Customer keyword / permanent PLC lock is supported.   - Errors are corrected.
8/2010	H	- FX3U and FX3UC series version 2.70 compatible   - 3 instructions are added.   VRRD(FNC85), VRSC(FNC86), IVMC(FNC275)[Section 16.6, 16.7 and Section 30.6]   - Supports connection of the FX3U-8AV-BD. [Section 16.6 and Section 16.7]   - Note is added for FX3U Series PLC AC input type and triac output type.   - GX Works2 is added.   - Explanation corrections for manufacturer's serial number and lot number. [Appendix A-3-1]   - Errors are corrected.


Date Created	Revision	Description
7/2011	$J$	- Supported in FX3G Series version 1.40   - 1 instruction added.   IVMC (FNC275) [Section 30.6]   - Supported in $F X_{3}$ und $F_{3} \cup c$ Series version 3.00   - Supports storage of symbolic information.   - Support of the setting "Read-protect the execution program" for block passwords.   - Special block error condition (D8166) is added.   - Supports connection of FX3U-FLROM-1M.   - Errors are corrected.
2/2012	K	- FX3GC Series PLC was added.   - Supported in FX3U and FX3uc Series version 3.10   - Special parameter error (M8489 and D8489) is added.   - The error code for parameter error is added.   - The error code for special block error is added.   - Errors are corrected.
5/2012	L	- Supported in FX3G and FX3GC Series version 2.00   - Errors are corrected.
5/2013	M	- FX3S Series PLC was added.   - Supported in FX3G and FX3GC Series version 2.10   - The IP address change function for the FX3U-ENET-ADP is added. [Appendix A]   - 1 instruction added.   ADPRW (FNC276) [Section 30.7]   - Supports connection of FX3U-ENET-ADP. [Section 37.1]   - Description of the programming tool is changed accompanied by change of the programming tool from GX Developer to GX Works2.   - Discontinued models are added. [Appendix D]   - Errors are corrected.
9/2013	N	- Supported in $F X_{3 S}$ Series version 1.10   - Supported in FX3G Series version 2.20   - FX3s-30M $\square / E \square-2 A D$ PLC was added.   - Supports connection of $\mathrm{FX}_{3} \mathrm{G}-4 E X-B D$, FX3G-2EYT-BD and FX3G-485-BD-RJ.   - Discontinued models are added. [Appendix D]   - Errors are corrected.
4/2015	P	- A part of the cover design is changed.
7/2016	Q	- Supported in FX3G and FX3GC Series version 2.30   - Forcible stop at extension bus error occurrence (M8484) is added.   - Supported in FX3U and FX3UC Series version 3.20   - Forcible stop at extension bus error occurrence (M8484) is added.   - Supports the FREQROL-F800/A800 Series inverters.   [Section 30.1, Section 30.2, Section 30.3, Section 30.4, Section 30.5, Section 30.6 and Appendix A-3]   - Extension bus error is added. [Section 38.4]   - Version upgrade history is added. [Appendix A-3]   - Discontinued models are added. [Appendix D]   - The contents of warranty are changed.   - Errors are corrected.
4/2021	R	- Notes are added for Allowable number of writes to the memory. [Subsections 4.9.5, 4.10.7, 9.6.1, Section 33.1, 33.2, 33.3, 33.4, 33.5, 33.6]   - Note is added for the Input interrupt (interrupt triggered by external signal) [without delay function] [Subsection 36.3.1]

## FX3s/FX3G/FX3Gc/FX3u/FX3uc SERIES PROGRAMMABLE CONTROLLERS

## PROGRAMMING MANUAL

## Basic \& Applied Instruction Edition

MODEL	FX-P3-E
MODEL CODE	09R517


[^0]:    This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

[^1]:    *1. This area can be set only in FX3U/FX3UC PLCs.

[^2]:    *1. For applicable functions, refer to Chapter 37.
    For handling of the latched area, refer to Section 2.6.

[^3]:    *1. Cleared when the PLC mode is changed from RUN to STOP.

[^4]:    *1. When the instruction is executed to BFM \#0 to BFM \#31 in a special function unit/block for the FX2N Series
    *2. When the instruction is executed to BFM \#32 or later in a special function unit/block for the FX2N Series.
    *3. When the instruction is executed to a BFM in a special function unit/block for the FX3U/FX3UC Series

